Properties

Label 1083.4.a.a.1.1
Level $1083$
Weight $4$
Character 1083.1
Self dual yes
Analytic conductor $63.899$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1083,4,Mod(1,1083)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1083, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1083.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1083 = 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1083.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.8990685362\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1083.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} -3.00000 q^{3} -7.00000 q^{4} -12.0000 q^{5} -3.00000 q^{6} -20.0000 q^{7} -15.0000 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} -3.00000 q^{3} -7.00000 q^{4} -12.0000 q^{5} -3.00000 q^{6} -20.0000 q^{7} -15.0000 q^{8} +9.00000 q^{9} -12.0000 q^{10} -4.00000 q^{11} +21.0000 q^{12} +76.0000 q^{13} -20.0000 q^{14} +36.0000 q^{15} +41.0000 q^{16} +22.0000 q^{17} +9.00000 q^{18} +84.0000 q^{20} +60.0000 q^{21} -4.00000 q^{22} +82.0000 q^{23} +45.0000 q^{24} +19.0000 q^{25} +76.0000 q^{26} -27.0000 q^{27} +140.000 q^{28} -242.000 q^{29} +36.0000 q^{30} +126.000 q^{31} +161.000 q^{32} +12.0000 q^{33} +22.0000 q^{34} +240.000 q^{35} -63.0000 q^{36} +180.000 q^{37} -228.000 q^{39} +180.000 q^{40} +390.000 q^{41} +60.0000 q^{42} +308.000 q^{43} +28.0000 q^{44} -108.000 q^{45} +82.0000 q^{46} -522.000 q^{47} -123.000 q^{48} +57.0000 q^{49} +19.0000 q^{50} -66.0000 q^{51} -532.000 q^{52} +70.0000 q^{53} -27.0000 q^{54} +48.0000 q^{55} +300.000 q^{56} -242.000 q^{58} -188.000 q^{59} -252.000 q^{60} -706.000 q^{61} +126.000 q^{62} -180.000 q^{63} -167.000 q^{64} -912.000 q^{65} +12.0000 q^{66} -104.000 q^{67} -154.000 q^{68} -246.000 q^{69} +240.000 q^{70} +432.000 q^{71} -135.000 q^{72} +718.000 q^{73} +180.000 q^{74} -57.0000 q^{75} +80.0000 q^{77} -228.000 q^{78} -94.0000 q^{79} -492.000 q^{80} +81.0000 q^{81} +390.000 q^{82} -1296.00 q^{83} -420.000 q^{84} -264.000 q^{85} +308.000 q^{86} +726.000 q^{87} +60.0000 q^{88} -846.000 q^{89} -108.000 q^{90} -1520.00 q^{91} -574.000 q^{92} -378.000 q^{93} -522.000 q^{94} -483.000 q^{96} -830.000 q^{97} +57.0000 q^{98} -36.0000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.353553 0.176777 0.984251i \(-0.443433\pi\)
0.176777 + 0.984251i \(0.443433\pi\)
\(3\) −3.00000 −0.577350
\(4\) −7.00000 −0.875000
\(5\) −12.0000 −1.07331 −0.536656 0.843801i \(-0.680313\pi\)
−0.536656 + 0.843801i \(0.680313\pi\)
\(6\) −3.00000 −0.204124
\(7\) −20.0000 −1.07990 −0.539949 0.841698i \(-0.681557\pi\)
−0.539949 + 0.841698i \(0.681557\pi\)
\(8\) −15.0000 −0.662913
\(9\) 9.00000 0.333333
\(10\) −12.0000 −0.379473
\(11\) −4.00000 −0.109640 −0.0548202 0.998496i \(-0.517459\pi\)
−0.0548202 + 0.998496i \(0.517459\pi\)
\(12\) 21.0000 0.505181
\(13\) 76.0000 1.62143 0.810716 0.585440i \(-0.199078\pi\)
0.810716 + 0.585440i \(0.199078\pi\)
\(14\) −20.0000 −0.381802
\(15\) 36.0000 0.619677
\(16\) 41.0000 0.640625
\(17\) 22.0000 0.313870 0.156935 0.987609i \(-0.449839\pi\)
0.156935 + 0.987609i \(0.449839\pi\)
\(18\) 9.00000 0.117851
\(19\) 0 0
\(20\) 84.0000 0.939149
\(21\) 60.0000 0.623480
\(22\) −4.00000 −0.0387638
\(23\) 82.0000 0.743399 0.371700 0.928353i \(-0.378775\pi\)
0.371700 + 0.928353i \(0.378775\pi\)
\(24\) 45.0000 0.382733
\(25\) 19.0000 0.152000
\(26\) 76.0000 0.573263
\(27\) −27.0000 −0.192450
\(28\) 140.000 0.944911
\(29\) −242.000 −1.54960 −0.774798 0.632209i \(-0.782148\pi\)
−0.774798 + 0.632209i \(0.782148\pi\)
\(30\) 36.0000 0.219089
\(31\) 126.000 0.730009 0.365004 0.931006i \(-0.381068\pi\)
0.365004 + 0.931006i \(0.381068\pi\)
\(32\) 161.000 0.889408
\(33\) 12.0000 0.0633010
\(34\) 22.0000 0.110970
\(35\) 240.000 1.15907
\(36\) −63.0000 −0.291667
\(37\) 180.000 0.799779 0.399889 0.916563i \(-0.369049\pi\)
0.399889 + 0.916563i \(0.369049\pi\)
\(38\) 0 0
\(39\) −228.000 −0.936134
\(40\) 180.000 0.711512
\(41\) 390.000 1.48556 0.742778 0.669538i \(-0.233508\pi\)
0.742778 + 0.669538i \(0.233508\pi\)
\(42\) 60.0000 0.220433
\(43\) 308.000 1.09232 0.546158 0.837682i \(-0.316090\pi\)
0.546158 + 0.837682i \(0.316090\pi\)
\(44\) 28.0000 0.0959354
\(45\) −108.000 −0.357771
\(46\) 82.0000 0.262831
\(47\) −522.000 −1.62003 −0.810016 0.586407i \(-0.800542\pi\)
−0.810016 + 0.586407i \(0.800542\pi\)
\(48\) −123.000 −0.369865
\(49\) 57.0000 0.166181
\(50\) 19.0000 0.0537401
\(51\) −66.0000 −0.181213
\(52\) −532.000 −1.41875
\(53\) 70.0000 0.181420 0.0907098 0.995877i \(-0.471086\pi\)
0.0907098 + 0.995877i \(0.471086\pi\)
\(54\) −27.0000 −0.0680414
\(55\) 48.0000 0.117679
\(56\) 300.000 0.715878
\(57\) 0 0
\(58\) −242.000 −0.547865
\(59\) −188.000 −0.414839 −0.207420 0.978252i \(-0.566507\pi\)
−0.207420 + 0.978252i \(0.566507\pi\)
\(60\) −252.000 −0.542218
\(61\) −706.000 −1.48187 −0.740935 0.671577i \(-0.765617\pi\)
−0.740935 + 0.671577i \(0.765617\pi\)
\(62\) 126.000 0.258097
\(63\) −180.000 −0.359966
\(64\) −167.000 −0.326172
\(65\) −912.000 −1.74030
\(66\) 12.0000 0.0223803
\(67\) −104.000 −0.189636 −0.0948181 0.995495i \(-0.530227\pi\)
−0.0948181 + 0.995495i \(0.530227\pi\)
\(68\) −154.000 −0.274636
\(69\) −246.000 −0.429202
\(70\) 240.000 0.409793
\(71\) 432.000 0.722098 0.361049 0.932547i \(-0.382419\pi\)
0.361049 + 0.932547i \(0.382419\pi\)
\(72\) −135.000 −0.220971
\(73\) 718.000 1.15117 0.575586 0.817741i \(-0.304774\pi\)
0.575586 + 0.817741i \(0.304774\pi\)
\(74\) 180.000 0.282765
\(75\) −57.0000 −0.0877572
\(76\) 0 0
\(77\) 80.0000 0.118401
\(78\) −228.000 −0.330973
\(79\) −94.0000 −0.133871 −0.0669356 0.997757i \(-0.521322\pi\)
−0.0669356 + 0.997757i \(0.521322\pi\)
\(80\) −492.000 −0.687591
\(81\) 81.0000 0.111111
\(82\) 390.000 0.525223
\(83\) −1296.00 −1.71391 −0.856955 0.515392i \(-0.827646\pi\)
−0.856955 + 0.515392i \(0.827646\pi\)
\(84\) −420.000 −0.545545
\(85\) −264.000 −0.336880
\(86\) 308.000 0.386192
\(87\) 726.000 0.894659
\(88\) 60.0000 0.0726821
\(89\) −846.000 −1.00759 −0.503797 0.863822i \(-0.668064\pi\)
−0.503797 + 0.863822i \(0.668064\pi\)
\(90\) −108.000 −0.126491
\(91\) −1520.00 −1.75098
\(92\) −574.000 −0.650474
\(93\) −378.000 −0.421471
\(94\) −522.000 −0.572768
\(95\) 0 0
\(96\) −483.000 −0.513500
\(97\) −830.000 −0.868801 −0.434401 0.900720i \(-0.643040\pi\)
−0.434401 + 0.900720i \(0.643040\pi\)
\(98\) 57.0000 0.0587538
\(99\) −36.0000 −0.0365468
\(100\) −133.000 −0.133000
\(101\) 1612.00 1.58812 0.794059 0.607840i \(-0.207964\pi\)
0.794059 + 0.607840i \(0.207964\pi\)
\(102\) −66.0000 −0.0640684
\(103\) 1874.00 1.79273 0.896363 0.443322i \(-0.146200\pi\)
0.896363 + 0.443322i \(0.146200\pi\)
\(104\) −1140.00 −1.07487
\(105\) −720.000 −0.669189
\(106\) 70.0000 0.0641415
\(107\) 1932.00 1.74555 0.872773 0.488126i \(-0.162319\pi\)
0.872773 + 0.488126i \(0.162319\pi\)
\(108\) 189.000 0.168394
\(109\) −1096.00 −0.963099 −0.481549 0.876419i \(-0.659926\pi\)
−0.481549 + 0.876419i \(0.659926\pi\)
\(110\) 48.0000 0.0416056
\(111\) −540.000 −0.461753
\(112\) −820.000 −0.691810
\(113\) −1474.00 −1.22710 −0.613550 0.789656i \(-0.710259\pi\)
−0.613550 + 0.789656i \(0.710259\pi\)
\(114\) 0 0
\(115\) −984.000 −0.797900
\(116\) 1694.00 1.35590
\(117\) 684.000 0.540477
\(118\) −188.000 −0.146668
\(119\) −440.000 −0.338947
\(120\) −540.000 −0.410792
\(121\) −1315.00 −0.987979
\(122\) −706.000 −0.523920
\(123\) −1170.00 −0.857686
\(124\) −882.000 −0.638758
\(125\) 1272.00 0.910169
\(126\) −180.000 −0.127267
\(127\) 1166.00 0.814691 0.407346 0.913274i \(-0.366454\pi\)
0.407346 + 0.913274i \(0.366454\pi\)
\(128\) −1455.00 −1.00473
\(129\) −924.000 −0.630649
\(130\) −912.000 −0.615290
\(131\) 2192.00 1.46195 0.730977 0.682402i \(-0.239065\pi\)
0.730977 + 0.682402i \(0.239065\pi\)
\(132\) −84.0000 −0.0553883
\(133\) 0 0
\(134\) −104.000 −0.0670465
\(135\) 324.000 0.206559
\(136\) −330.000 −0.208068
\(137\) 558.000 0.347979 0.173990 0.984747i \(-0.444334\pi\)
0.173990 + 0.984747i \(0.444334\pi\)
\(138\) −246.000 −0.151746
\(139\) 68.0000 0.0414941 0.0207471 0.999785i \(-0.493396\pi\)
0.0207471 + 0.999785i \(0.493396\pi\)
\(140\) −1680.00 −1.01419
\(141\) 1566.00 0.935326
\(142\) 432.000 0.255300
\(143\) −304.000 −0.177775
\(144\) 369.000 0.213542
\(145\) 2904.00 1.66320
\(146\) 718.000 0.407001
\(147\) −171.000 −0.0959445
\(148\) −1260.00 −0.699807
\(149\) 576.000 0.316696 0.158348 0.987383i \(-0.449383\pi\)
0.158348 + 0.987383i \(0.449383\pi\)
\(150\) −57.0000 −0.0310269
\(151\) −990.000 −0.533543 −0.266772 0.963760i \(-0.585957\pi\)
−0.266772 + 0.963760i \(0.585957\pi\)
\(152\) 0 0
\(153\) 198.000 0.104623
\(154\) 80.0000 0.0418609
\(155\) −1512.00 −0.783528
\(156\) 1596.00 0.819117
\(157\) −654.000 −0.332451 −0.166226 0.986088i \(-0.553158\pi\)
−0.166226 + 0.986088i \(0.553158\pi\)
\(158\) −94.0000 −0.0473306
\(159\) −210.000 −0.104743
\(160\) −1932.00 −0.954613
\(161\) −1640.00 −0.802796
\(162\) 81.0000 0.0392837
\(163\) −900.000 −0.432475 −0.216238 0.976341i \(-0.569379\pi\)
−0.216238 + 0.976341i \(0.569379\pi\)
\(164\) −2730.00 −1.29986
\(165\) −144.000 −0.0679417
\(166\) −1296.00 −0.605958
\(167\) −740.000 −0.342892 −0.171446 0.985194i \(-0.554844\pi\)
−0.171446 + 0.985194i \(0.554844\pi\)
\(168\) −900.000 −0.413313
\(169\) 3579.00 1.62904
\(170\) −264.000 −0.119105
\(171\) 0 0
\(172\) −2156.00 −0.955776
\(173\) −582.000 −0.255772 −0.127886 0.991789i \(-0.540819\pi\)
−0.127886 + 0.991789i \(0.540819\pi\)
\(174\) 726.000 0.316310
\(175\) −380.000 −0.164145
\(176\) −164.000 −0.0702384
\(177\) 564.000 0.239508
\(178\) −846.000 −0.356238
\(179\) −2748.00 −1.14746 −0.573730 0.819045i \(-0.694504\pi\)
−0.573730 + 0.819045i \(0.694504\pi\)
\(180\) 756.000 0.313050
\(181\) −1336.00 −0.548641 −0.274321 0.961638i \(-0.588453\pi\)
−0.274321 + 0.961638i \(0.588453\pi\)
\(182\) −1520.00 −0.619065
\(183\) 2118.00 0.855558
\(184\) −1230.00 −0.492809
\(185\) −2160.00 −0.858413
\(186\) −378.000 −0.149012
\(187\) −88.0000 −0.0344128
\(188\) 3654.00 1.41753
\(189\) 540.000 0.207827
\(190\) 0 0
\(191\) −606.000 −0.229574 −0.114787 0.993390i \(-0.536619\pi\)
−0.114787 + 0.993390i \(0.536619\pi\)
\(192\) 501.000 0.188315
\(193\) 3002.00 1.11963 0.559815 0.828617i \(-0.310872\pi\)
0.559815 + 0.828617i \(0.310872\pi\)
\(194\) −830.000 −0.307168
\(195\) 2736.00 1.00476
\(196\) −399.000 −0.145408
\(197\) −4456.00 −1.61156 −0.805779 0.592217i \(-0.798253\pi\)
−0.805779 + 0.592217i \(0.798253\pi\)
\(198\) −36.0000 −0.0129213
\(199\) −2844.00 −1.01309 −0.506547 0.862212i \(-0.669078\pi\)
−0.506547 + 0.862212i \(0.669078\pi\)
\(200\) −285.000 −0.100763
\(201\) 312.000 0.109486
\(202\) 1612.00 0.561485
\(203\) 4840.00 1.67341
\(204\) 462.000 0.158561
\(205\) −4680.00 −1.59447
\(206\) 1874.00 0.633824
\(207\) 738.000 0.247800
\(208\) 3116.00 1.03873
\(209\) 0 0
\(210\) −720.000 −0.236594
\(211\) 3108.00 1.01405 0.507023 0.861933i \(-0.330746\pi\)
0.507023 + 0.861933i \(0.330746\pi\)
\(212\) −490.000 −0.158742
\(213\) −1296.00 −0.416904
\(214\) 1932.00 0.617144
\(215\) −3696.00 −1.17240
\(216\) 405.000 0.127578
\(217\) −2520.00 −0.788335
\(218\) −1096.00 −0.340507
\(219\) −2154.00 −0.664629
\(220\) −336.000 −0.102969
\(221\) 1672.00 0.508918
\(222\) −540.000 −0.163254
\(223\) 4686.00 1.40716 0.703582 0.710614i \(-0.251583\pi\)
0.703582 + 0.710614i \(0.251583\pi\)
\(224\) −3220.00 −0.960470
\(225\) 171.000 0.0506667
\(226\) −1474.00 −0.433845
\(227\) 3036.00 0.887693 0.443847 0.896103i \(-0.353613\pi\)
0.443847 + 0.896103i \(0.353613\pi\)
\(228\) 0 0
\(229\) −4970.00 −1.43418 −0.717089 0.696981i \(-0.754526\pi\)
−0.717089 + 0.696981i \(0.754526\pi\)
\(230\) −984.000 −0.282100
\(231\) −240.000 −0.0683586
\(232\) 3630.00 1.02725
\(233\) −2982.00 −0.838443 −0.419222 0.907884i \(-0.637697\pi\)
−0.419222 + 0.907884i \(0.637697\pi\)
\(234\) 684.000 0.191088
\(235\) 6264.00 1.73880
\(236\) 1316.00 0.362984
\(237\) 282.000 0.0772906
\(238\) −440.000 −0.119836
\(239\) −522.000 −0.141278 −0.0706389 0.997502i \(-0.522504\pi\)
−0.0706389 + 0.997502i \(0.522504\pi\)
\(240\) 1476.00 0.396981
\(241\) −3350.00 −0.895404 −0.447702 0.894183i \(-0.647758\pi\)
−0.447702 + 0.894183i \(0.647758\pi\)
\(242\) −1315.00 −0.349303
\(243\) −243.000 −0.0641500
\(244\) 4942.00 1.29664
\(245\) −684.000 −0.178364
\(246\) −1170.00 −0.303238
\(247\) 0 0
\(248\) −1890.00 −0.483932
\(249\) 3888.00 0.989526
\(250\) 1272.00 0.321793
\(251\) −2968.00 −0.746369 −0.373184 0.927757i \(-0.621734\pi\)
−0.373184 + 0.927757i \(0.621734\pi\)
\(252\) 1260.00 0.314970
\(253\) −328.000 −0.0815067
\(254\) 1166.00 0.288037
\(255\) 792.000 0.194498
\(256\) −119.000 −0.0290527
\(257\) 1234.00 0.299513 0.149756 0.988723i \(-0.452151\pi\)
0.149756 + 0.988723i \(0.452151\pi\)
\(258\) −924.000 −0.222968
\(259\) −3600.00 −0.863680
\(260\) 6384.00 1.52276
\(261\) −2178.00 −0.516532
\(262\) 2192.00 0.516879
\(263\) −1994.00 −0.467511 −0.233755 0.972295i \(-0.575101\pi\)
−0.233755 + 0.972295i \(0.575101\pi\)
\(264\) −180.000 −0.0419630
\(265\) −840.000 −0.194720
\(266\) 0 0
\(267\) 2538.00 0.581734
\(268\) 728.000 0.165932
\(269\) −7214.00 −1.63511 −0.817556 0.575849i \(-0.804672\pi\)
−0.817556 + 0.575849i \(0.804672\pi\)
\(270\) 324.000 0.0730297
\(271\) 7572.00 1.69729 0.848646 0.528961i \(-0.177418\pi\)
0.848646 + 0.528961i \(0.177418\pi\)
\(272\) 902.000 0.201073
\(273\) 4560.00 1.01093
\(274\) 558.000 0.123029
\(275\) −76.0000 −0.0166654
\(276\) 1722.00 0.375552
\(277\) 6262.00 1.35829 0.679146 0.734003i \(-0.262350\pi\)
0.679146 + 0.734003i \(0.262350\pi\)
\(278\) 68.0000 0.0146704
\(279\) 1134.00 0.243336
\(280\) −3600.00 −0.768361
\(281\) 2710.00 0.575320 0.287660 0.957733i \(-0.407123\pi\)
0.287660 + 0.957733i \(0.407123\pi\)
\(282\) 1566.00 0.330688
\(283\) −556.000 −0.116787 −0.0583936 0.998294i \(-0.518598\pi\)
−0.0583936 + 0.998294i \(0.518598\pi\)
\(284\) −3024.00 −0.631836
\(285\) 0 0
\(286\) −304.000 −0.0628528
\(287\) −7800.00 −1.60425
\(288\) 1449.00 0.296469
\(289\) −4429.00 −0.901486
\(290\) 2904.00 0.588030
\(291\) 2490.00 0.501603
\(292\) −5026.00 −1.00728
\(293\) −3694.00 −0.736539 −0.368269 0.929719i \(-0.620050\pi\)
−0.368269 + 0.929719i \(0.620050\pi\)
\(294\) −171.000 −0.0339215
\(295\) 2256.00 0.445252
\(296\) −2700.00 −0.530183
\(297\) 108.000 0.0211003
\(298\) 576.000 0.111969
\(299\) 6232.00 1.20537
\(300\) 399.000 0.0767876
\(301\) −6160.00 −1.17959
\(302\) −990.000 −0.188636
\(303\) −4836.00 −0.916901
\(304\) 0 0
\(305\) 8472.00 1.59051
\(306\) 198.000 0.0369899
\(307\) −3384.00 −0.629104 −0.314552 0.949240i \(-0.601854\pi\)
−0.314552 + 0.949240i \(0.601854\pi\)
\(308\) −560.000 −0.103601
\(309\) −5622.00 −1.03503
\(310\) −1512.00 −0.277019
\(311\) −9666.00 −1.76241 −0.881203 0.472737i \(-0.843266\pi\)
−0.881203 + 0.472737i \(0.843266\pi\)
\(312\) 3420.00 0.620575
\(313\) −6794.00 −1.22690 −0.613450 0.789734i \(-0.710219\pi\)
−0.613450 + 0.789734i \(0.710219\pi\)
\(314\) −654.000 −0.117539
\(315\) 2160.00 0.386356
\(316\) 658.000 0.117137
\(317\) 3242.00 0.574413 0.287206 0.957869i \(-0.407273\pi\)
0.287206 + 0.957869i \(0.407273\pi\)
\(318\) −210.000 −0.0370321
\(319\) 968.000 0.169898
\(320\) 2004.00 0.350084
\(321\) −5796.00 −1.00779
\(322\) −1640.00 −0.283831
\(323\) 0 0
\(324\) −567.000 −0.0972222
\(325\) 1444.00 0.246458
\(326\) −900.000 −0.152903
\(327\) 3288.00 0.556045
\(328\) −5850.00 −0.984793
\(329\) 10440.0 1.74947
\(330\) −144.000 −0.0240210
\(331\) −176.000 −0.0292261 −0.0146130 0.999893i \(-0.504652\pi\)
−0.0146130 + 0.999893i \(0.504652\pi\)
\(332\) 9072.00 1.49967
\(333\) 1620.00 0.266593
\(334\) −740.000 −0.121231
\(335\) 1248.00 0.203539
\(336\) 2460.00 0.399417
\(337\) 4262.00 0.688920 0.344460 0.938801i \(-0.388062\pi\)
0.344460 + 0.938801i \(0.388062\pi\)
\(338\) 3579.00 0.575952
\(339\) 4422.00 0.708466
\(340\) 1848.00 0.294770
\(341\) −504.000 −0.0800385
\(342\) 0 0
\(343\) 5720.00 0.900440
\(344\) −4620.00 −0.724110
\(345\) 2952.00 0.460668
\(346\) −582.000 −0.0904292
\(347\) 7060.00 1.09222 0.546110 0.837713i \(-0.316108\pi\)
0.546110 + 0.837713i \(0.316108\pi\)
\(348\) −5082.00 −0.782827
\(349\) 4746.00 0.727930 0.363965 0.931413i \(-0.381423\pi\)
0.363965 + 0.931413i \(0.381423\pi\)
\(350\) −380.000 −0.0580339
\(351\) −2052.00 −0.312045
\(352\) −644.000 −0.0975151
\(353\) 2546.00 0.383881 0.191940 0.981407i \(-0.438522\pi\)
0.191940 + 0.981407i \(0.438522\pi\)
\(354\) 564.000 0.0846787
\(355\) −5184.00 −0.775037
\(356\) 5922.00 0.881644
\(357\) 1320.00 0.195691
\(358\) −2748.00 −0.405688
\(359\) −1702.00 −0.250218 −0.125109 0.992143i \(-0.539928\pi\)
−0.125109 + 0.992143i \(0.539928\pi\)
\(360\) 1620.00 0.237171
\(361\) 0 0
\(362\) −1336.00 −0.193974
\(363\) 3945.00 0.570410
\(364\) 10640.0 1.53211
\(365\) −8616.00 −1.23557
\(366\) 2118.00 0.302485
\(367\) −7844.00 −1.11568 −0.557839 0.829950i \(-0.688369\pi\)
−0.557839 + 0.829950i \(0.688369\pi\)
\(368\) 3362.00 0.476240
\(369\) 3510.00 0.495185
\(370\) −2160.00 −0.303495
\(371\) −1400.00 −0.195915
\(372\) 2646.00 0.368787
\(373\) −13612.0 −1.88955 −0.944776 0.327718i \(-0.893720\pi\)
−0.944776 + 0.327718i \(0.893720\pi\)
\(374\) −88.0000 −0.0121668
\(375\) −3816.00 −0.525486
\(376\) 7830.00 1.07394
\(377\) −18392.0 −2.51256
\(378\) 540.000 0.0734778
\(379\) −976.000 −0.132279 −0.0661395 0.997810i \(-0.521068\pi\)
−0.0661395 + 0.997810i \(0.521068\pi\)
\(380\) 0 0
\(381\) −3498.00 −0.470362
\(382\) −606.000 −0.0811666
\(383\) −2152.00 −0.287107 −0.143554 0.989643i \(-0.545853\pi\)
−0.143554 + 0.989643i \(0.545853\pi\)
\(384\) 4365.00 0.580079
\(385\) −960.000 −0.127081
\(386\) 3002.00 0.395849
\(387\) 2772.00 0.364105
\(388\) 5810.00 0.760201
\(389\) 10572.0 1.37795 0.688974 0.724786i \(-0.258061\pi\)
0.688974 + 0.724786i \(0.258061\pi\)
\(390\) 2736.00 0.355238
\(391\) 1804.00 0.233330
\(392\) −855.000 −0.110163
\(393\) −6576.00 −0.844059
\(394\) −4456.00 −0.569772
\(395\) 1128.00 0.143686
\(396\) 252.000 0.0319785
\(397\) −10910.0 −1.37924 −0.689619 0.724173i \(-0.742222\pi\)
−0.689619 + 0.724173i \(0.742222\pi\)
\(398\) −2844.00 −0.358183
\(399\) 0 0
\(400\) 779.000 0.0973750
\(401\) −10146.0 −1.26351 −0.631754 0.775169i \(-0.717665\pi\)
−0.631754 + 0.775169i \(0.717665\pi\)
\(402\) 312.000 0.0387093
\(403\) 9576.00 1.18366
\(404\) −11284.0 −1.38960
\(405\) −972.000 −0.119257
\(406\) 4840.00 0.591638
\(407\) −720.000 −0.0876881
\(408\) 990.000 0.120128
\(409\) 13706.0 1.65701 0.828506 0.559980i \(-0.189191\pi\)
0.828506 + 0.559980i \(0.189191\pi\)
\(410\) −4680.00 −0.563729
\(411\) −1674.00 −0.200906
\(412\) −13118.0 −1.56863
\(413\) 3760.00 0.447984
\(414\) 738.000 0.0876104
\(415\) 15552.0 1.83956
\(416\) 12236.0 1.44211
\(417\) −204.000 −0.0239566
\(418\) 0 0
\(419\) 6812.00 0.794243 0.397122 0.917766i \(-0.370009\pi\)
0.397122 + 0.917766i \(0.370009\pi\)
\(420\) 5040.00 0.585540
\(421\) 6724.00 0.778403 0.389202 0.921153i \(-0.372751\pi\)
0.389202 + 0.921153i \(0.372751\pi\)
\(422\) 3108.00 0.358519
\(423\) −4698.00 −0.540011
\(424\) −1050.00 −0.120265
\(425\) 418.000 0.0477082
\(426\) −1296.00 −0.147398
\(427\) 14120.0 1.60027
\(428\) −13524.0 −1.52735
\(429\) 912.000 0.102638
\(430\) −3696.00 −0.414505
\(431\) −13876.0 −1.55077 −0.775387 0.631487i \(-0.782445\pi\)
−0.775387 + 0.631487i \(0.782445\pi\)
\(432\) −1107.00 −0.123288
\(433\) −342.000 −0.0379572 −0.0189786 0.999820i \(-0.506041\pi\)
−0.0189786 + 0.999820i \(0.506041\pi\)
\(434\) −2520.00 −0.278719
\(435\) −8712.00 −0.960249
\(436\) 7672.00 0.842711
\(437\) 0 0
\(438\) −2154.00 −0.234982
\(439\) 6526.00 0.709497 0.354748 0.934962i \(-0.384567\pi\)
0.354748 + 0.934962i \(0.384567\pi\)
\(440\) −720.000 −0.0780106
\(441\) 513.000 0.0553936
\(442\) 1672.00 0.179930
\(443\) −5020.00 −0.538391 −0.269196 0.963085i \(-0.586758\pi\)
−0.269196 + 0.963085i \(0.586758\pi\)
\(444\) 3780.00 0.404033
\(445\) 10152.0 1.08146
\(446\) 4686.00 0.497508
\(447\) −1728.00 −0.182845
\(448\) 3340.00 0.352233
\(449\) −9486.00 −0.997042 −0.498521 0.866878i \(-0.666123\pi\)
−0.498521 + 0.866878i \(0.666123\pi\)
\(450\) 171.000 0.0179134
\(451\) −1560.00 −0.162877
\(452\) 10318.0 1.07371
\(453\) 2970.00 0.308041
\(454\) 3036.00 0.313847
\(455\) 18240.0 1.87935
\(456\) 0 0
\(457\) −7262.00 −0.743330 −0.371665 0.928367i \(-0.621213\pi\)
−0.371665 + 0.928367i \(0.621213\pi\)
\(458\) −4970.00 −0.507059
\(459\) −594.000 −0.0604042
\(460\) 6888.00 0.698162
\(461\) −13968.0 −1.41118 −0.705591 0.708620i \(-0.749318\pi\)
−0.705591 + 0.708620i \(0.749318\pi\)
\(462\) −240.000 −0.0241684
\(463\) 4604.00 0.462130 0.231065 0.972938i \(-0.425779\pi\)
0.231065 + 0.972938i \(0.425779\pi\)
\(464\) −9922.00 −0.992710
\(465\) 4536.00 0.452370
\(466\) −2982.00 −0.296435
\(467\) −19480.0 −1.93025 −0.965125 0.261789i \(-0.915688\pi\)
−0.965125 + 0.261789i \(0.915688\pi\)
\(468\) −4788.00 −0.472917
\(469\) 2080.00 0.204788
\(470\) 6264.00 0.614759
\(471\) 1962.00 0.191941
\(472\) 2820.00 0.275002
\(473\) −1232.00 −0.119762
\(474\) 282.000 0.0273263
\(475\) 0 0
\(476\) 3080.00 0.296579
\(477\) 630.000 0.0604732
\(478\) −522.000 −0.0499492
\(479\) −12134.0 −1.15745 −0.578723 0.815524i \(-0.696449\pi\)
−0.578723 + 0.815524i \(0.696449\pi\)
\(480\) 5796.00 0.551146
\(481\) 13680.0 1.29679
\(482\) −3350.00 −0.316573
\(483\) 4920.00 0.463494
\(484\) 9205.00 0.864482
\(485\) 9960.00 0.932495
\(486\) −243.000 −0.0226805
\(487\) 15658.0 1.45694 0.728472 0.685076i \(-0.240231\pi\)
0.728472 + 0.685076i \(0.240231\pi\)
\(488\) 10590.0 0.982350
\(489\) 2700.00 0.249690
\(490\) −684.000 −0.0630612
\(491\) 2520.00 0.231621 0.115811 0.993271i \(-0.463053\pi\)
0.115811 + 0.993271i \(0.463053\pi\)
\(492\) 8190.00 0.750475
\(493\) −5324.00 −0.486371
\(494\) 0 0
\(495\) 432.000 0.0392262
\(496\) 5166.00 0.467662
\(497\) −8640.00 −0.779793
\(498\) 3888.00 0.349850
\(499\) −9460.00 −0.848673 −0.424336 0.905505i \(-0.639493\pi\)
−0.424336 + 0.905505i \(0.639493\pi\)
\(500\) −8904.00 −0.796398
\(501\) 2220.00 0.197969
\(502\) −2968.00 −0.263881
\(503\) −12178.0 −1.07950 −0.539752 0.841824i \(-0.681482\pi\)
−0.539752 + 0.841824i \(0.681482\pi\)
\(504\) 2700.00 0.238626
\(505\) −19344.0 −1.70455
\(506\) −328.000 −0.0288170
\(507\) −10737.0 −0.940526
\(508\) −8162.00 −0.712855
\(509\) 4746.00 0.413286 0.206643 0.978416i \(-0.433746\pi\)
0.206643 + 0.978416i \(0.433746\pi\)
\(510\) 792.000 0.0687654
\(511\) −14360.0 −1.24315
\(512\) 11521.0 0.994455
\(513\) 0 0
\(514\) 1234.00 0.105894
\(515\) −22488.0 −1.92415
\(516\) 6468.00 0.551817
\(517\) 2088.00 0.177621
\(518\) −3600.00 −0.305357
\(519\) 1746.00 0.147670
\(520\) 13680.0 1.15367
\(521\) −4326.00 −0.363773 −0.181886 0.983320i \(-0.558220\pi\)
−0.181886 + 0.983320i \(0.558220\pi\)
\(522\) −2178.00 −0.182622
\(523\) 6328.00 0.529071 0.264535 0.964376i \(-0.414781\pi\)
0.264535 + 0.964376i \(0.414781\pi\)
\(524\) −15344.0 −1.27921
\(525\) 1140.00 0.0947689
\(526\) −1994.00 −0.165290
\(527\) 2772.00 0.229128
\(528\) 492.000 0.0405522
\(529\) −5443.00 −0.447358
\(530\) −840.000 −0.0688439
\(531\) −1692.00 −0.138280
\(532\) 0 0
\(533\) 29640.0 2.40873
\(534\) 2538.00 0.205674
\(535\) −23184.0 −1.87352
\(536\) 1560.00 0.125712
\(537\) 8244.00 0.662486
\(538\) −7214.00 −0.578100
\(539\) −228.000 −0.0182201
\(540\) −2268.00 −0.180739
\(541\) 9378.00 0.745271 0.372636 0.927978i \(-0.378454\pi\)
0.372636 + 0.927978i \(0.378454\pi\)
\(542\) 7572.00 0.600083
\(543\) 4008.00 0.316758
\(544\) 3542.00 0.279158
\(545\) 13152.0 1.03371
\(546\) 4560.00 0.357418
\(547\) 5048.00 0.394583 0.197291 0.980345i \(-0.436785\pi\)
0.197291 + 0.980345i \(0.436785\pi\)
\(548\) −3906.00 −0.304482
\(549\) −6354.00 −0.493956
\(550\) −76.0000 −0.00589209
\(551\) 0 0
\(552\) 3690.00 0.284523
\(553\) 1880.00 0.144567
\(554\) 6262.00 0.480229
\(555\) 6480.00 0.495605
\(556\) −476.000 −0.0363074
\(557\) 752.000 0.0572051 0.0286026 0.999591i \(-0.490894\pi\)
0.0286026 + 0.999591i \(0.490894\pi\)
\(558\) 1134.00 0.0860323
\(559\) 23408.0 1.77111
\(560\) 9840.00 0.742528
\(561\) 264.000 0.0198683
\(562\) 2710.00 0.203406
\(563\) −18156.0 −1.35912 −0.679560 0.733620i \(-0.737829\pi\)
−0.679560 + 0.733620i \(0.737829\pi\)
\(564\) −10962.0 −0.818410
\(565\) 17688.0 1.31706
\(566\) −556.000 −0.0412905
\(567\) −1620.00 −0.119989
\(568\) −6480.00 −0.478688
\(569\) −1398.00 −0.103000 −0.0515002 0.998673i \(-0.516400\pi\)
−0.0515002 + 0.998673i \(0.516400\pi\)
\(570\) 0 0
\(571\) 21180.0 1.55229 0.776143 0.630557i \(-0.217173\pi\)
0.776143 + 0.630557i \(0.217173\pi\)
\(572\) 2128.00 0.155553
\(573\) 1818.00 0.132545
\(574\) −7800.00 −0.567188
\(575\) 1558.00 0.112997
\(576\) −1503.00 −0.108724
\(577\) 27186.0 1.96147 0.980735 0.195344i \(-0.0625823\pi\)
0.980735 + 0.195344i \(0.0625823\pi\)
\(578\) −4429.00 −0.318723
\(579\) −9006.00 −0.646419
\(580\) −20328.0 −1.45530
\(581\) 25920.0 1.85085
\(582\) 2490.00 0.177343
\(583\) −280.000 −0.0198909
\(584\) −10770.0 −0.763126
\(585\) −8208.00 −0.580101
\(586\) −3694.00 −0.260406
\(587\) −10204.0 −0.717486 −0.358743 0.933436i \(-0.616795\pi\)
−0.358743 + 0.933436i \(0.616795\pi\)
\(588\) 1197.00 0.0839514
\(589\) 0 0
\(590\) 2256.00 0.157420
\(591\) 13368.0 0.930433
\(592\) 7380.00 0.512358
\(593\) 9978.00 0.690974 0.345487 0.938424i \(-0.387714\pi\)
0.345487 + 0.938424i \(0.387714\pi\)
\(594\) 108.000 0.00746009
\(595\) 5280.00 0.363796
\(596\) −4032.00 −0.277109
\(597\) 8532.00 0.584910
\(598\) 6232.00 0.426163
\(599\) 11100.0 0.757151 0.378576 0.925570i \(-0.376414\pi\)
0.378576 + 0.925570i \(0.376414\pi\)
\(600\) 855.000 0.0581754
\(601\) 3030.00 0.205651 0.102826 0.994699i \(-0.467212\pi\)
0.102826 + 0.994699i \(0.467212\pi\)
\(602\) −6160.00 −0.417048
\(603\) −936.000 −0.0632121
\(604\) 6930.00 0.466850
\(605\) 15780.0 1.06041
\(606\) −4836.00 −0.324173
\(607\) −10478.0 −0.700641 −0.350320 0.936630i \(-0.613927\pi\)
−0.350320 + 0.936630i \(0.613927\pi\)
\(608\) 0 0
\(609\) −14520.0 −0.966141
\(610\) 8472.00 0.562330
\(611\) −39672.0 −2.62677
\(612\) −1386.00 −0.0915453
\(613\) 2706.00 0.178294 0.0891471 0.996018i \(-0.471586\pi\)
0.0891471 + 0.996018i \(0.471586\pi\)
\(614\) −3384.00 −0.222422
\(615\) 14040.0 0.920565
\(616\) −1200.00 −0.0784892
\(617\) −19734.0 −1.28762 −0.643810 0.765186i \(-0.722647\pi\)
−0.643810 + 0.765186i \(0.722647\pi\)
\(618\) −5622.00 −0.365939
\(619\) 21196.0 1.37632 0.688158 0.725561i \(-0.258420\pi\)
0.688158 + 0.725561i \(0.258420\pi\)
\(620\) 10584.0 0.685587
\(621\) −2214.00 −0.143067
\(622\) −9666.00 −0.623105
\(623\) 16920.0 1.08810
\(624\) −9348.00 −0.599711
\(625\) −17639.0 −1.12890
\(626\) −6794.00 −0.433775
\(627\) 0 0
\(628\) 4578.00 0.290895
\(629\) 3960.00 0.251026
\(630\) 2160.00 0.136598
\(631\) 5040.00 0.317970 0.158985 0.987281i \(-0.449178\pi\)
0.158985 + 0.987281i \(0.449178\pi\)
\(632\) 1410.00 0.0887449
\(633\) −9324.00 −0.585459
\(634\) 3242.00 0.203086
\(635\) −13992.0 −0.874418
\(636\) 1470.00 0.0916498
\(637\) 4332.00 0.269451
\(638\) 968.000 0.0600682
\(639\) 3888.00 0.240699
\(640\) 17460.0 1.07839
\(641\) 13602.0 0.838138 0.419069 0.907954i \(-0.362356\pi\)
0.419069 + 0.907954i \(0.362356\pi\)
\(642\) −5796.00 −0.356308
\(643\) 4628.00 0.283842 0.141921 0.989878i \(-0.454672\pi\)
0.141921 + 0.989878i \(0.454672\pi\)
\(644\) 11480.0 0.702446
\(645\) 11088.0 0.676883
\(646\) 0 0
\(647\) −14142.0 −0.859319 −0.429659 0.902991i \(-0.641366\pi\)
−0.429659 + 0.902991i \(0.641366\pi\)
\(648\) −1215.00 −0.0736570
\(649\) 752.000 0.0454832
\(650\) 1444.00 0.0871359
\(651\) 7560.00 0.455146
\(652\) 6300.00 0.378416
\(653\) −14424.0 −0.864402 −0.432201 0.901777i \(-0.642263\pi\)
−0.432201 + 0.901777i \(0.642263\pi\)
\(654\) 3288.00 0.196592
\(655\) −26304.0 −1.56913
\(656\) 15990.0 0.951684
\(657\) 6462.00 0.383724
\(658\) 10440.0 0.618531
\(659\) −24044.0 −1.42128 −0.710638 0.703558i \(-0.751594\pi\)
−0.710638 + 0.703558i \(0.751594\pi\)
\(660\) 1008.00 0.0594490
\(661\) −10092.0 −0.593848 −0.296924 0.954901i \(-0.595961\pi\)
−0.296924 + 0.954901i \(0.595961\pi\)
\(662\) −176.000 −0.0103330
\(663\) −5016.00 −0.293824
\(664\) 19440.0 1.13617
\(665\) 0 0
\(666\) 1620.00 0.0942548
\(667\) −19844.0 −1.15197
\(668\) 5180.00 0.300030
\(669\) −14058.0 −0.812427
\(670\) 1248.00 0.0719619
\(671\) 2824.00 0.162473
\(672\) 9660.00 0.554528
\(673\) 7098.00 0.406549 0.203275 0.979122i \(-0.434842\pi\)
0.203275 + 0.979122i \(0.434842\pi\)
\(674\) 4262.00 0.243570
\(675\) −513.000 −0.0292524
\(676\) −25053.0 −1.42541
\(677\) −29762.0 −1.68958 −0.844791 0.535097i \(-0.820275\pi\)
−0.844791 + 0.535097i \(0.820275\pi\)
\(678\) 4422.00 0.250481
\(679\) 16600.0 0.938217
\(680\) 3960.00 0.223322
\(681\) −9108.00 −0.512510
\(682\) −504.000 −0.0282979
\(683\) −11748.0 −0.658162 −0.329081 0.944302i \(-0.606739\pi\)
−0.329081 + 0.944302i \(0.606739\pi\)
\(684\) 0 0
\(685\) −6696.00 −0.373491
\(686\) 5720.00 0.318354
\(687\) 14910.0 0.828023
\(688\) 12628.0 0.699765
\(689\) 5320.00 0.294159
\(690\) 2952.00 0.162871
\(691\) −30676.0 −1.68881 −0.844407 0.535703i \(-0.820047\pi\)
−0.844407 + 0.535703i \(0.820047\pi\)
\(692\) 4074.00 0.223801
\(693\) 720.000 0.0394669
\(694\) 7060.00 0.386158
\(695\) −816.000 −0.0445362
\(696\) −10890.0 −0.593081
\(697\) 8580.00 0.466271
\(698\) 4746.00 0.257362
\(699\) 8946.00 0.484076
\(700\) 2660.00 0.143626
\(701\) 31228.0 1.68255 0.841273 0.540610i \(-0.181806\pi\)
0.841273 + 0.540610i \(0.181806\pi\)
\(702\) −2052.00 −0.110324
\(703\) 0 0
\(704\) 668.000 0.0357616
\(705\) −18792.0 −1.00390
\(706\) 2546.00 0.135722
\(707\) −32240.0 −1.71501
\(708\) −3948.00 −0.209569
\(709\) −14658.0 −0.776435 −0.388218 0.921568i \(-0.626909\pi\)
−0.388218 + 0.921568i \(0.626909\pi\)
\(710\) −5184.00 −0.274017
\(711\) −846.000 −0.0446237
\(712\) 12690.0 0.667946
\(713\) 10332.0 0.542688
\(714\) 1320.00 0.0691873
\(715\) 3648.00 0.190808
\(716\) 19236.0 1.00403
\(717\) 1566.00 0.0815667
\(718\) −1702.00 −0.0884653
\(719\) 5502.00 0.285382 0.142691 0.989767i \(-0.454424\pi\)
0.142691 + 0.989767i \(0.454424\pi\)
\(720\) −4428.00 −0.229197
\(721\) −37480.0 −1.93596
\(722\) 0 0
\(723\) 10050.0 0.516962
\(724\) 9352.00 0.480061
\(725\) −4598.00 −0.235539
\(726\) 3945.00 0.201670
\(727\) 6136.00 0.313028 0.156514 0.987676i \(-0.449974\pi\)
0.156514 + 0.987676i \(0.449974\pi\)
\(728\) 22800.0 1.16075
\(729\) 729.000 0.0370370
\(730\) −8616.00 −0.436839
\(731\) 6776.00 0.342845
\(732\) −14826.0 −0.748613
\(733\) 24442.0 1.23163 0.615816 0.787890i \(-0.288827\pi\)
0.615816 + 0.787890i \(0.288827\pi\)
\(734\) −7844.00 −0.394451
\(735\) 2052.00 0.102978
\(736\) 13202.0 0.661185
\(737\) 416.000 0.0207918
\(738\) 3510.00 0.175074
\(739\) 11980.0 0.596335 0.298167 0.954514i \(-0.403625\pi\)
0.298167 + 0.954514i \(0.403625\pi\)
\(740\) 15120.0 0.751111
\(741\) 0 0
\(742\) −1400.00 −0.0692663
\(743\) −15524.0 −0.766515 −0.383257 0.923642i \(-0.625198\pi\)
−0.383257 + 0.923642i \(0.625198\pi\)
\(744\) 5670.00 0.279398
\(745\) −6912.00 −0.339914
\(746\) −13612.0 −0.668057
\(747\) −11664.0 −0.571303
\(748\) 616.000 0.0301112
\(749\) −38640.0 −1.88501
\(750\) −3816.00 −0.185787
\(751\) −10494.0 −0.509895 −0.254948 0.966955i \(-0.582058\pi\)
−0.254948 + 0.966955i \(0.582058\pi\)
\(752\) −21402.0 −1.03783
\(753\) 8904.00 0.430916
\(754\) −18392.0 −0.888325
\(755\) 11880.0 0.572659
\(756\) −3780.00 −0.181848
\(757\) −24446.0 −1.17372 −0.586859 0.809689i \(-0.699636\pi\)
−0.586859 + 0.809689i \(0.699636\pi\)
\(758\) −976.000 −0.0467677
\(759\) 984.000 0.0470579
\(760\) 0 0
\(761\) −28650.0 −1.36473 −0.682366 0.731010i \(-0.739049\pi\)
−0.682366 + 0.731010i \(0.739049\pi\)
\(762\) −3498.00 −0.166298
\(763\) 21920.0 1.04005
\(764\) 4242.00 0.200877
\(765\) −2376.00 −0.112293
\(766\) −2152.00 −0.101508
\(767\) −14288.0 −0.672633
\(768\) 357.000 0.0167736
\(769\) 6974.00 0.327034 0.163517 0.986541i \(-0.447716\pi\)
0.163517 + 0.986541i \(0.447716\pi\)
\(770\) −960.000 −0.0449299
\(771\) −3702.00 −0.172924
\(772\) −21014.0 −0.979677
\(773\) 6170.00 0.287089 0.143544 0.989644i \(-0.454150\pi\)
0.143544 + 0.989644i \(0.454150\pi\)
\(774\) 2772.00 0.128731
\(775\) 2394.00 0.110961
\(776\) 12450.0 0.575939
\(777\) 10800.0 0.498646
\(778\) 10572.0 0.487178
\(779\) 0 0
\(780\) −19152.0 −0.879169
\(781\) −1728.00 −0.0791712
\(782\) 1804.00 0.0824948
\(783\) 6534.00 0.298220
\(784\) 2337.00 0.106460
\(785\) 7848.00 0.356824
\(786\) −6576.00 −0.298420
\(787\) 17900.0 0.810757 0.405379 0.914149i \(-0.367140\pi\)
0.405379 + 0.914149i \(0.367140\pi\)
\(788\) 31192.0 1.41011
\(789\) 5982.00 0.269917
\(790\) 1128.00 0.0508006
\(791\) 29480.0 1.32514
\(792\) 540.000 0.0242274
\(793\) −53656.0 −2.40275
\(794\) −10910.0 −0.487634
\(795\) 2520.00 0.112422
\(796\) 19908.0 0.886458
\(797\) −31358.0 −1.39367 −0.696836 0.717230i \(-0.745410\pi\)
−0.696836 + 0.717230i \(0.745410\pi\)
\(798\) 0 0
\(799\) −11484.0 −0.508479
\(800\) 3059.00 0.135190
\(801\) −7614.00 −0.335864
\(802\) −10146.0 −0.446718
\(803\) −2872.00 −0.126215
\(804\) −2184.00 −0.0958007
\(805\) 19680.0 0.861651
\(806\) 9576.00 0.418487
\(807\) 21642.0 0.944033
\(808\) −24180.0 −1.05278
\(809\) −20210.0 −0.878301 −0.439151 0.898413i \(-0.644721\pi\)
−0.439151 + 0.898413i \(0.644721\pi\)
\(810\) −972.000 −0.0421637
\(811\) 8648.00 0.374442 0.187221 0.982318i \(-0.440052\pi\)
0.187221 + 0.982318i \(0.440052\pi\)
\(812\) −33880.0 −1.46423
\(813\) −22716.0 −0.979932
\(814\) −720.000 −0.0310024
\(815\) 10800.0 0.464181
\(816\) −2706.00 −0.116089
\(817\) 0 0
\(818\) 13706.0 0.585842
\(819\) −13680.0 −0.583660
\(820\) 32760.0 1.39516
\(821\) −8940.00 −0.380034 −0.190017 0.981781i \(-0.560854\pi\)
−0.190017 + 0.981781i \(0.560854\pi\)
\(822\) −1674.00 −0.0710310
\(823\) −17504.0 −0.741374 −0.370687 0.928758i \(-0.620878\pi\)
−0.370687 + 0.928758i \(0.620878\pi\)
\(824\) −28110.0 −1.18842
\(825\) 228.000 0.00962175
\(826\) 3760.00 0.158386
\(827\) −4356.00 −0.183160 −0.0915798 0.995798i \(-0.529192\pi\)
−0.0915798 + 0.995798i \(0.529192\pi\)
\(828\) −5166.00 −0.216825
\(829\) −1528.00 −0.0640164 −0.0320082 0.999488i \(-0.510190\pi\)
−0.0320082 + 0.999488i \(0.510190\pi\)
\(830\) 15552.0 0.650383
\(831\) −18786.0 −0.784211
\(832\) −12692.0 −0.528865
\(833\) 1254.00 0.0521591
\(834\) −204.000 −0.00846995
\(835\) 8880.00 0.368030
\(836\) 0 0
\(837\) −3402.00 −0.140490
\(838\) 6812.00 0.280807
\(839\) 30204.0 1.24286 0.621429 0.783470i \(-0.286552\pi\)
0.621429 + 0.783470i \(0.286552\pi\)
\(840\) 10800.0 0.443614
\(841\) 34175.0 1.40125
\(842\) 6724.00 0.275207
\(843\) −8130.00 −0.332161
\(844\) −21756.0 −0.887290
\(845\) −42948.0 −1.74847
\(846\) −4698.00 −0.190923
\(847\) 26300.0 1.06692
\(848\) 2870.00 0.116222
\(849\) 1668.00 0.0674271
\(850\) 418.000 0.0168674
\(851\) 14760.0 0.594555
\(852\) 9072.00 0.364791
\(853\) −9218.00 −0.370010 −0.185005 0.982738i \(-0.559230\pi\)
−0.185005 + 0.982738i \(0.559230\pi\)
\(854\) 14120.0 0.565780
\(855\) 0 0
\(856\) −28980.0 −1.15714
\(857\) 44554.0 1.77589 0.887944 0.459952i \(-0.152133\pi\)
0.887944 + 0.459952i \(0.152133\pi\)
\(858\) 912.000 0.0362881
\(859\) 9828.00 0.390369 0.195185 0.980767i \(-0.437469\pi\)
0.195185 + 0.980767i \(0.437469\pi\)
\(860\) 25872.0 1.02585
\(861\) 23400.0 0.926214
\(862\) −13876.0 −0.548281
\(863\) 11668.0 0.460236 0.230118 0.973163i \(-0.426089\pi\)
0.230118 + 0.973163i \(0.426089\pi\)
\(864\) −4347.00 −0.171167
\(865\) 6984.00 0.274524
\(866\) −342.000 −0.0134199
\(867\) 13287.0 0.520473
\(868\) 17640.0 0.689793
\(869\) 376.000 0.0146777
\(870\) −8712.00 −0.339499
\(871\) −7904.00 −0.307482
\(872\) 16440.0 0.638450
\(873\) −7470.00 −0.289600
\(874\) 0 0
\(875\) −25440.0 −0.982890
\(876\) 15078.0 0.581551
\(877\) −17292.0 −0.665803 −0.332902 0.942962i \(-0.608028\pi\)
−0.332902 + 0.942962i \(0.608028\pi\)
\(878\) 6526.00 0.250845
\(879\) 11082.0 0.425241
\(880\) 1968.00 0.0753878
\(881\) 4618.00 0.176600 0.0882999 0.996094i \(-0.471857\pi\)
0.0882999 + 0.996094i \(0.471857\pi\)
\(882\) 513.000 0.0195846
\(883\) −17740.0 −0.676103 −0.338051 0.941128i \(-0.609768\pi\)
−0.338051 + 0.941128i \(0.609768\pi\)
\(884\) −11704.0 −0.445303
\(885\) −6768.00 −0.257066
\(886\) −5020.00 −0.190350
\(887\) 24516.0 0.928035 0.464017 0.885826i \(-0.346408\pi\)
0.464017 + 0.885826i \(0.346408\pi\)
\(888\) 8100.00 0.306102
\(889\) −23320.0 −0.879784
\(890\) 10152.0 0.382355
\(891\) −324.000 −0.0121823
\(892\) −32802.0 −1.23127
\(893\) 0 0
\(894\) −1728.00 −0.0646454
\(895\) 32976.0 1.23158
\(896\) 29100.0 1.08500
\(897\) −18696.0 −0.695921
\(898\) −9486.00 −0.352508
\(899\) −30492.0 −1.13122
\(900\) −1197.00 −0.0443333
\(901\) 1540.00 0.0569421
\(902\) −1560.00 −0.0575857
\(903\) 18480.0 0.681036
\(904\) 22110.0 0.813460
\(905\) 16032.0 0.588864
\(906\) 2970.00 0.108909
\(907\) −8392.00 −0.307224 −0.153612 0.988131i \(-0.549091\pi\)
−0.153612 + 0.988131i \(0.549091\pi\)
\(908\) −21252.0 −0.776732
\(909\) 14508.0 0.529373
\(910\) 18240.0 0.664451
\(911\) −17004.0 −0.618406 −0.309203 0.950996i \(-0.600062\pi\)
−0.309203 + 0.950996i \(0.600062\pi\)
\(912\) 0 0
\(913\) 5184.00 0.187914
\(914\) −7262.00 −0.262807
\(915\) −25416.0 −0.918281
\(916\) 34790.0 1.25491
\(917\) −43840.0 −1.57876
\(918\) −594.000 −0.0213561
\(919\) −46288.0 −1.66148 −0.830740 0.556661i \(-0.812082\pi\)
−0.830740 + 0.556661i \(0.812082\pi\)
\(920\) 14760.0 0.528938
\(921\) 10152.0 0.363214
\(922\) −13968.0 −0.498928
\(923\) 32832.0 1.17083
\(924\) 1680.00 0.0598138
\(925\) 3420.00 0.121566
\(926\) 4604.00 0.163388
\(927\) 16866.0 0.597575
\(928\) −38962.0 −1.37822
\(929\) −4978.00 −0.175805 −0.0879025 0.996129i \(-0.528016\pi\)
−0.0879025 + 0.996129i \(0.528016\pi\)
\(930\) 4536.00 0.159937
\(931\) 0 0
\(932\) 20874.0 0.733638
\(933\) 28998.0 1.01753
\(934\) −19480.0 −0.682447
\(935\) 1056.00 0.0369357
\(936\) −10260.0 −0.358289
\(937\) 39798.0 1.38756 0.693780 0.720187i \(-0.255944\pi\)
0.693780 + 0.720187i \(0.255944\pi\)
\(938\) 2080.00 0.0724034
\(939\) 20382.0 0.708351
\(940\) −43848.0 −1.52145
\(941\) −31662.0 −1.09687 −0.548433 0.836194i \(-0.684776\pi\)
−0.548433 + 0.836194i \(0.684776\pi\)
\(942\) 1962.00 0.0678614
\(943\) 31980.0 1.10436
\(944\) −7708.00 −0.265756
\(945\) −6480.00 −0.223063
\(946\) −1232.00 −0.0423423
\(947\) −44744.0 −1.53536 −0.767679 0.640834i \(-0.778589\pi\)
−0.767679 + 0.640834i \(0.778589\pi\)
\(948\) −1974.00 −0.0676293
\(949\) 54568.0 1.86655
\(950\) 0 0
\(951\) −9726.00 −0.331637
\(952\) 6600.00 0.224692
\(953\) −18626.0 −0.633112 −0.316556 0.948574i \(-0.602526\pi\)
−0.316556 + 0.948574i \(0.602526\pi\)
\(954\) 630.000 0.0213805
\(955\) 7272.00 0.246405
\(956\) 3654.00 0.123618
\(957\) −2904.00 −0.0980909
\(958\) −12134.0 −0.409219
\(959\) −11160.0 −0.375782
\(960\) −6012.00 −0.202121
\(961\) −13915.0 −0.467087
\(962\) 13680.0 0.458483
\(963\) 17388.0 0.581849
\(964\) 23450.0 0.783479
\(965\) −36024.0 −1.20171
\(966\) 4920.00 0.163870
\(967\) 30244.0 1.00577 0.502886 0.864353i \(-0.332272\pi\)
0.502886 + 0.864353i \(0.332272\pi\)
\(968\) 19725.0 0.654944
\(969\) 0 0
\(970\) 9960.00 0.329687
\(971\) −46572.0 −1.53920 −0.769602 0.638524i \(-0.779545\pi\)
−0.769602 + 0.638524i \(0.779545\pi\)
\(972\) 1701.00 0.0561313
\(973\) −1360.00 −0.0448095
\(974\) 15658.0 0.515107
\(975\) −4332.00 −0.142292
\(976\) −28946.0 −0.949323
\(977\) −30162.0 −0.987685 −0.493842 0.869551i \(-0.664408\pi\)
−0.493842 + 0.869551i \(0.664408\pi\)
\(978\) 2700.00 0.0882786
\(979\) 3384.00 0.110473
\(980\) 4788.00 0.156068
\(981\) −9864.00 −0.321033
\(982\) 2520.00 0.0818905
\(983\) −17792.0 −0.577291 −0.288645 0.957436i \(-0.593205\pi\)
−0.288645 + 0.957436i \(0.593205\pi\)
\(984\) 17550.0 0.568571
\(985\) 53472.0 1.72971
\(986\) −5324.00 −0.171958
\(987\) −31320.0 −1.01006
\(988\) 0 0
\(989\) 25256.0 0.812026
\(990\) 432.000 0.0138685
\(991\) −9434.00 −0.302403 −0.151201 0.988503i \(-0.548314\pi\)
−0.151201 + 0.988503i \(0.548314\pi\)
\(992\) 20286.0 0.649275
\(993\) 528.000 0.0168737
\(994\) −8640.00 −0.275698
\(995\) 34128.0 1.08737
\(996\) −27216.0 −0.865835
\(997\) −61286.0 −1.94679 −0.973394 0.229139i \(-0.926409\pi\)
−0.973394 + 0.229139i \(0.926409\pi\)
\(998\) −9460.00 −0.300051
\(999\) −4860.00 −0.153918
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1083.4.a.a.1.1 1
19.18 odd 2 57.4.a.a.1.1 1
57.56 even 2 171.4.a.b.1.1 1
76.75 even 2 912.4.a.a.1.1 1
95.94 odd 2 1425.4.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.4.a.a.1.1 1 19.18 odd 2
171.4.a.b.1.1 1 57.56 even 2
912.4.a.a.1.1 1 76.75 even 2
1083.4.a.a.1.1 1 1.1 even 1 trivial
1425.4.a.c.1.1 1 95.94 odd 2