# Properties

 Label 1083.2.a.a.1.1 Level $1083$ Weight $2$ Character 1083.1 Self dual yes Analytic conductor $8.648$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1083,2,Mod(1,1083)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1083, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1083.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1083 = 3 \cdot 19^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1083.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$8.64779853890$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 57) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 1083.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-1.00000 q^{2} -1.00000 q^{3} -1.00000 q^{4} -2.00000 q^{5} +1.00000 q^{6} +3.00000 q^{8} +1.00000 q^{9} +O(q^{10})$$ $$q-1.00000 q^{2} -1.00000 q^{3} -1.00000 q^{4} -2.00000 q^{5} +1.00000 q^{6} +3.00000 q^{8} +1.00000 q^{9} +2.00000 q^{10} +1.00000 q^{12} -6.00000 q^{13} +2.00000 q^{15} -1.00000 q^{16} -6.00000 q^{17} -1.00000 q^{18} +2.00000 q^{20} +4.00000 q^{23} -3.00000 q^{24} -1.00000 q^{25} +6.00000 q^{26} -1.00000 q^{27} -2.00000 q^{29} -2.00000 q^{30} -8.00000 q^{31} -5.00000 q^{32} +6.00000 q^{34} -1.00000 q^{36} +10.0000 q^{37} +6.00000 q^{39} -6.00000 q^{40} +2.00000 q^{41} -4.00000 q^{43} -2.00000 q^{45} -4.00000 q^{46} +12.0000 q^{47} +1.00000 q^{48} -7.00000 q^{49} +1.00000 q^{50} +6.00000 q^{51} +6.00000 q^{52} +6.00000 q^{53} +1.00000 q^{54} +2.00000 q^{58} +12.0000 q^{59} -2.00000 q^{60} -2.00000 q^{61} +8.00000 q^{62} +7.00000 q^{64} +12.0000 q^{65} +4.00000 q^{67} +6.00000 q^{68} -4.00000 q^{69} +3.00000 q^{72} +10.0000 q^{73} -10.0000 q^{74} +1.00000 q^{75} -6.00000 q^{78} +2.00000 q^{80} +1.00000 q^{81} -2.00000 q^{82} +16.0000 q^{83} +12.0000 q^{85} +4.00000 q^{86} +2.00000 q^{87} +2.00000 q^{89} +2.00000 q^{90} -4.00000 q^{92} +8.00000 q^{93} -12.0000 q^{94} +5.00000 q^{96} -10.0000 q^{97} +7.00000 q^{98} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.00000 −0.707107 −0.353553 0.935414i $$-0.615027\pi$$
−0.353553 + 0.935414i $$0.615027\pi$$
$$3$$ −1.00000 −0.577350
$$4$$ −1.00000 −0.500000
$$5$$ −2.00000 −0.894427 −0.447214 0.894427i $$-0.647584\pi$$
−0.447214 + 0.894427i $$0.647584\pi$$
$$6$$ 1.00000 0.408248
$$7$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$8$$ 3.00000 1.06066
$$9$$ 1.00000 0.333333
$$10$$ 2.00000 0.632456
$$11$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$12$$ 1.00000 0.288675
$$13$$ −6.00000 −1.66410 −0.832050 0.554700i $$-0.812833\pi$$
−0.832050 + 0.554700i $$0.812833\pi$$
$$14$$ 0 0
$$15$$ 2.00000 0.516398
$$16$$ −1.00000 −0.250000
$$17$$ −6.00000 −1.45521 −0.727607 0.685994i $$-0.759367\pi$$
−0.727607 + 0.685994i $$0.759367\pi$$
$$18$$ −1.00000 −0.235702
$$19$$ 0 0
$$20$$ 2.00000 0.447214
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 4.00000 0.834058 0.417029 0.908893i $$-0.363071\pi$$
0.417029 + 0.908893i $$0.363071\pi$$
$$24$$ −3.00000 −0.612372
$$25$$ −1.00000 −0.200000
$$26$$ 6.00000 1.17670
$$27$$ −1.00000 −0.192450
$$28$$ 0 0
$$29$$ −2.00000 −0.371391 −0.185695 0.982607i $$-0.559454\pi$$
−0.185695 + 0.982607i $$0.559454\pi$$
$$30$$ −2.00000 −0.365148
$$31$$ −8.00000 −1.43684 −0.718421 0.695608i $$-0.755135\pi$$
−0.718421 + 0.695608i $$0.755135\pi$$
$$32$$ −5.00000 −0.883883
$$33$$ 0 0
$$34$$ 6.00000 1.02899
$$35$$ 0 0
$$36$$ −1.00000 −0.166667
$$37$$ 10.0000 1.64399 0.821995 0.569495i $$-0.192861\pi$$
0.821995 + 0.569495i $$0.192861\pi$$
$$38$$ 0 0
$$39$$ 6.00000 0.960769
$$40$$ −6.00000 −0.948683
$$41$$ 2.00000 0.312348 0.156174 0.987730i $$-0.450084\pi$$
0.156174 + 0.987730i $$0.450084\pi$$
$$42$$ 0 0
$$43$$ −4.00000 −0.609994 −0.304997 0.952353i $$-0.598656\pi$$
−0.304997 + 0.952353i $$0.598656\pi$$
$$44$$ 0 0
$$45$$ −2.00000 −0.298142
$$46$$ −4.00000 −0.589768
$$47$$ 12.0000 1.75038 0.875190 0.483779i $$-0.160736\pi$$
0.875190 + 0.483779i $$0.160736\pi$$
$$48$$ 1.00000 0.144338
$$49$$ −7.00000 −1.00000
$$50$$ 1.00000 0.141421
$$51$$ 6.00000 0.840168
$$52$$ 6.00000 0.832050
$$53$$ 6.00000 0.824163 0.412082 0.911147i $$-0.364802\pi$$
0.412082 + 0.911147i $$0.364802\pi$$
$$54$$ 1.00000 0.136083
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 2.00000 0.262613
$$59$$ 12.0000 1.56227 0.781133 0.624364i $$-0.214642\pi$$
0.781133 + 0.624364i $$0.214642\pi$$
$$60$$ −2.00000 −0.258199
$$61$$ −2.00000 −0.256074 −0.128037 0.991769i $$-0.540868\pi$$
−0.128037 + 0.991769i $$0.540868\pi$$
$$62$$ 8.00000 1.01600
$$63$$ 0 0
$$64$$ 7.00000 0.875000
$$65$$ 12.0000 1.48842
$$66$$ 0 0
$$67$$ 4.00000 0.488678 0.244339 0.969690i $$-0.421429\pi$$
0.244339 + 0.969690i $$0.421429\pi$$
$$68$$ 6.00000 0.727607
$$69$$ −4.00000 −0.481543
$$70$$ 0 0
$$71$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$72$$ 3.00000 0.353553
$$73$$ 10.0000 1.17041 0.585206 0.810885i $$-0.301014\pi$$
0.585206 + 0.810885i $$0.301014\pi$$
$$74$$ −10.0000 −1.16248
$$75$$ 1.00000 0.115470
$$76$$ 0 0
$$77$$ 0 0
$$78$$ −6.00000 −0.679366
$$79$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$80$$ 2.00000 0.223607
$$81$$ 1.00000 0.111111
$$82$$ −2.00000 −0.220863
$$83$$ 16.0000 1.75623 0.878114 0.478451i $$-0.158802\pi$$
0.878114 + 0.478451i $$0.158802\pi$$
$$84$$ 0 0
$$85$$ 12.0000 1.30158
$$86$$ 4.00000 0.431331
$$87$$ 2.00000 0.214423
$$88$$ 0 0
$$89$$ 2.00000 0.212000 0.106000 0.994366i $$-0.466196\pi$$
0.106000 + 0.994366i $$0.466196\pi$$
$$90$$ 2.00000 0.210819
$$91$$ 0 0
$$92$$ −4.00000 −0.417029
$$93$$ 8.00000 0.829561
$$94$$ −12.0000 −1.23771
$$95$$ 0 0
$$96$$ 5.00000 0.510310
$$97$$ −10.0000 −1.01535 −0.507673 0.861550i $$-0.669494\pi$$
−0.507673 + 0.861550i $$0.669494\pi$$
$$98$$ 7.00000 0.707107
$$99$$ 0 0
$$100$$ 1.00000 0.100000
$$101$$ −10.0000 −0.995037 −0.497519 0.867453i $$-0.665755\pi$$
−0.497519 + 0.867453i $$0.665755\pi$$
$$102$$ −6.00000 −0.594089
$$103$$ −8.00000 −0.788263 −0.394132 0.919054i $$-0.628955\pi$$
−0.394132 + 0.919054i $$0.628955\pi$$
$$104$$ −18.0000 −1.76505
$$105$$ 0 0
$$106$$ −6.00000 −0.582772
$$107$$ −4.00000 −0.386695 −0.193347 0.981130i $$-0.561934\pi$$
−0.193347 + 0.981130i $$0.561934\pi$$
$$108$$ 1.00000 0.0962250
$$109$$ 10.0000 0.957826 0.478913 0.877862i $$-0.341031\pi$$
0.478913 + 0.877862i $$0.341031\pi$$
$$110$$ 0 0
$$111$$ −10.0000 −0.949158
$$112$$ 0 0
$$113$$ −6.00000 −0.564433 −0.282216 0.959351i $$-0.591070\pi$$
−0.282216 + 0.959351i $$0.591070\pi$$
$$114$$ 0 0
$$115$$ −8.00000 −0.746004
$$116$$ 2.00000 0.185695
$$117$$ −6.00000 −0.554700
$$118$$ −12.0000 −1.10469
$$119$$ 0 0
$$120$$ 6.00000 0.547723
$$121$$ −11.0000 −1.00000
$$122$$ 2.00000 0.181071
$$123$$ −2.00000 −0.180334
$$124$$ 8.00000 0.718421
$$125$$ 12.0000 1.07331
$$126$$ 0 0
$$127$$ 8.00000 0.709885 0.354943 0.934888i $$-0.384500\pi$$
0.354943 + 0.934888i $$0.384500\pi$$
$$128$$ 3.00000 0.265165
$$129$$ 4.00000 0.352180
$$130$$ −12.0000 −1.05247
$$131$$ 8.00000 0.698963 0.349482 0.936943i $$-0.386358\pi$$
0.349482 + 0.936943i $$0.386358\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ −4.00000 −0.345547
$$135$$ 2.00000 0.172133
$$136$$ −18.0000 −1.54349
$$137$$ 18.0000 1.53784 0.768922 0.639343i $$-0.220793\pi$$
0.768922 + 0.639343i $$0.220793\pi$$
$$138$$ 4.00000 0.340503
$$139$$ 4.00000 0.339276 0.169638 0.985506i $$-0.445740\pi$$
0.169638 + 0.985506i $$0.445740\pi$$
$$140$$ 0 0
$$141$$ −12.0000 −1.01058
$$142$$ 0 0
$$143$$ 0 0
$$144$$ −1.00000 −0.0833333
$$145$$ 4.00000 0.332182
$$146$$ −10.0000 −0.827606
$$147$$ 7.00000 0.577350
$$148$$ −10.0000 −0.821995
$$149$$ 6.00000 0.491539 0.245770 0.969328i $$-0.420959\pi$$
0.245770 + 0.969328i $$0.420959\pi$$
$$150$$ −1.00000 −0.0816497
$$151$$ 8.00000 0.651031 0.325515 0.945537i $$-0.394462\pi$$
0.325515 + 0.945537i $$0.394462\pi$$
$$152$$ 0 0
$$153$$ −6.00000 −0.485071
$$154$$ 0 0
$$155$$ 16.0000 1.28515
$$156$$ −6.00000 −0.480384
$$157$$ −2.00000 −0.159617 −0.0798087 0.996810i $$-0.525431\pi$$
−0.0798087 + 0.996810i $$0.525431\pi$$
$$158$$ 0 0
$$159$$ −6.00000 −0.475831
$$160$$ 10.0000 0.790569
$$161$$ 0 0
$$162$$ −1.00000 −0.0785674
$$163$$ −4.00000 −0.313304 −0.156652 0.987654i $$-0.550070\pi$$
−0.156652 + 0.987654i $$0.550070\pi$$
$$164$$ −2.00000 −0.156174
$$165$$ 0 0
$$166$$ −16.0000 −1.24184
$$167$$ −24.0000 −1.85718 −0.928588 0.371113i $$-0.878976\pi$$
−0.928588 + 0.371113i $$0.878976\pi$$
$$168$$ 0 0
$$169$$ 23.0000 1.76923
$$170$$ −12.0000 −0.920358
$$171$$ 0 0
$$172$$ 4.00000 0.304997
$$173$$ 22.0000 1.67263 0.836315 0.548250i $$-0.184706\pi$$
0.836315 + 0.548250i $$0.184706\pi$$
$$174$$ −2.00000 −0.151620
$$175$$ 0 0
$$176$$ 0 0
$$177$$ −12.0000 −0.901975
$$178$$ −2.00000 −0.149906
$$179$$ 4.00000 0.298974 0.149487 0.988764i $$-0.452238\pi$$
0.149487 + 0.988764i $$0.452238\pi$$
$$180$$ 2.00000 0.149071
$$181$$ −14.0000 −1.04061 −0.520306 0.853980i $$-0.674182\pi$$
−0.520306 + 0.853980i $$0.674182\pi$$
$$182$$ 0 0
$$183$$ 2.00000 0.147844
$$184$$ 12.0000 0.884652
$$185$$ −20.0000 −1.47043
$$186$$ −8.00000 −0.586588
$$187$$ 0 0
$$188$$ −12.0000 −0.875190
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −12.0000 −0.868290 −0.434145 0.900843i $$-0.642949\pi$$
−0.434145 + 0.900843i $$0.642949\pi$$
$$192$$ −7.00000 −0.505181
$$193$$ 14.0000 1.00774 0.503871 0.863779i $$-0.331909\pi$$
0.503871 + 0.863779i $$0.331909\pi$$
$$194$$ 10.0000 0.717958
$$195$$ −12.0000 −0.859338
$$196$$ 7.00000 0.500000
$$197$$ −2.00000 −0.142494 −0.0712470 0.997459i $$-0.522698\pi$$
−0.0712470 + 0.997459i $$0.522698\pi$$
$$198$$ 0 0
$$199$$ −8.00000 −0.567105 −0.283552 0.958957i $$-0.591513\pi$$
−0.283552 + 0.958957i $$0.591513\pi$$
$$200$$ −3.00000 −0.212132
$$201$$ −4.00000 −0.282138
$$202$$ 10.0000 0.703598
$$203$$ 0 0
$$204$$ −6.00000 −0.420084
$$205$$ −4.00000 −0.279372
$$206$$ 8.00000 0.557386
$$207$$ 4.00000 0.278019
$$208$$ 6.00000 0.416025
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 4.00000 0.275371 0.137686 0.990476i $$-0.456034\pi$$
0.137686 + 0.990476i $$0.456034\pi$$
$$212$$ −6.00000 −0.412082
$$213$$ 0 0
$$214$$ 4.00000 0.273434
$$215$$ 8.00000 0.545595
$$216$$ −3.00000 −0.204124
$$217$$ 0 0
$$218$$ −10.0000 −0.677285
$$219$$ −10.0000 −0.675737
$$220$$ 0 0
$$221$$ 36.0000 2.42162
$$222$$ 10.0000 0.671156
$$223$$ −16.0000 −1.07144 −0.535720 0.844396i $$-0.679960\pi$$
−0.535720 + 0.844396i $$0.679960\pi$$
$$224$$ 0 0
$$225$$ −1.00000 −0.0666667
$$226$$ 6.00000 0.399114
$$227$$ 12.0000 0.796468 0.398234 0.917284i $$-0.369623\pi$$
0.398234 + 0.917284i $$0.369623\pi$$
$$228$$ 0 0
$$229$$ 6.00000 0.396491 0.198246 0.980152i $$-0.436476\pi$$
0.198246 + 0.980152i $$0.436476\pi$$
$$230$$ 8.00000 0.527504
$$231$$ 0 0
$$232$$ −6.00000 −0.393919
$$233$$ 10.0000 0.655122 0.327561 0.944830i $$-0.393773\pi$$
0.327561 + 0.944830i $$0.393773\pi$$
$$234$$ 6.00000 0.392232
$$235$$ −24.0000 −1.56559
$$236$$ −12.0000 −0.781133
$$237$$ 0 0
$$238$$ 0 0
$$239$$ −12.0000 −0.776215 −0.388108 0.921614i $$-0.626871\pi$$
−0.388108 + 0.921614i $$0.626871\pi$$
$$240$$ −2.00000 −0.129099
$$241$$ 6.00000 0.386494 0.193247 0.981150i $$-0.438098\pi$$
0.193247 + 0.981150i $$0.438098\pi$$
$$242$$ 11.0000 0.707107
$$243$$ −1.00000 −0.0641500
$$244$$ 2.00000 0.128037
$$245$$ 14.0000 0.894427
$$246$$ 2.00000 0.127515
$$247$$ 0 0
$$248$$ −24.0000 −1.52400
$$249$$ −16.0000 −1.01396
$$250$$ −12.0000 −0.758947
$$251$$ −24.0000 −1.51487 −0.757433 0.652913i $$-0.773547\pi$$
−0.757433 + 0.652913i $$0.773547\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ −8.00000 −0.501965
$$255$$ −12.0000 −0.751469
$$256$$ −17.0000 −1.06250
$$257$$ −14.0000 −0.873296 −0.436648 0.899632i $$-0.643834\pi$$
−0.436648 + 0.899632i $$0.643834\pi$$
$$258$$ −4.00000 −0.249029
$$259$$ 0 0
$$260$$ −12.0000 −0.744208
$$261$$ −2.00000 −0.123797
$$262$$ −8.00000 −0.494242
$$263$$ 12.0000 0.739952 0.369976 0.929041i $$-0.379366\pi$$
0.369976 + 0.929041i $$0.379366\pi$$
$$264$$ 0 0
$$265$$ −12.0000 −0.737154
$$266$$ 0 0
$$267$$ −2.00000 −0.122398
$$268$$ −4.00000 −0.244339
$$269$$ 6.00000 0.365826 0.182913 0.983129i $$-0.441447\pi$$
0.182913 + 0.983129i $$0.441447\pi$$
$$270$$ −2.00000 −0.121716
$$271$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$272$$ 6.00000 0.363803
$$273$$ 0 0
$$274$$ −18.0000 −1.08742
$$275$$ 0 0
$$276$$ 4.00000 0.240772
$$277$$ 22.0000 1.32185 0.660926 0.750451i $$-0.270164\pi$$
0.660926 + 0.750451i $$0.270164\pi$$
$$278$$ −4.00000 −0.239904
$$279$$ −8.00000 −0.478947
$$280$$ 0 0
$$281$$ 10.0000 0.596550 0.298275 0.954480i $$-0.403589\pi$$
0.298275 + 0.954480i $$0.403589\pi$$
$$282$$ 12.0000 0.714590
$$283$$ −20.0000 −1.18888 −0.594438 0.804141i $$-0.702626\pi$$
−0.594438 + 0.804141i $$0.702626\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ −5.00000 −0.294628
$$289$$ 19.0000 1.11765
$$290$$ −4.00000 −0.234888
$$291$$ 10.0000 0.586210
$$292$$ −10.0000 −0.585206
$$293$$ 14.0000 0.817889 0.408944 0.912559i $$-0.365897\pi$$
0.408944 + 0.912559i $$0.365897\pi$$
$$294$$ −7.00000 −0.408248
$$295$$ −24.0000 −1.39733
$$296$$ 30.0000 1.74371
$$297$$ 0 0
$$298$$ −6.00000 −0.347571
$$299$$ −24.0000 −1.38796
$$300$$ −1.00000 −0.0577350
$$301$$ 0 0
$$302$$ −8.00000 −0.460348
$$303$$ 10.0000 0.574485
$$304$$ 0 0
$$305$$ 4.00000 0.229039
$$306$$ 6.00000 0.342997
$$307$$ 12.0000 0.684876 0.342438 0.939540i $$-0.388747\pi$$
0.342438 + 0.939540i $$0.388747\pi$$
$$308$$ 0 0
$$309$$ 8.00000 0.455104
$$310$$ −16.0000 −0.908739
$$311$$ 4.00000 0.226819 0.113410 0.993548i $$-0.463823\pi$$
0.113410 + 0.993548i $$0.463823\pi$$
$$312$$ 18.0000 1.01905
$$313$$ −22.0000 −1.24351 −0.621757 0.783210i $$-0.713581\pi$$
−0.621757 + 0.783210i $$0.713581\pi$$
$$314$$ 2.00000 0.112867
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 6.00000 0.336994 0.168497 0.985702i $$-0.446109\pi$$
0.168497 + 0.985702i $$0.446109\pi$$
$$318$$ 6.00000 0.336463
$$319$$ 0 0
$$320$$ −14.0000 −0.782624
$$321$$ 4.00000 0.223258
$$322$$ 0 0
$$323$$ 0 0
$$324$$ −1.00000 −0.0555556
$$325$$ 6.00000 0.332820
$$326$$ 4.00000 0.221540
$$327$$ −10.0000 −0.553001
$$328$$ 6.00000 0.331295
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −12.0000 −0.659580 −0.329790 0.944054i $$-0.606978\pi$$
−0.329790 + 0.944054i $$0.606978\pi$$
$$332$$ −16.0000 −0.878114
$$333$$ 10.0000 0.547997
$$334$$ 24.0000 1.31322
$$335$$ −8.00000 −0.437087
$$336$$ 0 0
$$337$$ 22.0000 1.19842 0.599208 0.800593i $$-0.295482\pi$$
0.599208 + 0.800593i $$0.295482\pi$$
$$338$$ −23.0000 −1.25104
$$339$$ 6.00000 0.325875
$$340$$ −12.0000 −0.650791
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 0 0
$$344$$ −12.0000 −0.646997
$$345$$ 8.00000 0.430706
$$346$$ −22.0000 −1.18273
$$347$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$348$$ −2.00000 −0.107211
$$349$$ −2.00000 −0.107058 −0.0535288 0.998566i $$-0.517047\pi$$
−0.0535288 + 0.998566i $$0.517047\pi$$
$$350$$ 0 0
$$351$$ 6.00000 0.320256
$$352$$ 0 0
$$353$$ −22.0000 −1.17094 −0.585471 0.810693i $$-0.699090\pi$$
−0.585471 + 0.810693i $$0.699090\pi$$
$$354$$ 12.0000 0.637793
$$355$$ 0 0
$$356$$ −2.00000 −0.106000
$$357$$ 0 0
$$358$$ −4.00000 −0.211407
$$359$$ −20.0000 −1.05556 −0.527780 0.849381i $$-0.676975\pi$$
−0.527780 + 0.849381i $$0.676975\pi$$
$$360$$ −6.00000 −0.316228
$$361$$ 0 0
$$362$$ 14.0000 0.735824
$$363$$ 11.0000 0.577350
$$364$$ 0 0
$$365$$ −20.0000 −1.04685
$$366$$ −2.00000 −0.104542
$$367$$ 32.0000 1.67039 0.835193 0.549957i $$-0.185356\pi$$
0.835193 + 0.549957i $$0.185356\pi$$
$$368$$ −4.00000 −0.208514
$$369$$ 2.00000 0.104116
$$370$$ 20.0000 1.03975
$$371$$ 0 0
$$372$$ −8.00000 −0.414781
$$373$$ 10.0000 0.517780 0.258890 0.965907i $$-0.416643\pi$$
0.258890 + 0.965907i $$0.416643\pi$$
$$374$$ 0 0
$$375$$ −12.0000 −0.619677
$$376$$ 36.0000 1.85656
$$377$$ 12.0000 0.618031
$$378$$ 0 0
$$379$$ −12.0000 −0.616399 −0.308199 0.951322i $$-0.599726\pi$$
−0.308199 + 0.951322i $$0.599726\pi$$
$$380$$ 0 0
$$381$$ −8.00000 −0.409852
$$382$$ 12.0000 0.613973
$$383$$ −8.00000 −0.408781 −0.204390 0.978889i $$-0.565521\pi$$
−0.204390 + 0.978889i $$0.565521\pi$$
$$384$$ −3.00000 −0.153093
$$385$$ 0 0
$$386$$ −14.0000 −0.712581
$$387$$ −4.00000 −0.203331
$$388$$ 10.0000 0.507673
$$389$$ 30.0000 1.52106 0.760530 0.649303i $$-0.224939\pi$$
0.760530 + 0.649303i $$0.224939\pi$$
$$390$$ 12.0000 0.607644
$$391$$ −24.0000 −1.21373
$$392$$ −21.0000 −1.06066
$$393$$ −8.00000 −0.403547
$$394$$ 2.00000 0.100759
$$395$$ 0 0
$$396$$ 0 0
$$397$$ 14.0000 0.702640 0.351320 0.936255i $$-0.385733\pi$$
0.351320 + 0.936255i $$0.385733\pi$$
$$398$$ 8.00000 0.401004
$$399$$ 0 0
$$400$$ 1.00000 0.0500000
$$401$$ −38.0000 −1.89763 −0.948815 0.315833i $$-0.897716\pi$$
−0.948815 + 0.315833i $$0.897716\pi$$
$$402$$ 4.00000 0.199502
$$403$$ 48.0000 2.39105
$$404$$ 10.0000 0.497519
$$405$$ −2.00000 −0.0993808
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 18.0000 0.891133
$$409$$ 14.0000 0.692255 0.346128 0.938187i $$-0.387496\pi$$
0.346128 + 0.938187i $$0.387496\pi$$
$$410$$ 4.00000 0.197546
$$411$$ −18.0000 −0.887875
$$412$$ 8.00000 0.394132
$$413$$ 0 0
$$414$$ −4.00000 −0.196589
$$415$$ −32.0000 −1.57082
$$416$$ 30.0000 1.47087
$$417$$ −4.00000 −0.195881
$$418$$ 0 0
$$419$$ 8.00000 0.390826 0.195413 0.980721i $$-0.437395\pi$$
0.195413 + 0.980721i $$0.437395\pi$$
$$420$$ 0 0
$$421$$ −14.0000 −0.682318 −0.341159 0.940006i $$-0.610819\pi$$
−0.341159 + 0.940006i $$0.610819\pi$$
$$422$$ −4.00000 −0.194717
$$423$$ 12.0000 0.583460
$$424$$ 18.0000 0.874157
$$425$$ 6.00000 0.291043
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 4.00000 0.193347
$$429$$ 0 0
$$430$$ −8.00000 −0.385794
$$431$$ 24.0000 1.15604 0.578020 0.816023i $$-0.303826\pi$$
0.578020 + 0.816023i $$0.303826\pi$$
$$432$$ 1.00000 0.0481125
$$433$$ 14.0000 0.672797 0.336399 0.941720i $$-0.390791\pi$$
0.336399 + 0.941720i $$0.390791\pi$$
$$434$$ 0 0
$$435$$ −4.00000 −0.191785
$$436$$ −10.0000 −0.478913
$$437$$ 0 0
$$438$$ 10.0000 0.477818
$$439$$ 8.00000 0.381819 0.190910 0.981608i $$-0.438856\pi$$
0.190910 + 0.981608i $$0.438856\pi$$
$$440$$ 0 0
$$441$$ −7.00000 −0.333333
$$442$$ −36.0000 −1.71235
$$443$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$444$$ 10.0000 0.474579
$$445$$ −4.00000 −0.189618
$$446$$ 16.0000 0.757622
$$447$$ −6.00000 −0.283790
$$448$$ 0 0
$$449$$ 2.00000 0.0943858 0.0471929 0.998886i $$-0.484972\pi$$
0.0471929 + 0.998886i $$0.484972\pi$$
$$450$$ 1.00000 0.0471405
$$451$$ 0 0
$$452$$ 6.00000 0.282216
$$453$$ −8.00000 −0.375873
$$454$$ −12.0000 −0.563188
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −6.00000 −0.280668 −0.140334 0.990104i $$-0.544818\pi$$
−0.140334 + 0.990104i $$0.544818\pi$$
$$458$$ −6.00000 −0.280362
$$459$$ 6.00000 0.280056
$$460$$ 8.00000 0.373002
$$461$$ −18.0000 −0.838344 −0.419172 0.907907i $$-0.637680\pi$$
−0.419172 + 0.907907i $$0.637680\pi$$
$$462$$ 0 0
$$463$$ 32.0000 1.48717 0.743583 0.668644i $$-0.233125\pi$$
0.743583 + 0.668644i $$0.233125\pi$$
$$464$$ 2.00000 0.0928477
$$465$$ −16.0000 −0.741982
$$466$$ −10.0000 −0.463241
$$467$$ −32.0000 −1.48078 −0.740392 0.672176i $$-0.765360\pi$$
−0.740392 + 0.672176i $$0.765360\pi$$
$$468$$ 6.00000 0.277350
$$469$$ 0 0
$$470$$ 24.0000 1.10704
$$471$$ 2.00000 0.0921551
$$472$$ 36.0000 1.65703
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 6.00000 0.274721
$$478$$ 12.0000 0.548867
$$479$$ 20.0000 0.913823 0.456912 0.889512i $$-0.348956\pi$$
0.456912 + 0.889512i $$0.348956\pi$$
$$480$$ −10.0000 −0.456435
$$481$$ −60.0000 −2.73576
$$482$$ −6.00000 −0.273293
$$483$$ 0 0
$$484$$ 11.0000 0.500000
$$485$$ 20.0000 0.908153
$$486$$ 1.00000 0.0453609
$$487$$ −32.0000 −1.45006 −0.725029 0.688718i $$-0.758174\pi$$
−0.725029 + 0.688718i $$0.758174\pi$$
$$488$$ −6.00000 −0.271607
$$489$$ 4.00000 0.180886
$$490$$ −14.0000 −0.632456
$$491$$ −32.0000 −1.44414 −0.722070 0.691820i $$-0.756809\pi$$
−0.722070 + 0.691820i $$0.756809\pi$$
$$492$$ 2.00000 0.0901670
$$493$$ 12.0000 0.540453
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 8.00000 0.359211
$$497$$ 0 0
$$498$$ 16.0000 0.716977
$$499$$ 28.0000 1.25345 0.626726 0.779240i $$-0.284395\pi$$
0.626726 + 0.779240i $$0.284395\pi$$
$$500$$ −12.0000 −0.536656
$$501$$ 24.0000 1.07224
$$502$$ 24.0000 1.07117
$$503$$ 12.0000 0.535054 0.267527 0.963550i $$-0.413794\pi$$
0.267527 + 0.963550i $$0.413794\pi$$
$$504$$ 0 0
$$505$$ 20.0000 0.889988
$$506$$ 0 0
$$507$$ −23.0000 −1.02147
$$508$$ −8.00000 −0.354943
$$509$$ 22.0000 0.975133 0.487566 0.873086i $$-0.337885\pi$$
0.487566 + 0.873086i $$0.337885\pi$$
$$510$$ 12.0000 0.531369
$$511$$ 0 0
$$512$$ 11.0000 0.486136
$$513$$ 0 0
$$514$$ 14.0000 0.617514
$$515$$ 16.0000 0.705044
$$516$$ −4.00000 −0.176090
$$517$$ 0 0
$$518$$ 0 0
$$519$$ −22.0000 −0.965693
$$520$$ 36.0000 1.57870
$$521$$ −14.0000 −0.613351 −0.306676 0.951814i $$-0.599217\pi$$
−0.306676 + 0.951814i $$0.599217\pi$$
$$522$$ 2.00000 0.0875376
$$523$$ 28.0000 1.22435 0.612177 0.790721i $$-0.290294\pi$$
0.612177 + 0.790721i $$0.290294\pi$$
$$524$$ −8.00000 −0.349482
$$525$$ 0 0
$$526$$ −12.0000 −0.523225
$$527$$ 48.0000 2.09091
$$528$$ 0 0
$$529$$ −7.00000 −0.304348
$$530$$ 12.0000 0.521247
$$531$$ 12.0000 0.520756
$$532$$ 0 0
$$533$$ −12.0000 −0.519778
$$534$$ 2.00000 0.0865485
$$535$$ 8.00000 0.345870
$$536$$ 12.0000 0.518321
$$537$$ −4.00000 −0.172613
$$538$$ −6.00000 −0.258678
$$539$$ 0 0
$$540$$ −2.00000 −0.0860663
$$541$$ 14.0000 0.601907 0.300954 0.953639i $$-0.402695\pi$$
0.300954 + 0.953639i $$0.402695\pi$$
$$542$$ 0 0
$$543$$ 14.0000 0.600798
$$544$$ 30.0000 1.28624
$$545$$ −20.0000 −0.856706
$$546$$ 0 0
$$547$$ −4.00000 −0.171028 −0.0855138 0.996337i $$-0.527253\pi$$
−0.0855138 + 0.996337i $$0.527253\pi$$
$$548$$ −18.0000 −0.768922
$$549$$ −2.00000 −0.0853579
$$550$$ 0 0
$$551$$ 0 0
$$552$$ −12.0000 −0.510754
$$553$$ 0 0
$$554$$ −22.0000 −0.934690
$$555$$ 20.0000 0.848953
$$556$$ −4.00000 −0.169638
$$557$$ 30.0000 1.27114 0.635570 0.772043i $$-0.280765\pi$$
0.635570 + 0.772043i $$0.280765\pi$$
$$558$$ 8.00000 0.338667
$$559$$ 24.0000 1.01509
$$560$$ 0 0
$$561$$ 0 0
$$562$$ −10.0000 −0.421825
$$563$$ −20.0000 −0.842900 −0.421450 0.906852i $$-0.638479\pi$$
−0.421450 + 0.906852i $$0.638479\pi$$
$$564$$ 12.0000 0.505291
$$565$$ 12.0000 0.504844
$$566$$ 20.0000 0.840663
$$567$$ 0 0
$$568$$ 0 0
$$569$$ −6.00000 −0.251533 −0.125767 0.992060i $$-0.540139\pi$$
−0.125767 + 0.992060i $$0.540139\pi$$
$$570$$ 0 0
$$571$$ 44.0000 1.84134 0.920671 0.390339i $$-0.127642\pi$$
0.920671 + 0.390339i $$0.127642\pi$$
$$572$$ 0 0
$$573$$ 12.0000 0.501307
$$574$$ 0 0
$$575$$ −4.00000 −0.166812
$$576$$ 7.00000 0.291667
$$577$$ 18.0000 0.749350 0.374675 0.927156i $$-0.377754\pi$$
0.374675 + 0.927156i $$0.377754\pi$$
$$578$$ −19.0000 −0.790296
$$579$$ −14.0000 −0.581820
$$580$$ −4.00000 −0.166091
$$581$$ 0 0
$$582$$ −10.0000 −0.414513
$$583$$ 0 0
$$584$$ 30.0000 1.24141
$$585$$ 12.0000 0.496139
$$586$$ −14.0000 −0.578335
$$587$$ 8.00000 0.330195 0.165098 0.986277i $$-0.447206\pi$$
0.165098 + 0.986277i $$0.447206\pi$$
$$588$$ −7.00000 −0.288675
$$589$$ 0 0
$$590$$ 24.0000 0.988064
$$591$$ 2.00000 0.0822690
$$592$$ −10.0000 −0.410997
$$593$$ −30.0000 −1.23195 −0.615976 0.787765i $$-0.711238\pi$$
−0.615976 + 0.787765i $$0.711238\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ −6.00000 −0.245770
$$597$$ 8.00000 0.327418
$$598$$ 24.0000 0.981433
$$599$$ 24.0000 0.980613 0.490307 0.871550i $$-0.336885\pi$$
0.490307 + 0.871550i $$0.336885\pi$$
$$600$$ 3.00000 0.122474
$$601$$ −10.0000 −0.407909 −0.203954 0.978980i $$-0.565379\pi$$
−0.203954 + 0.978980i $$0.565379\pi$$
$$602$$ 0 0
$$603$$ 4.00000 0.162893
$$604$$ −8.00000 −0.325515
$$605$$ 22.0000 0.894427
$$606$$ −10.0000 −0.406222
$$607$$ −24.0000 −0.974130 −0.487065 0.873366i $$-0.661933\pi$$
−0.487065 + 0.873366i $$0.661933\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ −4.00000 −0.161955
$$611$$ −72.0000 −2.91281
$$612$$ 6.00000 0.242536
$$613$$ 6.00000 0.242338 0.121169 0.992632i $$-0.461336\pi$$
0.121169 + 0.992632i $$0.461336\pi$$
$$614$$ −12.0000 −0.484281
$$615$$ 4.00000 0.161296
$$616$$ 0 0
$$617$$ 2.00000 0.0805170 0.0402585 0.999189i $$-0.487182\pi$$
0.0402585 + 0.999189i $$0.487182\pi$$
$$618$$ −8.00000 −0.321807
$$619$$ −28.0000 −1.12542 −0.562708 0.826656i $$-0.690240\pi$$
−0.562708 + 0.826656i $$0.690240\pi$$
$$620$$ −16.0000 −0.642575
$$621$$ −4.00000 −0.160514
$$622$$ −4.00000 −0.160385
$$623$$ 0 0
$$624$$ −6.00000 −0.240192
$$625$$ −19.0000 −0.760000
$$626$$ 22.0000 0.879297
$$627$$ 0 0
$$628$$ 2.00000 0.0798087
$$629$$ −60.0000 −2.39236
$$630$$ 0 0
$$631$$ −32.0000 −1.27390 −0.636950 0.770905i $$-0.719804\pi$$
−0.636950 + 0.770905i $$0.719804\pi$$
$$632$$ 0 0
$$633$$ −4.00000 −0.158986
$$634$$ −6.00000 −0.238290
$$635$$ −16.0000 −0.634941
$$636$$ 6.00000 0.237915
$$637$$ 42.0000 1.66410
$$638$$ 0 0
$$639$$ 0 0
$$640$$ −6.00000 −0.237171
$$641$$ −38.0000 −1.50091 −0.750455 0.660922i $$-0.770166\pi$$
−0.750455 + 0.660922i $$0.770166\pi$$
$$642$$ −4.00000 −0.157867
$$643$$ 20.0000 0.788723 0.394362 0.918955i $$-0.370966\pi$$
0.394362 + 0.918955i $$0.370966\pi$$
$$644$$ 0 0
$$645$$ −8.00000 −0.315000
$$646$$ 0 0
$$647$$ 36.0000 1.41531 0.707653 0.706560i $$-0.249754\pi$$
0.707653 + 0.706560i $$0.249754\pi$$
$$648$$ 3.00000 0.117851
$$649$$ 0 0
$$650$$ −6.00000 −0.235339
$$651$$ 0 0
$$652$$ 4.00000 0.156652
$$653$$ 14.0000 0.547862 0.273931 0.961749i $$-0.411676\pi$$
0.273931 + 0.961749i $$0.411676\pi$$
$$654$$ 10.0000 0.391031
$$655$$ −16.0000 −0.625172
$$656$$ −2.00000 −0.0780869
$$657$$ 10.0000 0.390137
$$658$$ 0 0
$$659$$ 44.0000 1.71400 0.856998 0.515319i $$-0.172327\pi$$
0.856998 + 0.515319i $$0.172327\pi$$
$$660$$ 0 0
$$661$$ −6.00000 −0.233373 −0.116686 0.993169i $$-0.537227\pi$$
−0.116686 + 0.993169i $$0.537227\pi$$
$$662$$ 12.0000 0.466393
$$663$$ −36.0000 −1.39812
$$664$$ 48.0000 1.86276
$$665$$ 0 0
$$666$$ −10.0000 −0.387492
$$667$$ −8.00000 −0.309761
$$668$$ 24.0000 0.928588
$$669$$ 16.0000 0.618596
$$670$$ 8.00000 0.309067
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 46.0000 1.77317 0.886585 0.462566i $$-0.153071\pi$$
0.886585 + 0.462566i $$0.153071\pi$$
$$674$$ −22.0000 −0.847408
$$675$$ 1.00000 0.0384900
$$676$$ −23.0000 −0.884615
$$677$$ 22.0000 0.845529 0.422764 0.906240i $$-0.361060\pi$$
0.422764 + 0.906240i $$0.361060\pi$$
$$678$$ −6.00000 −0.230429
$$679$$ 0 0
$$680$$ 36.0000 1.38054
$$681$$ −12.0000 −0.459841
$$682$$ 0 0
$$683$$ −36.0000 −1.37750 −0.688751 0.724998i $$-0.741841\pi$$
−0.688751 + 0.724998i $$0.741841\pi$$
$$684$$ 0 0
$$685$$ −36.0000 −1.37549
$$686$$ 0 0
$$687$$ −6.00000 −0.228914
$$688$$ 4.00000 0.152499
$$689$$ −36.0000 −1.37149
$$690$$ −8.00000 −0.304555
$$691$$ 20.0000 0.760836 0.380418 0.924815i $$-0.375780\pi$$
0.380418 + 0.924815i $$0.375780\pi$$
$$692$$ −22.0000 −0.836315
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −8.00000 −0.303457
$$696$$ 6.00000 0.227429
$$697$$ −12.0000 −0.454532
$$698$$ 2.00000 0.0757011
$$699$$ −10.0000 −0.378235
$$700$$ 0 0
$$701$$ −18.0000 −0.679851 −0.339925 0.940452i $$-0.610402\pi$$
−0.339925 + 0.940452i $$0.610402\pi$$
$$702$$ −6.00000 −0.226455
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 24.0000 0.903892
$$706$$ 22.0000 0.827981
$$707$$ 0 0
$$708$$ 12.0000 0.450988
$$709$$ 38.0000 1.42712 0.713560 0.700594i $$-0.247082\pi$$
0.713560 + 0.700594i $$0.247082\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 6.00000 0.224860
$$713$$ −32.0000 −1.19841
$$714$$ 0 0
$$715$$ 0 0
$$716$$ −4.00000 −0.149487
$$717$$ 12.0000 0.448148
$$718$$ 20.0000 0.746393
$$719$$ −20.0000 −0.745874 −0.372937 0.927857i $$-0.621649\pi$$
−0.372937 + 0.927857i $$0.621649\pi$$
$$720$$ 2.00000 0.0745356
$$721$$ 0 0
$$722$$ 0 0
$$723$$ −6.00000 −0.223142
$$724$$ 14.0000 0.520306
$$725$$ 2.00000 0.0742781
$$726$$ −11.0000 −0.408248
$$727$$ 8.00000 0.296704 0.148352 0.988935i $$-0.452603\pi$$
0.148352 + 0.988935i $$0.452603\pi$$
$$728$$ 0 0
$$729$$ 1.00000 0.0370370
$$730$$ 20.0000 0.740233
$$731$$ 24.0000 0.887672
$$732$$ −2.00000 −0.0739221
$$733$$ 46.0000 1.69905 0.849524 0.527549i $$-0.176889\pi$$
0.849524 + 0.527549i $$0.176889\pi$$
$$734$$ −32.0000 −1.18114
$$735$$ −14.0000 −0.516398
$$736$$ −20.0000 −0.737210
$$737$$ 0 0
$$738$$ −2.00000 −0.0736210
$$739$$ −36.0000 −1.32428 −0.662141 0.749380i $$-0.730352\pi$$
−0.662141 + 0.749380i $$0.730352\pi$$
$$740$$ 20.0000 0.735215
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$744$$ 24.0000 0.879883
$$745$$ −12.0000 −0.439646
$$746$$ −10.0000 −0.366126
$$747$$ 16.0000 0.585409
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 12.0000 0.438178
$$751$$ −16.0000 −0.583848 −0.291924 0.956441i $$-0.594295\pi$$
−0.291924 + 0.956441i $$0.594295\pi$$
$$752$$ −12.0000 −0.437595
$$753$$ 24.0000 0.874609
$$754$$ −12.0000 −0.437014
$$755$$ −16.0000 −0.582300
$$756$$ 0 0
$$757$$ 38.0000 1.38113 0.690567 0.723269i $$-0.257361\pi$$
0.690567 + 0.723269i $$0.257361\pi$$
$$758$$ 12.0000 0.435860
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 50.0000 1.81250 0.906249 0.422744i $$-0.138933\pi$$
0.906249 + 0.422744i $$0.138933\pi$$
$$762$$ 8.00000 0.289809
$$763$$ 0 0
$$764$$ 12.0000 0.434145
$$765$$ 12.0000 0.433861
$$766$$ 8.00000 0.289052
$$767$$ −72.0000 −2.59977
$$768$$ 17.0000 0.613435
$$769$$ 18.0000 0.649097 0.324548 0.945869i $$-0.394788\pi$$
0.324548 + 0.945869i $$0.394788\pi$$
$$770$$ 0 0
$$771$$ 14.0000 0.504198
$$772$$ −14.0000 −0.503871
$$773$$ −18.0000 −0.647415 −0.323708 0.946157i $$-0.604929\pi$$
−0.323708 + 0.946157i $$0.604929\pi$$
$$774$$ 4.00000 0.143777
$$775$$ 8.00000 0.287368
$$776$$ −30.0000 −1.07694
$$777$$ 0 0
$$778$$ −30.0000 −1.07555
$$779$$ 0 0
$$780$$ 12.0000 0.429669
$$781$$ 0 0
$$782$$ 24.0000 0.858238
$$783$$ 2.00000 0.0714742
$$784$$ 7.00000 0.250000
$$785$$ 4.00000 0.142766
$$786$$ 8.00000 0.285351
$$787$$ −44.0000 −1.56843 −0.784215 0.620489i $$-0.786934\pi$$
−0.784215 + 0.620489i $$0.786934\pi$$
$$788$$ 2.00000 0.0712470
$$789$$ −12.0000 −0.427211
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 12.0000 0.426132
$$794$$ −14.0000 −0.496841
$$795$$ 12.0000 0.425596
$$796$$ 8.00000 0.283552
$$797$$ 6.00000 0.212531 0.106265 0.994338i $$-0.466111\pi$$
0.106265 + 0.994338i $$0.466111\pi$$
$$798$$ 0 0
$$799$$ −72.0000 −2.54718
$$800$$ 5.00000 0.176777
$$801$$ 2.00000 0.0706665
$$802$$ 38.0000 1.34183
$$803$$ 0 0
$$804$$ 4.00000 0.141069
$$805$$ 0 0
$$806$$ −48.0000 −1.69073
$$807$$ −6.00000 −0.211210
$$808$$ −30.0000 −1.05540
$$809$$ 26.0000 0.914111 0.457056 0.889438i $$-0.348904\pi$$
0.457056 + 0.889438i $$0.348904\pi$$
$$810$$ 2.00000 0.0702728
$$811$$ −44.0000 −1.54505 −0.772524 0.634985i $$-0.781006\pi$$
−0.772524 + 0.634985i $$0.781006\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ 8.00000 0.280228
$$816$$ −6.00000 −0.210042
$$817$$ 0 0
$$818$$ −14.0000 −0.489499
$$819$$ 0 0
$$820$$ 4.00000 0.139686
$$821$$ −42.0000 −1.46581 −0.732905 0.680331i $$-0.761836\pi$$
−0.732905 + 0.680331i $$0.761836\pi$$
$$822$$ 18.0000 0.627822
$$823$$ −32.0000 −1.11545 −0.557725 0.830026i $$-0.688326\pi$$
−0.557725 + 0.830026i $$0.688326\pi$$
$$824$$ −24.0000 −0.836080
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 28.0000 0.973655 0.486828 0.873498i $$-0.338154\pi$$
0.486828 + 0.873498i $$0.338154\pi$$
$$828$$ −4.00000 −0.139010
$$829$$ 10.0000 0.347314 0.173657 0.984806i $$-0.444442\pi$$
0.173657 + 0.984806i $$0.444442\pi$$
$$830$$ 32.0000 1.11074
$$831$$ −22.0000 −0.763172
$$832$$ −42.0000 −1.45609
$$833$$ 42.0000 1.45521
$$834$$ 4.00000 0.138509
$$835$$ 48.0000 1.66111
$$836$$ 0 0
$$837$$ 8.00000 0.276520
$$838$$ −8.00000 −0.276355
$$839$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$840$$ 0 0
$$841$$ −25.0000 −0.862069
$$842$$ 14.0000 0.482472
$$843$$ −10.0000 −0.344418
$$844$$ −4.00000 −0.137686
$$845$$ −46.0000 −1.58245
$$846$$ −12.0000 −0.412568
$$847$$ 0 0
$$848$$ −6.00000 −0.206041
$$849$$ 20.0000 0.686398
$$850$$ −6.00000 −0.205798
$$851$$ 40.0000 1.37118
$$852$$ 0 0
$$853$$ 22.0000 0.753266 0.376633 0.926363i $$-0.377082\pi$$
0.376633 + 0.926363i $$0.377082\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ −12.0000 −0.410152
$$857$$ −30.0000 −1.02478 −0.512390 0.858753i $$-0.671240\pi$$
−0.512390 + 0.858753i $$0.671240\pi$$
$$858$$ 0 0
$$859$$ −28.0000 −0.955348 −0.477674 0.878537i $$-0.658520\pi$$
−0.477674 + 0.878537i $$0.658520\pi$$
$$860$$ −8.00000 −0.272798
$$861$$ 0 0
$$862$$ −24.0000 −0.817443
$$863$$ 40.0000 1.36162 0.680808 0.732462i $$-0.261629\pi$$
0.680808 + 0.732462i $$0.261629\pi$$
$$864$$ 5.00000 0.170103
$$865$$ −44.0000 −1.49604
$$866$$ −14.0000 −0.475739
$$867$$ −19.0000 −0.645274
$$868$$ 0 0
$$869$$ 0 0
$$870$$ 4.00000 0.135613
$$871$$ −24.0000 −0.813209
$$872$$ 30.0000 1.01593
$$873$$ −10.0000 −0.338449
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 10.0000 0.337869
$$877$$ 34.0000 1.14810 0.574049 0.818821i $$-0.305372\pi$$
0.574049 + 0.818821i $$0.305372\pi$$
$$878$$ −8.00000 −0.269987
$$879$$ −14.0000 −0.472208
$$880$$ 0 0
$$881$$ −38.0000 −1.28025 −0.640126 0.768270i $$-0.721118\pi$$
−0.640126 + 0.768270i $$0.721118\pi$$
$$882$$ 7.00000 0.235702
$$883$$ −36.0000 −1.21150 −0.605748 0.795656i $$-0.707126\pi$$
−0.605748 + 0.795656i $$0.707126\pi$$
$$884$$ −36.0000 −1.21081
$$885$$ 24.0000 0.806751
$$886$$ 0 0
$$887$$ 40.0000 1.34307 0.671534 0.740973i $$-0.265636\pi$$
0.671534 + 0.740973i $$0.265636\pi$$
$$888$$ −30.0000 −1.00673
$$889$$ 0 0
$$890$$ 4.00000 0.134080
$$891$$ 0 0
$$892$$ 16.0000 0.535720
$$893$$ 0 0
$$894$$ 6.00000 0.200670
$$895$$ −8.00000 −0.267411
$$896$$ 0 0
$$897$$ 24.0000 0.801337
$$898$$ −2.00000 −0.0667409
$$899$$ 16.0000 0.533630
$$900$$ 1.00000 0.0333333
$$901$$ −36.0000 −1.19933
$$902$$ 0 0
$$903$$ 0 0
$$904$$ −18.0000 −0.598671
$$905$$ 28.0000 0.930751
$$906$$ 8.00000 0.265782
$$907$$ −4.00000 −0.132818 −0.0664089 0.997792i $$-0.521154\pi$$
−0.0664089 + 0.997792i $$0.521154\pi$$
$$908$$ −12.0000 −0.398234
$$909$$ −10.0000 −0.331679
$$910$$ 0 0
$$911$$ 16.0000 0.530104 0.265052 0.964234i $$-0.414611\pi$$
0.265052 + 0.964234i $$0.414611\pi$$
$$912$$ 0 0
$$913$$ 0 0
$$914$$ 6.00000 0.198462
$$915$$ −4.00000 −0.132236
$$916$$ −6.00000 −0.198246
$$917$$ 0 0
$$918$$ −6.00000 −0.198030
$$919$$ −16.0000 −0.527791 −0.263896 0.964551i $$-0.585007\pi$$
−0.263896 + 0.964551i $$0.585007\pi$$
$$920$$ −24.0000 −0.791257
$$921$$ −12.0000 −0.395413
$$922$$ 18.0000 0.592798
$$923$$ 0 0
$$924$$ 0 0
$$925$$ −10.0000 −0.328798
$$926$$ −32.0000 −1.05159
$$927$$ −8.00000 −0.262754
$$928$$ 10.0000 0.328266
$$929$$ 34.0000 1.11550 0.557752 0.830008i $$-0.311664\pi$$
0.557752 + 0.830008i $$0.311664\pi$$
$$930$$ 16.0000 0.524661
$$931$$ 0 0
$$932$$ −10.0000 −0.327561
$$933$$ −4.00000 −0.130954
$$934$$ 32.0000 1.04707
$$935$$ 0 0
$$936$$ −18.0000 −0.588348
$$937$$ −22.0000 −0.718709 −0.359354 0.933201i $$-0.617003\pi$$
−0.359354 + 0.933201i $$0.617003\pi$$
$$938$$ 0 0
$$939$$ 22.0000 0.717943
$$940$$ 24.0000 0.782794
$$941$$ 22.0000 0.717180 0.358590 0.933495i $$-0.383258\pi$$
0.358590 + 0.933495i $$0.383258\pi$$
$$942$$ −2.00000 −0.0651635
$$943$$ 8.00000 0.260516
$$944$$ −12.0000 −0.390567
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −8.00000 −0.259965 −0.129983 0.991516i $$-0.541492\pi$$
−0.129983 + 0.991516i $$0.541492\pi$$
$$948$$ 0 0
$$949$$ −60.0000 −1.94768
$$950$$ 0 0
$$951$$ −6.00000 −0.194563
$$952$$ 0 0
$$953$$ −38.0000 −1.23094 −0.615470 0.788160i $$-0.711034\pi$$
−0.615470 + 0.788160i $$0.711034\pi$$
$$954$$ −6.00000 −0.194257
$$955$$ 24.0000 0.776622
$$956$$ 12.0000 0.388108
$$957$$ 0 0
$$958$$ −20.0000 −0.646171
$$959$$ 0 0
$$960$$ 14.0000 0.451848
$$961$$ 33.0000 1.06452
$$962$$ 60.0000 1.93448
$$963$$ −4.00000 −0.128898
$$964$$ −6.00000 −0.193247
$$965$$ −28.0000 −0.901352
$$966$$ 0 0
$$967$$ −32.0000 −1.02905 −0.514525 0.857475i $$-0.672032\pi$$
−0.514525 + 0.857475i $$0.672032\pi$$
$$968$$ −33.0000 −1.06066
$$969$$ 0 0
$$970$$ −20.0000 −0.642161
$$971$$ 36.0000 1.15529 0.577647 0.816286i $$-0.303971\pi$$
0.577647 + 0.816286i $$0.303971\pi$$
$$972$$ 1.00000 0.0320750
$$973$$ 0 0
$$974$$ 32.0000 1.02535
$$975$$ −6.00000 −0.192154
$$976$$ 2.00000 0.0640184
$$977$$ 42.0000 1.34370 0.671850 0.740688i $$-0.265500\pi$$
0.671850 + 0.740688i $$0.265500\pi$$
$$978$$ −4.00000 −0.127906
$$979$$ 0 0
$$980$$ −14.0000 −0.447214
$$981$$ 10.0000 0.319275
$$982$$ 32.0000 1.02116
$$983$$ 8.00000 0.255160 0.127580 0.991828i $$-0.459279\pi$$
0.127580 + 0.991828i $$0.459279\pi$$
$$984$$ −6.00000 −0.191273
$$985$$ 4.00000 0.127451
$$986$$ −12.0000 −0.382158
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −16.0000 −0.508770
$$990$$ 0 0
$$991$$ −40.0000 −1.27064 −0.635321 0.772248i $$-0.719132\pi$$
−0.635321 + 0.772248i $$0.719132\pi$$
$$992$$ 40.0000 1.27000
$$993$$ 12.0000 0.380808
$$994$$ 0 0
$$995$$ 16.0000 0.507234
$$996$$ 16.0000 0.506979
$$997$$ −58.0000 −1.83688 −0.918439 0.395562i $$-0.870550\pi$$
−0.918439 + 0.395562i $$0.870550\pi$$
$$998$$ −28.0000 −0.886325
$$999$$ −10.0000 −0.316386
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1083.2.a.a.1.1 1
3.2 odd 2 3249.2.a.g.1.1 1
19.18 odd 2 57.2.a.c.1.1 1
57.56 even 2 171.2.a.a.1.1 1
76.75 even 2 912.2.a.b.1.1 1
95.18 even 4 1425.2.c.g.799.1 2
95.37 even 4 1425.2.c.g.799.2 2
95.94 odd 2 1425.2.a.a.1.1 1
133.132 even 2 2793.2.a.i.1.1 1
152.37 odd 2 3648.2.a.o.1.1 1
152.75 even 2 3648.2.a.bf.1.1 1
209.208 even 2 6897.2.a.a.1.1 1
228.227 odd 2 2736.2.a.s.1.1 1
247.246 odd 2 9633.2.a.h.1.1 1
285.284 even 2 4275.2.a.m.1.1 1
399.398 odd 2 8379.2.a.e.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
57.2.a.c.1.1 1 19.18 odd 2
171.2.a.a.1.1 1 57.56 even 2
912.2.a.b.1.1 1 76.75 even 2
1083.2.a.a.1.1 1 1.1 even 1 trivial
1425.2.a.a.1.1 1 95.94 odd 2
1425.2.c.g.799.1 2 95.18 even 4
1425.2.c.g.799.2 2 95.37 even 4
2736.2.a.s.1.1 1 228.227 odd 2
2793.2.a.i.1.1 1 133.132 even 2
3249.2.a.g.1.1 1 3.2 odd 2
3648.2.a.o.1.1 1 152.37 odd 2
3648.2.a.bf.1.1 1 152.75 even 2
4275.2.a.m.1.1 1 285.284 even 2
6897.2.a.a.1.1 1 209.208 even 2
8379.2.a.e.1.1 1 399.398 odd 2
9633.2.a.h.1.1 1 247.246 odd 2