Defining parameters
| Level: | \( N \) | \(=\) | \( 1083 = 3 \cdot 19^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1083.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 57 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(253\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1083, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 146 | 130 | 16 |
| Cusp forms | 106 | 98 | 8 |
| Eisenstein series | 40 | 32 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1083, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 1083.2.d.a | $6$ | $8.648$ | \(\Q(\zeta_{18})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_1 q^{3}-2 q^{4}-\beta_{3} q^{7}-3 q^{9}+\cdots\) |
| 1083.2.d.b | $8$ | $8.648$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(-16\) | \(q-\beta_{6} q^{2}+(\beta_{6}+\beta_{5}-\beta_1)q^{3}+\beta_{3} q^{4}+\cdots\) |
| 1083.2.d.c | $12$ | $8.648$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+\beta _{10}q^{2}+\beta _{1}q^{3}+(1-\beta _{3}-\beta _{9})q^{4}+\cdots\) |
| 1083.2.d.d | $24$ | $8.648$ | None | \(0\) | \(0\) | \(0\) | \(12\) | ||
| 1083.2.d.e | $48$ | $8.648$ | None | \(0\) | \(0\) | \(0\) | \(-8\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(1083, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1083, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(57, [\chi])\)\(^{\oplus 2}\)