Properties

Label 1083.2.a.d.1.1
Level $1083$
Weight $2$
Character 1083.1
Self dual yes
Analytic conductor $8.648$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1083,2,Mod(1,1083)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1083, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1083.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1083 = 3 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1083.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.64779853890\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 57)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1083.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -1.00000 q^{3} +2.00000 q^{4} +1.00000 q^{5} -2.00000 q^{6} +3.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{2} -1.00000 q^{3} +2.00000 q^{4} +1.00000 q^{5} -2.00000 q^{6} +3.00000 q^{7} +1.00000 q^{9} +2.00000 q^{10} -3.00000 q^{11} -2.00000 q^{12} +6.00000 q^{13} +6.00000 q^{14} -1.00000 q^{15} -4.00000 q^{16} +3.00000 q^{17} +2.00000 q^{18} +2.00000 q^{20} -3.00000 q^{21} -6.00000 q^{22} +4.00000 q^{23} -4.00000 q^{25} +12.0000 q^{26} -1.00000 q^{27} +6.00000 q^{28} +10.0000 q^{29} -2.00000 q^{30} -2.00000 q^{31} -8.00000 q^{32} +3.00000 q^{33} +6.00000 q^{34} +3.00000 q^{35} +2.00000 q^{36} -8.00000 q^{37} -6.00000 q^{39} +8.00000 q^{41} -6.00000 q^{42} -1.00000 q^{43} -6.00000 q^{44} +1.00000 q^{45} +8.00000 q^{46} +3.00000 q^{47} +4.00000 q^{48} +2.00000 q^{49} -8.00000 q^{50} -3.00000 q^{51} +12.0000 q^{52} +6.00000 q^{53} -2.00000 q^{54} -3.00000 q^{55} +20.0000 q^{58} -2.00000 q^{60} +7.00000 q^{61} -4.00000 q^{62} +3.00000 q^{63} -8.00000 q^{64} +6.00000 q^{65} +6.00000 q^{66} -8.00000 q^{67} +6.00000 q^{68} -4.00000 q^{69} +6.00000 q^{70} -12.0000 q^{71} -11.0000 q^{73} -16.0000 q^{74} +4.00000 q^{75} -9.00000 q^{77} -12.0000 q^{78} -4.00000 q^{80} +1.00000 q^{81} +16.0000 q^{82} +4.00000 q^{83} -6.00000 q^{84} +3.00000 q^{85} -2.00000 q^{86} -10.0000 q^{87} -10.0000 q^{89} +2.00000 q^{90} +18.0000 q^{91} +8.00000 q^{92} +2.00000 q^{93} +6.00000 q^{94} +8.00000 q^{96} +2.00000 q^{97} +4.00000 q^{98} -3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(3\) −1.00000 −0.577350
\(4\) 2.00000 1.00000
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) −2.00000 −0.816497
\(7\) 3.00000 1.13389 0.566947 0.823754i \(-0.308125\pi\)
0.566947 + 0.823754i \(0.308125\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 2.00000 0.632456
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) −2.00000 −0.577350
\(13\) 6.00000 1.66410 0.832050 0.554700i \(-0.187167\pi\)
0.832050 + 0.554700i \(0.187167\pi\)
\(14\) 6.00000 1.60357
\(15\) −1.00000 −0.258199
\(16\) −4.00000 −1.00000
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 2.00000 0.471405
\(19\) 0 0
\(20\) 2.00000 0.447214
\(21\) −3.00000 −0.654654
\(22\) −6.00000 −1.27920
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 12.0000 2.35339
\(27\) −1.00000 −0.192450
\(28\) 6.00000 1.13389
\(29\) 10.0000 1.85695 0.928477 0.371391i \(-0.121119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(30\) −2.00000 −0.365148
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) −8.00000 −1.41421
\(33\) 3.00000 0.522233
\(34\) 6.00000 1.02899
\(35\) 3.00000 0.507093
\(36\) 2.00000 0.333333
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0 0
\(39\) −6.00000 −0.960769
\(40\) 0 0
\(41\) 8.00000 1.24939 0.624695 0.780869i \(-0.285223\pi\)
0.624695 + 0.780869i \(0.285223\pi\)
\(42\) −6.00000 −0.925820
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) −6.00000 −0.904534
\(45\) 1.00000 0.149071
\(46\) 8.00000 1.17954
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) 4.00000 0.577350
\(49\) 2.00000 0.285714
\(50\) −8.00000 −1.13137
\(51\) −3.00000 −0.420084
\(52\) 12.0000 1.66410
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) −2.00000 −0.272166
\(55\) −3.00000 −0.404520
\(56\) 0 0
\(57\) 0 0
\(58\) 20.0000 2.62613
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) −2.00000 −0.258199
\(61\) 7.00000 0.896258 0.448129 0.893969i \(-0.352090\pi\)
0.448129 + 0.893969i \(0.352090\pi\)
\(62\) −4.00000 −0.508001
\(63\) 3.00000 0.377964
\(64\) −8.00000 −1.00000
\(65\) 6.00000 0.744208
\(66\) 6.00000 0.738549
\(67\) −8.00000 −0.977356 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(68\) 6.00000 0.727607
\(69\) −4.00000 −0.481543
\(70\) 6.00000 0.717137
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) −11.0000 −1.28745 −0.643726 0.765256i \(-0.722612\pi\)
−0.643726 + 0.765256i \(0.722612\pi\)
\(74\) −16.0000 −1.85996
\(75\) 4.00000 0.461880
\(76\) 0 0
\(77\) −9.00000 −1.02565
\(78\) −12.0000 −1.35873
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −4.00000 −0.447214
\(81\) 1.00000 0.111111
\(82\) 16.0000 1.76690
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) −6.00000 −0.654654
\(85\) 3.00000 0.325396
\(86\) −2.00000 −0.215666
\(87\) −10.0000 −1.07211
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 2.00000 0.210819
\(91\) 18.0000 1.88691
\(92\) 8.00000 0.834058
\(93\) 2.00000 0.207390
\(94\) 6.00000 0.618853
\(95\) 0 0
\(96\) 8.00000 0.816497
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 4.00000 0.404061
\(99\) −3.00000 −0.301511
\(100\) −8.00000 −0.800000
\(101\) 2.00000 0.199007 0.0995037 0.995037i \(-0.468274\pi\)
0.0995037 + 0.995037i \(0.468274\pi\)
\(102\) −6.00000 −0.594089
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 0 0
\(105\) −3.00000 −0.292770
\(106\) 12.0000 1.16554
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) −2.00000 −0.192450
\(109\) −20.0000 −1.91565 −0.957826 0.287348i \(-0.907226\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(110\) −6.00000 −0.572078
\(111\) 8.00000 0.759326
\(112\) −12.0000 −1.13389
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 20.0000 1.85695
\(117\) 6.00000 0.554700
\(118\) 0 0
\(119\) 9.00000 0.825029
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 14.0000 1.26750
\(123\) −8.00000 −0.721336
\(124\) −4.00000 −0.359211
\(125\) −9.00000 −0.804984
\(126\) 6.00000 0.534522
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) 1.00000 0.0880451
\(130\) 12.0000 1.05247
\(131\) −13.0000 −1.13582 −0.567908 0.823092i \(-0.692247\pi\)
−0.567908 + 0.823092i \(0.692247\pi\)
\(132\) 6.00000 0.522233
\(133\) 0 0
\(134\) −16.0000 −1.38219
\(135\) −1.00000 −0.0860663
\(136\) 0 0
\(137\) 3.00000 0.256307 0.128154 0.991754i \(-0.459095\pi\)
0.128154 + 0.991754i \(0.459095\pi\)
\(138\) −8.00000 −0.681005
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 6.00000 0.507093
\(141\) −3.00000 −0.252646
\(142\) −24.0000 −2.01404
\(143\) −18.0000 −1.50524
\(144\) −4.00000 −0.333333
\(145\) 10.0000 0.830455
\(146\) −22.0000 −1.82073
\(147\) −2.00000 −0.164957
\(148\) −16.0000 −1.31519
\(149\) 15.0000 1.22885 0.614424 0.788976i \(-0.289388\pi\)
0.614424 + 0.788976i \(0.289388\pi\)
\(150\) 8.00000 0.653197
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 3.00000 0.242536
\(154\) −18.0000 −1.45048
\(155\) −2.00000 −0.160644
\(156\) −12.0000 −0.960769
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) −8.00000 −0.632456
\(161\) 12.0000 0.945732
\(162\) 2.00000 0.157135
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 16.0000 1.24939
\(165\) 3.00000 0.233550
\(166\) 8.00000 0.620920
\(167\) −18.0000 −1.39288 −0.696441 0.717614i \(-0.745234\pi\)
−0.696441 + 0.717614i \(0.745234\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 6.00000 0.460179
\(171\) 0 0
\(172\) −2.00000 −0.152499
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) −20.0000 −1.51620
\(175\) −12.0000 −0.907115
\(176\) 12.0000 0.904534
\(177\) 0 0
\(178\) −20.0000 −1.49906
\(179\) 10.0000 0.747435 0.373718 0.927543i \(-0.378083\pi\)
0.373718 + 0.927543i \(0.378083\pi\)
\(180\) 2.00000 0.149071
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 36.0000 2.66850
\(183\) −7.00000 −0.517455
\(184\) 0 0
\(185\) −8.00000 −0.588172
\(186\) 4.00000 0.293294
\(187\) −9.00000 −0.658145
\(188\) 6.00000 0.437595
\(189\) −3.00000 −0.218218
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 8.00000 0.577350
\(193\) −4.00000 −0.287926 −0.143963 0.989583i \(-0.545985\pi\)
−0.143963 + 0.989583i \(0.545985\pi\)
\(194\) 4.00000 0.287183
\(195\) −6.00000 −0.429669
\(196\) 4.00000 0.285714
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) −6.00000 −0.426401
\(199\) −5.00000 −0.354441 −0.177220 0.984171i \(-0.556711\pi\)
−0.177220 + 0.984171i \(0.556711\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 4.00000 0.281439
\(203\) 30.0000 2.10559
\(204\) −6.00000 −0.420084
\(205\) 8.00000 0.558744
\(206\) −28.0000 −1.95085
\(207\) 4.00000 0.278019
\(208\) −24.0000 −1.66410
\(209\) 0 0
\(210\) −6.00000 −0.414039
\(211\) 28.0000 1.92760 0.963800 0.266627i \(-0.0859092\pi\)
0.963800 + 0.266627i \(0.0859092\pi\)
\(212\) 12.0000 0.824163
\(213\) 12.0000 0.822226
\(214\) 4.00000 0.273434
\(215\) −1.00000 −0.0681994
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) −40.0000 −2.70914
\(219\) 11.0000 0.743311
\(220\) −6.00000 −0.404520
\(221\) 18.0000 1.21081
\(222\) 16.0000 1.07385
\(223\) −4.00000 −0.267860 −0.133930 0.990991i \(-0.542760\pi\)
−0.133930 + 0.990991i \(0.542760\pi\)
\(224\) −24.0000 −1.60357
\(225\) −4.00000 −0.266667
\(226\) 12.0000 0.798228
\(227\) −18.0000 −1.19470 −0.597351 0.801980i \(-0.703780\pi\)
−0.597351 + 0.801980i \(0.703780\pi\)
\(228\) 0 0
\(229\) −15.0000 −0.991228 −0.495614 0.868543i \(-0.665057\pi\)
−0.495614 + 0.868543i \(0.665057\pi\)
\(230\) 8.00000 0.527504
\(231\) 9.00000 0.592157
\(232\) 0 0
\(233\) −11.0000 −0.720634 −0.360317 0.932830i \(-0.617331\pi\)
−0.360317 + 0.932830i \(0.617331\pi\)
\(234\) 12.0000 0.784465
\(235\) 3.00000 0.195698
\(236\) 0 0
\(237\) 0 0
\(238\) 18.0000 1.16677
\(239\) −15.0000 −0.970269 −0.485135 0.874439i \(-0.661229\pi\)
−0.485135 + 0.874439i \(0.661229\pi\)
\(240\) 4.00000 0.258199
\(241\) −12.0000 −0.772988 −0.386494 0.922292i \(-0.626314\pi\)
−0.386494 + 0.922292i \(0.626314\pi\)
\(242\) −4.00000 −0.257130
\(243\) −1.00000 −0.0641500
\(244\) 14.0000 0.896258
\(245\) 2.00000 0.127775
\(246\) −16.0000 −1.02012
\(247\) 0 0
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) −18.0000 −1.13842
\(251\) 27.0000 1.70422 0.852112 0.523359i \(-0.175321\pi\)
0.852112 + 0.523359i \(0.175321\pi\)
\(252\) 6.00000 0.377964
\(253\) −12.0000 −0.754434
\(254\) 4.00000 0.250982
\(255\) −3.00000 −0.187867
\(256\) 16.0000 1.00000
\(257\) −8.00000 −0.499026 −0.249513 0.968371i \(-0.580271\pi\)
−0.249513 + 0.968371i \(0.580271\pi\)
\(258\) 2.00000 0.124515
\(259\) −24.0000 −1.49129
\(260\) 12.0000 0.744208
\(261\) 10.0000 0.618984
\(262\) −26.0000 −1.60629
\(263\) −21.0000 −1.29492 −0.647458 0.762101i \(-0.724168\pi\)
−0.647458 + 0.762101i \(0.724168\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) 10.0000 0.611990
\(268\) −16.0000 −0.977356
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) −2.00000 −0.121716
\(271\) 12.0000 0.728948 0.364474 0.931214i \(-0.381249\pi\)
0.364474 + 0.931214i \(0.381249\pi\)
\(272\) −12.0000 −0.727607
\(273\) −18.0000 −1.08941
\(274\) 6.00000 0.362473
\(275\) 12.0000 0.723627
\(276\) −8.00000 −0.481543
\(277\) 13.0000 0.781094 0.390547 0.920583i \(-0.372286\pi\)
0.390547 + 0.920583i \(0.372286\pi\)
\(278\) −10.0000 −0.599760
\(279\) −2.00000 −0.119737
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) −6.00000 −0.357295
\(283\) 19.0000 1.12943 0.564716 0.825285i \(-0.308986\pi\)
0.564716 + 0.825285i \(0.308986\pi\)
\(284\) −24.0000 −1.42414
\(285\) 0 0
\(286\) −36.0000 −2.12872
\(287\) 24.0000 1.41668
\(288\) −8.00000 −0.471405
\(289\) −8.00000 −0.470588
\(290\) 20.0000 1.17444
\(291\) −2.00000 −0.117242
\(292\) −22.0000 −1.28745
\(293\) −4.00000 −0.233682 −0.116841 0.993151i \(-0.537277\pi\)
−0.116841 + 0.993151i \(0.537277\pi\)
\(294\) −4.00000 −0.233285
\(295\) 0 0
\(296\) 0 0
\(297\) 3.00000 0.174078
\(298\) 30.0000 1.73785
\(299\) 24.0000 1.38796
\(300\) 8.00000 0.461880
\(301\) −3.00000 −0.172917
\(302\) 16.0000 0.920697
\(303\) −2.00000 −0.114897
\(304\) 0 0
\(305\) 7.00000 0.400819
\(306\) 6.00000 0.342997
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) −18.0000 −1.02565
\(309\) 14.0000 0.796432
\(310\) −4.00000 −0.227185
\(311\) 7.00000 0.396934 0.198467 0.980108i \(-0.436404\pi\)
0.198467 + 0.980108i \(0.436404\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) −4.00000 −0.225733
\(315\) 3.00000 0.169031
\(316\) 0 0
\(317\) 12.0000 0.673987 0.336994 0.941507i \(-0.390590\pi\)
0.336994 + 0.941507i \(0.390590\pi\)
\(318\) −12.0000 −0.672927
\(319\) −30.0000 −1.67968
\(320\) −8.00000 −0.447214
\(321\) −2.00000 −0.111629
\(322\) 24.0000 1.33747
\(323\) 0 0
\(324\) 2.00000 0.111111
\(325\) −24.0000 −1.33128
\(326\) −32.0000 −1.77232
\(327\) 20.0000 1.10600
\(328\) 0 0
\(329\) 9.00000 0.496186
\(330\) 6.00000 0.330289
\(331\) −12.0000 −0.659580 −0.329790 0.944054i \(-0.606978\pi\)
−0.329790 + 0.944054i \(0.606978\pi\)
\(332\) 8.00000 0.439057
\(333\) −8.00000 −0.438397
\(334\) −36.0000 −1.96983
\(335\) −8.00000 −0.437087
\(336\) 12.0000 0.654654
\(337\) 22.0000 1.19842 0.599208 0.800593i \(-0.295482\pi\)
0.599208 + 0.800593i \(0.295482\pi\)
\(338\) 46.0000 2.50207
\(339\) −6.00000 −0.325875
\(340\) 6.00000 0.325396
\(341\) 6.00000 0.324918
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 0 0
\(345\) −4.00000 −0.215353
\(346\) −28.0000 −1.50529
\(347\) 3.00000 0.161048 0.0805242 0.996753i \(-0.474341\pi\)
0.0805242 + 0.996753i \(0.474341\pi\)
\(348\) −20.0000 −1.07211
\(349\) 25.0000 1.33822 0.669110 0.743164i \(-0.266676\pi\)
0.669110 + 0.743164i \(0.266676\pi\)
\(350\) −24.0000 −1.28285
\(351\) −6.00000 −0.320256
\(352\) 24.0000 1.27920
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) −12.0000 −0.636894
\(356\) −20.0000 −1.06000
\(357\) −9.00000 −0.476331
\(358\) 20.0000 1.05703
\(359\) 25.0000 1.31945 0.659725 0.751507i \(-0.270673\pi\)
0.659725 + 0.751507i \(0.270673\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) −4.00000 −0.210235
\(363\) 2.00000 0.104973
\(364\) 36.0000 1.88691
\(365\) −11.0000 −0.575766
\(366\) −14.0000 −0.731792
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) −16.0000 −0.834058
\(369\) 8.00000 0.416463
\(370\) −16.0000 −0.831800
\(371\) 18.0000 0.934513
\(372\) 4.00000 0.207390
\(373\) 16.0000 0.828449 0.414224 0.910175i \(-0.364053\pi\)
0.414224 + 0.910175i \(0.364053\pi\)
\(374\) −18.0000 −0.930758
\(375\) 9.00000 0.464758
\(376\) 0 0
\(377\) 60.0000 3.09016
\(378\) −6.00000 −0.308607
\(379\) 30.0000 1.54100 0.770498 0.637442i \(-0.220007\pi\)
0.770498 + 0.637442i \(0.220007\pi\)
\(380\) 0 0
\(381\) −2.00000 −0.102463
\(382\) −6.00000 −0.306987
\(383\) −14.0000 −0.715367 −0.357683 0.933843i \(-0.616433\pi\)
−0.357683 + 0.933843i \(0.616433\pi\)
\(384\) 0 0
\(385\) −9.00000 −0.458682
\(386\) −8.00000 −0.407189
\(387\) −1.00000 −0.0508329
\(388\) 4.00000 0.203069
\(389\) −15.0000 −0.760530 −0.380265 0.924878i \(-0.624167\pi\)
−0.380265 + 0.924878i \(0.624167\pi\)
\(390\) −12.0000 −0.607644
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) 13.0000 0.655763
\(394\) −4.00000 −0.201517
\(395\) 0 0
\(396\) −6.00000 −0.301511
\(397\) −7.00000 −0.351320 −0.175660 0.984451i \(-0.556206\pi\)
−0.175660 + 0.984451i \(0.556206\pi\)
\(398\) −10.0000 −0.501255
\(399\) 0 0
\(400\) 16.0000 0.800000
\(401\) 28.0000 1.39825 0.699127 0.714998i \(-0.253572\pi\)
0.699127 + 0.714998i \(0.253572\pi\)
\(402\) 16.0000 0.798007
\(403\) −12.0000 −0.597763
\(404\) 4.00000 0.199007
\(405\) 1.00000 0.0496904
\(406\) 60.0000 2.97775
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) −10.0000 −0.494468 −0.247234 0.968956i \(-0.579522\pi\)
−0.247234 + 0.968956i \(0.579522\pi\)
\(410\) 16.0000 0.790184
\(411\) −3.00000 −0.147979
\(412\) −28.0000 −1.37946
\(413\) 0 0
\(414\) 8.00000 0.393179
\(415\) 4.00000 0.196352
\(416\) −48.0000 −2.35339
\(417\) 5.00000 0.244851
\(418\) 0 0
\(419\) 20.0000 0.977064 0.488532 0.872546i \(-0.337533\pi\)
0.488532 + 0.872546i \(0.337533\pi\)
\(420\) −6.00000 −0.292770
\(421\) −2.00000 −0.0974740 −0.0487370 0.998812i \(-0.515520\pi\)
−0.0487370 + 0.998812i \(0.515520\pi\)
\(422\) 56.0000 2.72604
\(423\) 3.00000 0.145865
\(424\) 0 0
\(425\) −12.0000 −0.582086
\(426\) 24.0000 1.16280
\(427\) 21.0000 1.01626
\(428\) 4.00000 0.193347
\(429\) 18.0000 0.869048
\(430\) −2.00000 −0.0964486
\(431\) 18.0000 0.867029 0.433515 0.901146i \(-0.357273\pi\)
0.433515 + 0.901146i \(0.357273\pi\)
\(432\) 4.00000 0.192450
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) −12.0000 −0.576018
\(435\) −10.0000 −0.479463
\(436\) −40.0000 −1.91565
\(437\) 0 0
\(438\) 22.0000 1.05120
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) 36.0000 1.71235
\(443\) 39.0000 1.85295 0.926473 0.376361i \(-0.122825\pi\)
0.926473 + 0.376361i \(0.122825\pi\)
\(444\) 16.0000 0.759326
\(445\) −10.0000 −0.474045
\(446\) −8.00000 −0.378811
\(447\) −15.0000 −0.709476
\(448\) −24.0000 −1.13389
\(449\) 20.0000 0.943858 0.471929 0.881636i \(-0.343558\pi\)
0.471929 + 0.881636i \(0.343558\pi\)
\(450\) −8.00000 −0.377124
\(451\) −24.0000 −1.13012
\(452\) 12.0000 0.564433
\(453\) −8.00000 −0.375873
\(454\) −36.0000 −1.68956
\(455\) 18.0000 0.843853
\(456\) 0 0
\(457\) 3.00000 0.140334 0.0701670 0.997535i \(-0.477647\pi\)
0.0701670 + 0.997535i \(0.477647\pi\)
\(458\) −30.0000 −1.40181
\(459\) −3.00000 −0.140028
\(460\) 8.00000 0.373002
\(461\) −33.0000 −1.53696 −0.768482 0.639872i \(-0.778987\pi\)
−0.768482 + 0.639872i \(0.778987\pi\)
\(462\) 18.0000 0.837436
\(463\) −31.0000 −1.44069 −0.720346 0.693615i \(-0.756017\pi\)
−0.720346 + 0.693615i \(0.756017\pi\)
\(464\) −40.0000 −1.85695
\(465\) 2.00000 0.0927478
\(466\) −22.0000 −1.01913
\(467\) −17.0000 −0.786666 −0.393333 0.919396i \(-0.628678\pi\)
−0.393333 + 0.919396i \(0.628678\pi\)
\(468\) 12.0000 0.554700
\(469\) −24.0000 −1.10822
\(470\) 6.00000 0.276759
\(471\) 2.00000 0.0921551
\(472\) 0 0
\(473\) 3.00000 0.137940
\(474\) 0 0
\(475\) 0 0
\(476\) 18.0000 0.825029
\(477\) 6.00000 0.274721
\(478\) −30.0000 −1.37217
\(479\) −40.0000 −1.82765 −0.913823 0.406112i \(-0.866884\pi\)
−0.913823 + 0.406112i \(0.866884\pi\)
\(480\) 8.00000 0.365148
\(481\) −48.0000 −2.18861
\(482\) −24.0000 −1.09317
\(483\) −12.0000 −0.546019
\(484\) −4.00000 −0.181818
\(485\) 2.00000 0.0908153
\(486\) −2.00000 −0.0907218
\(487\) −8.00000 −0.362515 −0.181257 0.983436i \(-0.558017\pi\)
−0.181257 + 0.983436i \(0.558017\pi\)
\(488\) 0 0
\(489\) 16.0000 0.723545
\(490\) 4.00000 0.180702
\(491\) −8.00000 −0.361035 −0.180517 0.983572i \(-0.557777\pi\)
−0.180517 + 0.983572i \(0.557777\pi\)
\(492\) −16.0000 −0.721336
\(493\) 30.0000 1.35113
\(494\) 0 0
\(495\) −3.00000 −0.134840
\(496\) 8.00000 0.359211
\(497\) −36.0000 −1.61482
\(498\) −8.00000 −0.358489
\(499\) −35.0000 −1.56682 −0.783408 0.621508i \(-0.786520\pi\)
−0.783408 + 0.621508i \(0.786520\pi\)
\(500\) −18.0000 −0.804984
\(501\) 18.0000 0.804181
\(502\) 54.0000 2.41014
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) −24.0000 −1.06693
\(507\) −23.0000 −1.02147
\(508\) 4.00000 0.177471
\(509\) 10.0000 0.443242 0.221621 0.975133i \(-0.428865\pi\)
0.221621 + 0.975133i \(0.428865\pi\)
\(510\) −6.00000 −0.265684
\(511\) −33.0000 −1.45983
\(512\) 32.0000 1.41421
\(513\) 0 0
\(514\) −16.0000 −0.705730
\(515\) −14.0000 −0.616914
\(516\) 2.00000 0.0880451
\(517\) −9.00000 −0.395820
\(518\) −48.0000 −2.10900
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) 28.0000 1.22670 0.613351 0.789810i \(-0.289821\pi\)
0.613351 + 0.789810i \(0.289821\pi\)
\(522\) 20.0000 0.875376
\(523\) −14.0000 −0.612177 −0.306089 0.952003i \(-0.599020\pi\)
−0.306089 + 0.952003i \(0.599020\pi\)
\(524\) −26.0000 −1.13582
\(525\) 12.0000 0.523723
\(526\) −42.0000 −1.83129
\(527\) −6.00000 −0.261364
\(528\) −12.0000 −0.522233
\(529\) −7.00000 −0.304348
\(530\) 12.0000 0.521247
\(531\) 0 0
\(532\) 0 0
\(533\) 48.0000 2.07911
\(534\) 20.0000 0.865485
\(535\) 2.00000 0.0864675
\(536\) 0 0
\(537\) −10.0000 −0.431532
\(538\) 60.0000 2.58678
\(539\) −6.00000 −0.258438
\(540\) −2.00000 −0.0860663
\(541\) −13.0000 −0.558914 −0.279457 0.960158i \(-0.590154\pi\)
−0.279457 + 0.960158i \(0.590154\pi\)
\(542\) 24.0000 1.03089
\(543\) 2.00000 0.0858282
\(544\) −24.0000 −1.02899
\(545\) −20.0000 −0.856706
\(546\) −36.0000 −1.54066
\(547\) 2.00000 0.0855138 0.0427569 0.999086i \(-0.486386\pi\)
0.0427569 + 0.999086i \(0.486386\pi\)
\(548\) 6.00000 0.256307
\(549\) 7.00000 0.298753
\(550\) 24.0000 1.02336
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 26.0000 1.10463
\(555\) 8.00000 0.339581
\(556\) −10.0000 −0.424094
\(557\) 3.00000 0.127114 0.0635570 0.997978i \(-0.479756\pi\)
0.0635570 + 0.997978i \(0.479756\pi\)
\(558\) −4.00000 −0.169334
\(559\) −6.00000 −0.253773
\(560\) −12.0000 −0.507093
\(561\) 9.00000 0.379980
\(562\) −4.00000 −0.168730
\(563\) −44.0000 −1.85438 −0.927189 0.374593i \(-0.877783\pi\)
−0.927189 + 0.374593i \(0.877783\pi\)
\(564\) −6.00000 −0.252646
\(565\) 6.00000 0.252422
\(566\) 38.0000 1.59726
\(567\) 3.00000 0.125988
\(568\) 0 0
\(569\) −30.0000 −1.25767 −0.628833 0.777541i \(-0.716467\pi\)
−0.628833 + 0.777541i \(0.716467\pi\)
\(570\) 0 0
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) −36.0000 −1.50524
\(573\) 3.00000 0.125327
\(574\) 48.0000 2.00348
\(575\) −16.0000 −0.667246
\(576\) −8.00000 −0.333333
\(577\) 3.00000 0.124892 0.0624458 0.998048i \(-0.480110\pi\)
0.0624458 + 0.998048i \(0.480110\pi\)
\(578\) −16.0000 −0.665512
\(579\) 4.00000 0.166234
\(580\) 20.0000 0.830455
\(581\) 12.0000 0.497844
\(582\) −4.00000 −0.165805
\(583\) −18.0000 −0.745484
\(584\) 0 0
\(585\) 6.00000 0.248069
\(586\) −8.00000 −0.330477
\(587\) −37.0000 −1.52715 −0.763577 0.645717i \(-0.776559\pi\)
−0.763577 + 0.645717i \(0.776559\pi\)
\(588\) −4.00000 −0.164957
\(589\) 0 0
\(590\) 0 0
\(591\) 2.00000 0.0822690
\(592\) 32.0000 1.31519
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) 6.00000 0.246183
\(595\) 9.00000 0.368964
\(596\) 30.0000 1.22885
\(597\) 5.00000 0.204636
\(598\) 48.0000 1.96287
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) −6.00000 −0.244542
\(603\) −8.00000 −0.325785
\(604\) 16.0000 0.651031
\(605\) −2.00000 −0.0813116
\(606\) −4.00000 −0.162489
\(607\) −18.0000 −0.730597 −0.365299 0.930890i \(-0.619033\pi\)
−0.365299 + 0.930890i \(0.619033\pi\)
\(608\) 0 0
\(609\) −30.0000 −1.21566
\(610\) 14.0000 0.566843
\(611\) 18.0000 0.728202
\(612\) 6.00000 0.242536
\(613\) 9.00000 0.363507 0.181753 0.983344i \(-0.441823\pi\)
0.181753 + 0.983344i \(0.441823\pi\)
\(614\) 24.0000 0.968561
\(615\) −8.00000 −0.322591
\(616\) 0 0
\(617\) 23.0000 0.925945 0.462973 0.886373i \(-0.346783\pi\)
0.462973 + 0.886373i \(0.346783\pi\)
\(618\) 28.0000 1.12633
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) −4.00000 −0.160644
\(621\) −4.00000 −0.160514
\(622\) 14.0000 0.561349
\(623\) −30.0000 −1.20192
\(624\) 24.0000 0.960769
\(625\) 11.0000 0.440000
\(626\) 28.0000 1.11911
\(627\) 0 0
\(628\) −4.00000 −0.159617
\(629\) −24.0000 −0.956943
\(630\) 6.00000 0.239046
\(631\) 7.00000 0.278666 0.139333 0.990246i \(-0.455504\pi\)
0.139333 + 0.990246i \(0.455504\pi\)
\(632\) 0 0
\(633\) −28.0000 −1.11290
\(634\) 24.0000 0.953162
\(635\) 2.00000 0.0793676
\(636\) −12.0000 −0.475831
\(637\) 12.0000 0.475457
\(638\) −60.0000 −2.37542
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) −4.00000 −0.157867
\(643\) −1.00000 −0.0394362 −0.0197181 0.999806i \(-0.506277\pi\)
−0.0197181 + 0.999806i \(0.506277\pi\)
\(644\) 24.0000 0.945732
\(645\) 1.00000 0.0393750
\(646\) 0 0
\(647\) −27.0000 −1.06148 −0.530740 0.847535i \(-0.678086\pi\)
−0.530740 + 0.847535i \(0.678086\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) −48.0000 −1.88271
\(651\) 6.00000 0.235159
\(652\) −32.0000 −1.25322
\(653\) −1.00000 −0.0391330 −0.0195665 0.999809i \(-0.506229\pi\)
−0.0195665 + 0.999809i \(0.506229\pi\)
\(654\) 40.0000 1.56412
\(655\) −13.0000 −0.507952
\(656\) −32.0000 −1.24939
\(657\) −11.0000 −0.429151
\(658\) 18.0000 0.701713
\(659\) −10.0000 −0.389545 −0.194772 0.980848i \(-0.562397\pi\)
−0.194772 + 0.980848i \(0.562397\pi\)
\(660\) 6.00000 0.233550
\(661\) −12.0000 −0.466746 −0.233373 0.972387i \(-0.574976\pi\)
−0.233373 + 0.972387i \(0.574976\pi\)
\(662\) −24.0000 −0.932786
\(663\) −18.0000 −0.699062
\(664\) 0 0
\(665\) 0 0
\(666\) −16.0000 −0.619987
\(667\) 40.0000 1.54881
\(668\) −36.0000 −1.39288
\(669\) 4.00000 0.154649
\(670\) −16.0000 −0.618134
\(671\) −21.0000 −0.810696
\(672\) 24.0000 0.925820
\(673\) 16.0000 0.616755 0.308377 0.951264i \(-0.400214\pi\)
0.308377 + 0.951264i \(0.400214\pi\)
\(674\) 44.0000 1.69482
\(675\) 4.00000 0.153960
\(676\) 46.0000 1.76923
\(677\) 22.0000 0.845529 0.422764 0.906240i \(-0.361060\pi\)
0.422764 + 0.906240i \(0.361060\pi\)
\(678\) −12.0000 −0.460857
\(679\) 6.00000 0.230259
\(680\) 0 0
\(681\) 18.0000 0.689761
\(682\) 12.0000 0.459504
\(683\) 6.00000 0.229584 0.114792 0.993390i \(-0.463380\pi\)
0.114792 + 0.993390i \(0.463380\pi\)
\(684\) 0 0
\(685\) 3.00000 0.114624
\(686\) −30.0000 −1.14541
\(687\) 15.0000 0.572286
\(688\) 4.00000 0.152499
\(689\) 36.0000 1.37149
\(690\) −8.00000 −0.304555
\(691\) 17.0000 0.646710 0.323355 0.946278i \(-0.395189\pi\)
0.323355 + 0.946278i \(0.395189\pi\)
\(692\) −28.0000 −1.06440
\(693\) −9.00000 −0.341882
\(694\) 6.00000 0.227757
\(695\) −5.00000 −0.189661
\(696\) 0 0
\(697\) 24.0000 0.909065
\(698\) 50.0000 1.89253
\(699\) 11.0000 0.416058
\(700\) −24.0000 −0.907115
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) −12.0000 −0.452911
\(703\) 0 0
\(704\) 24.0000 0.904534
\(705\) −3.00000 −0.112987
\(706\) 28.0000 1.05379
\(707\) 6.00000 0.225653
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) −24.0000 −0.900704
\(711\) 0 0
\(712\) 0 0
\(713\) −8.00000 −0.299602
\(714\) −18.0000 −0.673633
\(715\) −18.0000 −0.673162
\(716\) 20.0000 0.747435
\(717\) 15.0000 0.560185
\(718\) 50.0000 1.86598
\(719\) −35.0000 −1.30528 −0.652640 0.757668i \(-0.726339\pi\)
−0.652640 + 0.757668i \(0.726339\pi\)
\(720\) −4.00000 −0.149071
\(721\) −42.0000 −1.56416
\(722\) 0 0
\(723\) 12.0000 0.446285
\(724\) −4.00000 −0.148659
\(725\) −40.0000 −1.48556
\(726\) 4.00000 0.148454
\(727\) −7.00000 −0.259616 −0.129808 0.991539i \(-0.541436\pi\)
−0.129808 + 0.991539i \(0.541436\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −22.0000 −0.814257
\(731\) −3.00000 −0.110959
\(732\) −14.0000 −0.517455
\(733\) 34.0000 1.25582 0.627909 0.778287i \(-0.283911\pi\)
0.627909 + 0.778287i \(0.283911\pi\)
\(734\) 16.0000 0.590571
\(735\) −2.00000 −0.0737711
\(736\) −32.0000 −1.17954
\(737\) 24.0000 0.884051
\(738\) 16.0000 0.588968
\(739\) −45.0000 −1.65535 −0.827676 0.561206i \(-0.810337\pi\)
−0.827676 + 0.561206i \(0.810337\pi\)
\(740\) −16.0000 −0.588172
\(741\) 0 0
\(742\) 36.0000 1.32160
\(743\) −24.0000 −0.880475 −0.440237 0.897881i \(-0.645106\pi\)
−0.440237 + 0.897881i \(0.645106\pi\)
\(744\) 0 0
\(745\) 15.0000 0.549557
\(746\) 32.0000 1.17160
\(747\) 4.00000 0.146352
\(748\) −18.0000 −0.658145
\(749\) 6.00000 0.219235
\(750\) 18.0000 0.657267
\(751\) 8.00000 0.291924 0.145962 0.989290i \(-0.453372\pi\)
0.145962 + 0.989290i \(0.453372\pi\)
\(752\) −12.0000 −0.437595
\(753\) −27.0000 −0.983935
\(754\) 120.000 4.37014
\(755\) 8.00000 0.291150
\(756\) −6.00000 −0.218218
\(757\) 23.0000 0.835949 0.417975 0.908459i \(-0.362740\pi\)
0.417975 + 0.908459i \(0.362740\pi\)
\(758\) 60.0000 2.17930
\(759\) 12.0000 0.435572
\(760\) 0 0
\(761\) −13.0000 −0.471250 −0.235625 0.971844i \(-0.575714\pi\)
−0.235625 + 0.971844i \(0.575714\pi\)
\(762\) −4.00000 −0.144905
\(763\) −60.0000 −2.17215
\(764\) −6.00000 −0.217072
\(765\) 3.00000 0.108465
\(766\) −28.0000 −1.01168
\(767\) 0 0
\(768\) −16.0000 −0.577350
\(769\) −45.0000 −1.62274 −0.811371 0.584532i \(-0.801278\pi\)
−0.811371 + 0.584532i \(0.801278\pi\)
\(770\) −18.0000 −0.648675
\(771\) 8.00000 0.288113
\(772\) −8.00000 −0.287926
\(773\) 36.0000 1.29483 0.647415 0.762138i \(-0.275850\pi\)
0.647415 + 0.762138i \(0.275850\pi\)
\(774\) −2.00000 −0.0718885
\(775\) 8.00000 0.287368
\(776\) 0 0
\(777\) 24.0000 0.860995
\(778\) −30.0000 −1.07555
\(779\) 0 0
\(780\) −12.0000 −0.429669
\(781\) 36.0000 1.28818
\(782\) 24.0000 0.858238
\(783\) −10.0000 −0.357371
\(784\) −8.00000 −0.285714
\(785\) −2.00000 −0.0713831
\(786\) 26.0000 0.927389
\(787\) −8.00000 −0.285169 −0.142585 0.989783i \(-0.545541\pi\)
−0.142585 + 0.989783i \(0.545541\pi\)
\(788\) −4.00000 −0.142494
\(789\) 21.0000 0.747620
\(790\) 0 0
\(791\) 18.0000 0.640006
\(792\) 0 0
\(793\) 42.0000 1.49146
\(794\) −14.0000 −0.496841
\(795\) −6.00000 −0.212798
\(796\) −10.0000 −0.354441
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) 9.00000 0.318397
\(800\) 32.0000 1.13137
\(801\) −10.0000 −0.353333
\(802\) 56.0000 1.97743
\(803\) 33.0000 1.16454
\(804\) 16.0000 0.564276
\(805\) 12.0000 0.422944
\(806\) −24.0000 −0.845364
\(807\) −30.0000 −1.05605
\(808\) 0 0
\(809\) 5.00000 0.175791 0.0878953 0.996130i \(-0.471986\pi\)
0.0878953 + 0.996130i \(0.471986\pi\)
\(810\) 2.00000 0.0702728
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 60.0000 2.10559
\(813\) −12.0000 −0.420858
\(814\) 48.0000 1.68240
\(815\) −16.0000 −0.560456
\(816\) 12.0000 0.420084
\(817\) 0 0
\(818\) −20.0000 −0.699284
\(819\) 18.0000 0.628971
\(820\) 16.0000 0.558744
\(821\) −33.0000 −1.15171 −0.575854 0.817553i \(-0.695330\pi\)
−0.575854 + 0.817553i \(0.695330\pi\)
\(822\) −6.00000 −0.209274
\(823\) 19.0000 0.662298 0.331149 0.943578i \(-0.392564\pi\)
0.331149 + 0.943578i \(0.392564\pi\)
\(824\) 0 0
\(825\) −12.0000 −0.417786
\(826\) 0 0
\(827\) 52.0000 1.80822 0.904109 0.427303i \(-0.140536\pi\)
0.904109 + 0.427303i \(0.140536\pi\)
\(828\) 8.00000 0.278019
\(829\) −20.0000 −0.694629 −0.347314 0.937749i \(-0.612906\pi\)
−0.347314 + 0.937749i \(0.612906\pi\)
\(830\) 8.00000 0.277684
\(831\) −13.0000 −0.450965
\(832\) −48.0000 −1.66410
\(833\) 6.00000 0.207888
\(834\) 10.0000 0.346272
\(835\) −18.0000 −0.622916
\(836\) 0 0
\(837\) 2.00000 0.0691301
\(838\) 40.0000 1.38178
\(839\) −30.0000 −1.03572 −0.517858 0.855467i \(-0.673270\pi\)
−0.517858 + 0.855467i \(0.673270\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) −4.00000 −0.137849
\(843\) 2.00000 0.0688837
\(844\) 56.0000 1.92760
\(845\) 23.0000 0.791224
\(846\) 6.00000 0.206284
\(847\) −6.00000 −0.206162
\(848\) −24.0000 −0.824163
\(849\) −19.0000 −0.652078
\(850\) −24.0000 −0.823193
\(851\) −32.0000 −1.09695
\(852\) 24.0000 0.822226
\(853\) 34.0000 1.16414 0.582069 0.813139i \(-0.302243\pi\)
0.582069 + 0.813139i \(0.302243\pi\)
\(854\) 42.0000 1.43721
\(855\) 0 0
\(856\) 0 0
\(857\) −48.0000 −1.63965 −0.819824 0.572615i \(-0.805929\pi\)
−0.819824 + 0.572615i \(0.805929\pi\)
\(858\) 36.0000 1.22902
\(859\) 35.0000 1.19418 0.597092 0.802173i \(-0.296323\pi\)
0.597092 + 0.802173i \(0.296323\pi\)
\(860\) −2.00000 −0.0681994
\(861\) −24.0000 −0.817918
\(862\) 36.0000 1.22616
\(863\) −44.0000 −1.49778 −0.748889 0.662696i \(-0.769412\pi\)
−0.748889 + 0.662696i \(0.769412\pi\)
\(864\) 8.00000 0.272166
\(865\) −14.0000 −0.476014
\(866\) 52.0000 1.76703
\(867\) 8.00000 0.271694
\(868\) −12.0000 −0.407307
\(869\) 0 0
\(870\) −20.0000 −0.678064
\(871\) −48.0000 −1.62642
\(872\) 0 0
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) −27.0000 −0.912767
\(876\) 22.0000 0.743311
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) −20.0000 −0.674967
\(879\) 4.00000 0.134917
\(880\) 12.0000 0.404520
\(881\) 7.00000 0.235836 0.117918 0.993023i \(-0.462378\pi\)
0.117918 + 0.993023i \(0.462378\pi\)
\(882\) 4.00000 0.134687
\(883\) −21.0000 −0.706706 −0.353353 0.935490i \(-0.614959\pi\)
−0.353353 + 0.935490i \(0.614959\pi\)
\(884\) 36.0000 1.21081
\(885\) 0 0
\(886\) 78.0000 2.62046
\(887\) 52.0000 1.74599 0.872995 0.487730i \(-0.162175\pi\)
0.872995 + 0.487730i \(0.162175\pi\)
\(888\) 0 0
\(889\) 6.00000 0.201234
\(890\) −20.0000 −0.670402
\(891\) −3.00000 −0.100504
\(892\) −8.00000 −0.267860
\(893\) 0 0
\(894\) −30.0000 −1.00335
\(895\) 10.0000 0.334263
\(896\) 0 0
\(897\) −24.0000 −0.801337
\(898\) 40.0000 1.33482
\(899\) −20.0000 −0.667037
\(900\) −8.00000 −0.266667
\(901\) 18.0000 0.599667
\(902\) −48.0000 −1.59823
\(903\) 3.00000 0.0998337
\(904\) 0 0
\(905\) −2.00000 −0.0664822
\(906\) −16.0000 −0.531564
\(907\) 2.00000 0.0664089 0.0332045 0.999449i \(-0.489429\pi\)
0.0332045 + 0.999449i \(0.489429\pi\)
\(908\) −36.0000 −1.19470
\(909\) 2.00000 0.0663358
\(910\) 36.0000 1.19339
\(911\) −2.00000 −0.0662630 −0.0331315 0.999451i \(-0.510548\pi\)
−0.0331315 + 0.999451i \(0.510548\pi\)
\(912\) 0 0
\(913\) −12.0000 −0.397142
\(914\) 6.00000 0.198462
\(915\) −7.00000 −0.231413
\(916\) −30.0000 −0.991228
\(917\) −39.0000 −1.28789
\(918\) −6.00000 −0.198030
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) −12.0000 −0.395413
\(922\) −66.0000 −2.17359
\(923\) −72.0000 −2.36991
\(924\) 18.0000 0.592157
\(925\) 32.0000 1.05215
\(926\) −62.0000 −2.03745
\(927\) −14.0000 −0.459820
\(928\) −80.0000 −2.62613
\(929\) −50.0000 −1.64045 −0.820223 0.572043i \(-0.806151\pi\)
−0.820223 + 0.572043i \(0.806151\pi\)
\(930\) 4.00000 0.131165
\(931\) 0 0
\(932\) −22.0000 −0.720634
\(933\) −7.00000 −0.229170
\(934\) −34.0000 −1.11251
\(935\) −9.00000 −0.294331
\(936\) 0 0
\(937\) 53.0000 1.73143 0.865717 0.500533i \(-0.166863\pi\)
0.865717 + 0.500533i \(0.166863\pi\)
\(938\) −48.0000 −1.56726
\(939\) −14.0000 −0.456873
\(940\) 6.00000 0.195698
\(941\) −2.00000 −0.0651981 −0.0325991 0.999469i \(-0.510378\pi\)
−0.0325991 + 0.999469i \(0.510378\pi\)
\(942\) 4.00000 0.130327
\(943\) 32.0000 1.04206
\(944\) 0 0
\(945\) −3.00000 −0.0975900
\(946\) 6.00000 0.195077
\(947\) 28.0000 0.909878 0.454939 0.890523i \(-0.349661\pi\)
0.454939 + 0.890523i \(0.349661\pi\)
\(948\) 0 0
\(949\) −66.0000 −2.14245
\(950\) 0 0
\(951\) −12.0000 −0.389127
\(952\) 0 0
\(953\) 16.0000 0.518291 0.259145 0.965838i \(-0.416559\pi\)
0.259145 + 0.965838i \(0.416559\pi\)
\(954\) 12.0000 0.388514
\(955\) −3.00000 −0.0970777
\(956\) −30.0000 −0.970269
\(957\) 30.0000 0.969762
\(958\) −80.0000 −2.58468
\(959\) 9.00000 0.290625
\(960\) 8.00000 0.258199
\(961\) −27.0000 −0.870968
\(962\) −96.0000 −3.09516
\(963\) 2.00000 0.0644491
\(964\) −24.0000 −0.772988
\(965\) −4.00000 −0.128765
\(966\) −24.0000 −0.772187
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 4.00000 0.128432
\(971\) −12.0000 −0.385098 −0.192549 0.981287i \(-0.561675\pi\)
−0.192549 + 0.981287i \(0.561675\pi\)
\(972\) −2.00000 −0.0641500
\(973\) −15.0000 −0.480878
\(974\) −16.0000 −0.512673
\(975\) 24.0000 0.768615
\(976\) −28.0000 −0.896258
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 32.0000 1.02325
\(979\) 30.0000 0.958804
\(980\) 4.00000 0.127775
\(981\) −20.0000 −0.638551
\(982\) −16.0000 −0.510581
\(983\) −4.00000 −0.127580 −0.0637901 0.997963i \(-0.520319\pi\)
−0.0637901 + 0.997963i \(0.520319\pi\)
\(984\) 0 0
\(985\) −2.00000 −0.0637253
\(986\) 60.0000 1.91079
\(987\) −9.00000 −0.286473
\(988\) 0 0
\(989\) −4.00000 −0.127193
\(990\) −6.00000 −0.190693
\(991\) 8.00000 0.254128 0.127064 0.991894i \(-0.459445\pi\)
0.127064 + 0.991894i \(0.459445\pi\)
\(992\) 16.0000 0.508001
\(993\) 12.0000 0.380808
\(994\) −72.0000 −2.28370
\(995\) −5.00000 −0.158511
\(996\) −8.00000 −0.253490
\(997\) −7.00000 −0.221692 −0.110846 0.993838i \(-0.535356\pi\)
−0.110846 + 0.993838i \(0.535356\pi\)
\(998\) −70.0000 −2.21581
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1083.2.a.d.1.1 1
3.2 odd 2 3249.2.a.a.1.1 1
19.18 odd 2 57.2.a.b.1.1 1
57.56 even 2 171.2.a.c.1.1 1
76.75 even 2 912.2.a.d.1.1 1
95.18 even 4 1425.2.c.a.799.2 2
95.37 even 4 1425.2.c.a.799.1 2
95.94 odd 2 1425.2.a.i.1.1 1
133.132 even 2 2793.2.a.a.1.1 1
152.37 odd 2 3648.2.a.h.1.1 1
152.75 even 2 3648.2.a.y.1.1 1
209.208 even 2 6897.2.a.g.1.1 1
228.227 odd 2 2736.2.a.h.1.1 1
247.246 odd 2 9633.2.a.p.1.1 1
285.284 even 2 4275.2.a.a.1.1 1
399.398 odd 2 8379.2.a.q.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.a.b.1.1 1 19.18 odd 2
171.2.a.c.1.1 1 57.56 even 2
912.2.a.d.1.1 1 76.75 even 2
1083.2.a.d.1.1 1 1.1 even 1 trivial
1425.2.a.i.1.1 1 95.94 odd 2
1425.2.c.a.799.1 2 95.37 even 4
1425.2.c.a.799.2 2 95.18 even 4
2736.2.a.h.1.1 1 228.227 odd 2
2793.2.a.a.1.1 1 133.132 even 2
3249.2.a.a.1.1 1 3.2 odd 2
3648.2.a.h.1.1 1 152.37 odd 2
3648.2.a.y.1.1 1 152.75 even 2
4275.2.a.a.1.1 1 285.284 even 2
6897.2.a.g.1.1 1 209.208 even 2
8379.2.a.q.1.1 1 399.398 odd 2
9633.2.a.p.1.1 1 247.246 odd 2