# Properties

 Label 1083.1.b.a.362.1 Level $1083$ Weight $1$ Character 1083.362 Self dual yes Analytic conductor $0.540$ Analytic rank $0$ Dimension $1$ Projective image $D_{3}$ CM discriminant -3 Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1083,1,Mod(362,1083)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1083, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([1, 0]))

N = Newforms(chi, 1, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1083.362");

S:= CuspForms(chi, 1);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1083 = 3 \cdot 19^{2}$$ Weight: $$k$$ $$=$$ $$1$$ Character orbit: $$[\chi]$$ $$=$$ 1083.b (of order $$2$$, degree $$1$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.540487408682$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 57) Projective image: $$D_{3}$$ Projective field: Galois closure of 3.1.1083.1 Artin image: $D_6$ Artin field: Galois closure of 6.0.22284891.1

## Embedding invariants

 Embedding label 362.1 Character $$\chi$$ $$=$$ 1083.36

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{7} +1.00000 q^{9} +O(q^{10})$$ $$q-1.00000 q^{3} +1.00000 q^{4} -1.00000 q^{7} +1.00000 q^{9} -1.00000 q^{12} +1.00000 q^{13} +1.00000 q^{16} +1.00000 q^{21} +1.00000 q^{25} -1.00000 q^{27} -1.00000 q^{28} +1.00000 q^{31} +1.00000 q^{36} +1.00000 q^{37} -1.00000 q^{39} -1.00000 q^{43} -1.00000 q^{48} +1.00000 q^{52} -1.00000 q^{61} -1.00000 q^{63} +1.00000 q^{64} +1.00000 q^{67} -1.00000 q^{73} -1.00000 q^{75} +1.00000 q^{79} +1.00000 q^{81} +1.00000 q^{84} -1.00000 q^{91} -1.00000 q^{93} -2.00000 q^{97} +O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1083\mathbb{Z}\right)^\times$$.

 $$n$$ $$362$$ $$724$$ $$\chi(n)$$ $$-1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$3$$ −1.00000 −1.00000
$$4$$ 1.00000 1.00000
$$5$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$6$$ 0 0
$$7$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$8$$ 0 0
$$9$$ 1.00000 1.00000
$$10$$ 0 0
$$11$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$12$$ −1.00000 −1.00000
$$13$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 1.00000 1.00000
$$17$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$18$$ 0 0
$$19$$ 0 0
$$20$$ 0 0
$$21$$ 1.00000 1.00000
$$22$$ 0 0
$$23$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$24$$ 0 0
$$25$$ 1.00000 1.00000
$$26$$ 0 0
$$27$$ −1.00000 −1.00000
$$28$$ −1.00000 −1.00000
$$29$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$30$$ 0 0
$$31$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 1.00000 1.00000
$$37$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$38$$ 0 0
$$39$$ −1.00000 −1.00000
$$40$$ 0 0
$$41$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$42$$ 0 0
$$43$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$48$$ −1.00000 −1.00000
$$49$$ 0 0
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 1.00000 1.00000
$$53$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$54$$ 0 0
$$55$$ 0 0
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$60$$ 0 0
$$61$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$62$$ 0 0
$$63$$ −1.00000 −1.00000
$$64$$ 1.00000 1.00000
$$65$$ 0 0
$$66$$ 0 0
$$67$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$72$$ 0 0
$$73$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$74$$ 0 0
$$75$$ −1.00000 −1.00000
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$80$$ 0 0
$$81$$ 1.00000 1.00000
$$82$$ 0 0
$$83$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$84$$ 1.00000 1.00000
$$85$$ 0 0
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$90$$ 0 0
$$91$$ −1.00000 −1.00000
$$92$$ 0 0
$$93$$ −1.00000 −1.00000
$$94$$ 0 0
$$95$$ 0 0
$$96$$ 0 0
$$97$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 1.00000 1.00000
$$101$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$102$$ 0 0
$$103$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$108$$ −1.00000 −1.00000
$$109$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$110$$ 0 0
$$111$$ −1.00000 −1.00000
$$112$$ −1.00000 −1.00000
$$113$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ 1.00000 1.00000
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 1.00000 1.00000
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 1.00000 1.00000
$$125$$ 0 0
$$126$$ 0 0
$$127$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$128$$ 0 0
$$129$$ 1.00000 1.00000
$$130$$ 0 0
$$131$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$138$$ 0 0
$$139$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 0 0
$$144$$ 1.00000 1.00000
$$145$$ 0 0
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 1.00000 1.00000
$$149$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$150$$ 0 0
$$151$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 0 0
$$156$$ −1.00000 −1.00000
$$157$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$168$$ 0 0
$$169$$ 0 0
$$170$$ 0 0
$$171$$ 0 0
$$172$$ −1.00000 −1.00000
$$173$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$174$$ 0 0
$$175$$ −1.00000 −1.00000
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$180$$ 0 0
$$181$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$182$$ 0 0
$$183$$ 1.00000 1.00000
$$184$$ 0 0
$$185$$ 0 0
$$186$$ 0 0
$$187$$ 0 0
$$188$$ 0 0
$$189$$ 1.00000 1.00000
$$190$$ 0 0
$$191$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$192$$ −1.00000 −1.00000
$$193$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$198$$ 0 0
$$199$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$200$$ 0 0
$$201$$ −1.00000 −1.00000
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 0 0
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 1.00000 1.00000
$$209$$ 0 0
$$210$$ 0 0
$$211$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 0 0
$$216$$ 0 0
$$217$$ −1.00000 −1.00000
$$218$$ 0 0
$$219$$ 1.00000 1.00000
$$220$$ 0 0
$$221$$ 0 0
$$222$$ 0 0
$$223$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$224$$ 0 0
$$225$$ 1.00000 1.00000
$$226$$ 0 0
$$227$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$228$$ 0 0
$$229$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ −1.00000 −1.00000
$$238$$ 0 0
$$239$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$240$$ 0 0
$$241$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$242$$ 0 0
$$243$$ −1.00000 −1.00000
$$244$$ −1.00000 −1.00000
$$245$$ 0 0
$$246$$ 0 0
$$247$$ 0 0
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$252$$ −1.00000 −1.00000
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 1.00000 1.00000
$$257$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$258$$ 0 0
$$259$$ −1.00000 −1.00000
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$264$$ 0 0
$$265$$ 0 0
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 1.00000 1.00000
$$269$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$270$$ 0 0
$$271$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$272$$ 0 0
$$273$$ 1.00000 1.00000
$$274$$ 0 0
$$275$$ 0 0
$$276$$ 0 0
$$277$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$278$$ 0 0
$$279$$ 1.00000 1.00000
$$280$$ 0 0
$$281$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$282$$ 0 0
$$283$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 1.00000 1.00000
$$290$$ 0 0
$$291$$ 2.00000 2.00000
$$292$$ −1.00000 −1.00000
$$293$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 0 0
$$300$$ −1.00000 −1.00000
$$301$$ 1.00000 1.00000
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 0 0
$$306$$ 0 0
$$307$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$308$$ 0 0
$$309$$ −1.00000 −1.00000
$$310$$ 0 0
$$311$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$312$$ 0 0
$$313$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 1.00000 1.00000
$$317$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$318$$ 0 0
$$319$$ 0 0
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 0 0
$$324$$ 1.00000 1.00000
$$325$$ 1.00000 1.00000
$$326$$ 0 0
$$327$$ 2.00000 2.00000
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$332$$ 0 0
$$333$$ 1.00000 1.00000
$$334$$ 0 0
$$335$$ 0 0
$$336$$ 1.00000 1.00000
$$337$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 0 0
$$342$$ 0 0
$$343$$ 1.00000 1.00000
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$348$$ 0 0
$$349$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$350$$ 0 0
$$351$$ −1.00000 −1.00000
$$352$$ 0 0
$$353$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$354$$ 0 0
$$355$$ 0 0
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$360$$ 0 0
$$361$$ 0 0
$$362$$ 0 0
$$363$$ −1.00000 −1.00000
$$364$$ −1.00000 −1.00000
$$365$$ 0 0
$$366$$ 0 0
$$367$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ −1.00000 −1.00000
$$373$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 0 0
$$378$$ 0 0
$$379$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$380$$ 0 0
$$381$$ 2.00000 2.00000
$$382$$ 0 0
$$383$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ −1.00000 −1.00000
$$388$$ −2.00000 −2.00000
$$389$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 0 0
$$396$$ 0 0
$$397$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 1.00000 1.00000
$$401$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$402$$ 0 0
$$403$$ 1.00000 1.00000
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 0 0
$$408$$ 0 0
$$409$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 1.00000 1.00000
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 0 0
$$416$$ 0 0
$$417$$ 1.00000 1.00000
$$418$$ 0 0
$$419$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$420$$ 0 0
$$421$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ 0 0
$$426$$ 0 0
$$427$$ 1.00000 1.00000
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$432$$ −1.00000 −1.00000
$$433$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ −2.00000 −2.00000
$$437$$ 0 0
$$438$$ 0 0
$$439$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$444$$ −1.00000 −1.00000
$$445$$ 0 0
$$446$$ 0 0
$$447$$ 0 0
$$448$$ −1.00000 −1.00000
$$449$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$450$$ 0 0
$$451$$ 0 0
$$452$$ 0 0
$$453$$ 2.00000 2.00000
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$462$$ 0 0
$$463$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$468$$ 1.00000 1.00000
$$469$$ −1.00000 −1.00000
$$470$$ 0 0
$$471$$ 1.00000 1.00000
$$472$$ 0 0
$$473$$ 0 0
$$474$$ 0 0
$$475$$ 0 0
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$480$$ 0 0
$$481$$ 1.00000 1.00000
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 1.00000 1.00000
$$485$$ 0 0
$$486$$ 0 0
$$487$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$488$$ 0 0
$$489$$ 1.00000 1.00000
$$490$$ 0 0
$$491$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$492$$ 0 0
$$493$$ 0 0
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 1.00000 1.00000
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$504$$ 0 0
$$505$$ 0 0
$$506$$ 0 0
$$507$$ 0 0
$$508$$ −2.00000 −2.00000
$$509$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$510$$ 0 0
$$511$$ 1.00000 1.00000
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 0 0
$$516$$ 1.00000 1.00000
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$522$$ 0 0
$$523$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$524$$ 0 0
$$525$$ 1.00000 1.00000
$$526$$ 0 0
$$527$$ 0 0
$$528$$ 0 0
$$529$$ 1.00000 1.00000
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 0 0
$$534$$ 0 0
$$535$$ 0 0
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$542$$ 0 0
$$543$$ 2.00000 2.00000
$$544$$ 0 0
$$545$$ 0 0
$$546$$ 0 0
$$547$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$548$$ 0 0
$$549$$ −1.00000 −1.00000
$$550$$ 0 0
$$551$$ 0 0
$$552$$ 0 0
$$553$$ −1.00000 −1.00000
$$554$$ 0 0
$$555$$ 0 0
$$556$$ −1.00000 −1.00000
$$557$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$558$$ 0 0
$$559$$ −1.00000 −1.00000
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$564$$ 0 0
$$565$$ 0 0
$$566$$ 0 0
$$567$$ −1.00000 −1.00000
$$568$$ 0 0
$$569$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$570$$ 0 0
$$571$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 1.00000 1.00000
$$577$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$578$$ 0 0
$$579$$ −1.00000 −1.00000
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 0 0
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$588$$ 0 0
$$589$$ 0 0
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 1.00000 1.00000
$$593$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 1.00000 1.00000
$$598$$ 0 0
$$599$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$600$$ 0 0
$$601$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$602$$ 0 0
$$603$$ 1.00000 1.00000
$$604$$ −2.00000 −2.00000
$$605$$ 0 0
$$606$$ 0 0
$$607$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$618$$ 0 0
$$619$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ −1.00000 −1.00000
$$625$$ 1.00000 1.00000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ −1.00000 −1.00000
$$629$$ 0 0
$$630$$ 0 0
$$631$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$632$$ 0 0
$$633$$ −1.00000 −1.00000
$$634$$ 0 0
$$635$$ 0 0
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$642$$ 0 0
$$643$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 1.00000 1.00000
$$652$$ −1.00000 −1.00000
$$653$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ −1.00000 −1.00000
$$658$$ 0 0
$$659$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$660$$ 0 0
$$661$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ −1.00000 −1.00000
$$670$$ 0 0
$$671$$ 0 0
$$672$$ 0 0
$$673$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$674$$ 0 0
$$675$$ −1.00000 −1.00000
$$676$$ 0 0
$$677$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$678$$ 0 0
$$679$$ 2.00000 2.00000
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$684$$ 0 0
$$685$$ 0 0
$$686$$ 0 0
$$687$$ 1.00000 1.00000
$$688$$ −1.00000 −1.00000
$$689$$ 0 0
$$690$$ 0 0
$$691$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 0 0
$$696$$ 0 0
$$697$$ 0 0
$$698$$ 0 0
$$699$$ 0 0
$$700$$ −1.00000 −1.00000
$$701$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$702$$ 0 0
$$703$$ 0 0
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$710$$ 0 0
$$711$$ 1.00000 1.00000
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ 0 0
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$720$$ 0 0
$$721$$ −1.00000 −1.00000
$$722$$ 0 0
$$723$$ −1.00000 −1.00000
$$724$$ −2.00000 −2.00000
$$725$$ 0 0
$$726$$ 0 0
$$727$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$728$$ 0 0
$$729$$ 1.00000 1.00000
$$730$$ 0 0
$$731$$ 0 0
$$732$$ 1.00000 1.00000
$$733$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 0 0
$$738$$ 0 0
$$739$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$744$$ 0 0
$$745$$ 0 0
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 1.00000 1.00000
$$757$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$762$$ 0 0
$$763$$ 2.00000 2.00000
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 0 0
$$768$$ −1.00000 −1.00000
$$769$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 1.00000 1.00000
$$773$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$774$$ 0 0
$$775$$ 1.00000 1.00000
$$776$$ 0 0
$$777$$ 1.00000 1.00000
$$778$$ 0 0
$$779$$ 0 0
$$780$$ 0 0
$$781$$ 0 0
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 0 0
$$786$$ 0 0
$$787$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ −1.00000 −1.00000
$$794$$ 0 0
$$795$$ 0 0
$$796$$ −1.00000 −1.00000
$$797$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 0 0
$$804$$ −1.00000 −1.00000
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$810$$ 0 0
$$811$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$812$$ 0 0
$$813$$ −2.00000 −2.00000
$$814$$ 0 0
$$815$$ 0 0
$$816$$ 0 0
$$817$$ 0 0
$$818$$ 0 0
$$819$$ −1.00000 −1.00000
$$820$$ 0 0
$$821$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$822$$ 0 0
$$823$$ 2.00000 2.00000 1.00000 $$0$$
1.00000 $$0$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$828$$ 0 0
$$829$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$830$$ 0 0
$$831$$ −2.00000 −2.00000
$$832$$ 1.00000 1.00000
$$833$$ 0 0
$$834$$ 0 0
$$835$$ 0 0
$$836$$ 0 0
$$837$$ −1.00000 −1.00000
$$838$$ 0 0
$$839$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$840$$ 0 0
$$841$$ 1.00000 1.00000
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 1.00000 1.00000
$$845$$ 0 0
$$846$$ 0 0
$$847$$ −1.00000 −1.00000
$$848$$ 0 0
$$849$$ −2.00000 −2.00000
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$858$$ 0 0
$$859$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$864$$ 0 0
$$865$$ 0 0
$$866$$ 0 0
$$867$$ −1.00000 −1.00000
$$868$$ −1.00000 −1.00000
$$869$$ 0 0
$$870$$ 0 0
$$871$$ 1.00000 1.00000
$$872$$ 0 0
$$873$$ −2.00000 −2.00000
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 1.00000 1.00000
$$877$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$882$$ 0 0
$$883$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$888$$ 0 0
$$889$$ 2.00000 2.00000
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 1.00000 1.00000
$$893$$ 0 0
$$894$$ 0 0
$$895$$ 0 0
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 0 0
$$900$$ 1.00000 1.00000
$$901$$ 0 0
$$902$$ 0 0
$$903$$ −1.00000 −1.00000
$$904$$ 0 0
$$905$$ 0 0
$$906$$ 0 0
$$907$$ −2.00000 −2.00000 −1.00000 $$\pi$$
−1.00000 $$\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$912$$ 0 0
$$913$$ 0 0
$$914$$ 0 0
$$915$$ 0 0
$$916$$ −1.00000 −1.00000
$$917$$ 0 0
$$918$$ 0 0
$$919$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$920$$ 0 0
$$921$$ 2.00000 2.00000
$$922$$ 0 0
$$923$$ 0 0
$$924$$ 0 0
$$925$$ 1.00000 1.00000
$$926$$ 0 0
$$927$$ 1.00000 1.00000
$$928$$ 0 0
$$929$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$930$$ 0 0
$$931$$ 0 0
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 0 0
$$936$$ 0 0
$$937$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$938$$ 0 0
$$939$$ −2.00000 −2.00000
$$940$$ 0 0
$$941$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$948$$ −1.00000 −1.00000
$$949$$ −1.00000 −1.00000
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ 0 0
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 1.00000 1.00000
$$965$$ 0 0
$$966$$ 0 0
$$967$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$972$$ −1.00000 −1.00000
$$973$$ 1.00000 1.00000
$$974$$ 0 0
$$975$$ −1.00000 −1.00000
$$976$$ −1.00000 −1.00000
$$977$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$978$$ 0 0
$$979$$ 0 0
$$980$$ 0 0
$$981$$ −2.00000 −2.00000
$$982$$ 0 0
$$983$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$984$$ 0 0
$$985$$ 0 0
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 0 0
$$990$$ 0 0
$$991$$ 1.00000 1.00000 0.500000 0.866025i $$-0.333333\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$992$$ 0 0
$$993$$ −1.00000 −1.00000
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ −1.00000 −1.00000 −0.500000 0.866025i $$-0.666667\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$998$$ 0 0
$$999$$ −1.00000 −1.00000
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1083.1.b.a.362.1 1
3.2 odd 2 CM 1083.1.b.a.362.1 1
19.2 odd 18 1083.1.l.a.821.1 6
19.3 odd 18 1083.1.l.a.389.1 6
19.4 even 9 1083.1.l.b.776.1 6
19.5 even 9 1083.1.l.b.956.1 6
19.6 even 9 1083.1.l.b.245.1 6
19.7 even 3 1083.1.h.a.68.1 2
19.8 odd 6 57.1.h.a.26.1 yes 2
19.9 even 9 1083.1.l.b.62.1 6
19.10 odd 18 1083.1.l.a.62.1 6
19.11 even 3 1083.1.h.a.653.1 2
19.12 odd 6 57.1.h.a.11.1 2
19.13 odd 18 1083.1.l.a.245.1 6
19.14 odd 18 1083.1.l.a.956.1 6
19.15 odd 18 1083.1.l.a.776.1 6
19.16 even 9 1083.1.l.b.389.1 6
19.17 even 9 1083.1.l.b.821.1 6
19.18 odd 2 1083.1.b.b.362.1 1
57.2 even 18 1083.1.l.a.821.1 6
57.5 odd 18 1083.1.l.b.956.1 6
57.8 even 6 57.1.h.a.26.1 yes 2
57.11 odd 6 1083.1.h.a.653.1 2
57.14 even 18 1083.1.l.a.956.1 6
57.17 odd 18 1083.1.l.b.821.1 6
57.23 odd 18 1083.1.l.b.776.1 6
57.26 odd 6 1083.1.h.a.68.1 2
57.29 even 18 1083.1.l.a.62.1 6
57.32 even 18 1083.1.l.a.245.1 6
57.35 odd 18 1083.1.l.b.389.1 6
57.41 even 18 1083.1.l.a.389.1 6
57.44 odd 18 1083.1.l.b.245.1 6
57.47 odd 18 1083.1.l.b.62.1 6
57.50 even 6 57.1.h.a.11.1 2
57.53 even 18 1083.1.l.a.776.1 6
57.56 even 2 1083.1.b.b.362.1 1
76.27 even 6 912.1.bl.a.881.1 2
76.31 even 6 912.1.bl.a.353.1 2
95.8 even 12 1425.1.o.a.824.2 4
95.12 even 12 1425.1.o.a.524.2 4
95.27 even 12 1425.1.o.a.824.1 4
95.69 odd 6 1425.1.t.a.1151.1 2
95.84 odd 6 1425.1.t.a.26.1 2
95.88 even 12 1425.1.o.a.524.1 4
133.12 even 6 2793.1.n.b.410.1 2
133.27 even 6 2793.1.bf.a.197.1 2
133.31 even 6 2793.1.bi.a.1892.1 2
133.46 odd 6 2793.1.n.a.1451.1 2
133.65 odd 6 2793.1.bi.b.2762.1 2
133.69 even 6 2793.1.bf.a.638.1 2
133.88 odd 6 2793.1.bi.b.1892.1 2
133.103 even 6 2793.1.bi.a.2762.1 2
133.107 odd 6 2793.1.n.a.410.1 2
133.122 even 6 2793.1.n.b.1451.1 2
152.27 even 6 3648.1.bl.a.1793.1 2
152.69 odd 6 3648.1.bl.b.2177.1 2
152.107 even 6 3648.1.bl.a.2177.1 2
152.141 odd 6 3648.1.bl.b.1793.1 2
171.31 odd 6 1539.1.n.a.1322.1 2
171.50 even 6 1539.1.n.a.1322.1 2
171.65 even 6 1539.1.n.a.539.1 2
171.88 odd 6 1539.1.j.a.296.1 2
171.103 odd 6 1539.1.j.a.26.1 2
171.122 even 6 1539.1.j.a.26.1 2
171.160 odd 6 1539.1.n.a.539.1 2
171.164 even 6 1539.1.j.a.296.1 2
228.107 odd 6 912.1.bl.a.353.1 2
228.179 odd 6 912.1.bl.a.881.1 2
285.8 odd 12 1425.1.o.a.824.2 4
285.107 odd 12 1425.1.o.a.524.2 4
285.122 odd 12 1425.1.o.a.824.1 4
285.164 even 6 1425.1.t.a.1151.1 2
285.179 even 6 1425.1.t.a.26.1 2
285.278 odd 12 1425.1.o.a.524.1 4
399.65 even 6 2793.1.bi.b.2762.1 2
399.107 even 6 2793.1.n.a.410.1 2
399.122 odd 6 2793.1.n.b.1451.1 2
399.164 odd 6 2793.1.bi.a.1892.1 2
399.179 even 6 2793.1.n.a.1451.1 2
399.221 even 6 2793.1.bi.b.1892.1 2
399.236 odd 6 2793.1.bi.a.2762.1 2
399.278 odd 6 2793.1.n.b.410.1 2
399.293 odd 6 2793.1.bf.a.197.1 2
399.335 odd 6 2793.1.bf.a.638.1 2
456.107 odd 6 3648.1.bl.a.2177.1 2
456.179 odd 6 3648.1.bl.a.1793.1 2
456.221 even 6 3648.1.bl.b.2177.1 2
456.293 even 6 3648.1.bl.b.1793.1 2

By twisted newform
Twist Min Dim Char Parity Ord Type
57.1.h.a.11.1 2 19.12 odd 6
57.1.h.a.11.1 2 57.50 even 6
57.1.h.a.26.1 yes 2 19.8 odd 6
57.1.h.a.26.1 yes 2 57.8 even 6
912.1.bl.a.353.1 2 76.31 even 6
912.1.bl.a.353.1 2 228.107 odd 6
912.1.bl.a.881.1 2 76.27 even 6
912.1.bl.a.881.1 2 228.179 odd 6
1083.1.b.a.362.1 1 1.1 even 1 trivial
1083.1.b.a.362.1 1 3.2 odd 2 CM
1083.1.b.b.362.1 1 19.18 odd 2
1083.1.b.b.362.1 1 57.56 even 2
1083.1.h.a.68.1 2 19.7 even 3
1083.1.h.a.68.1 2 57.26 odd 6
1083.1.h.a.653.1 2 19.11 even 3
1083.1.h.a.653.1 2 57.11 odd 6
1083.1.l.a.62.1 6 19.10 odd 18
1083.1.l.a.62.1 6 57.29 even 18
1083.1.l.a.245.1 6 19.13 odd 18
1083.1.l.a.245.1 6 57.32 even 18
1083.1.l.a.389.1 6 19.3 odd 18
1083.1.l.a.389.1 6 57.41 even 18
1083.1.l.a.776.1 6 19.15 odd 18
1083.1.l.a.776.1 6 57.53 even 18
1083.1.l.a.821.1 6 19.2 odd 18
1083.1.l.a.821.1 6 57.2 even 18
1083.1.l.a.956.1 6 19.14 odd 18
1083.1.l.a.956.1 6 57.14 even 18
1083.1.l.b.62.1 6 19.9 even 9
1083.1.l.b.62.1 6 57.47 odd 18
1083.1.l.b.245.1 6 19.6 even 9
1083.1.l.b.245.1 6 57.44 odd 18
1083.1.l.b.389.1 6 19.16 even 9
1083.1.l.b.389.1 6 57.35 odd 18
1083.1.l.b.776.1 6 19.4 even 9
1083.1.l.b.776.1 6 57.23 odd 18
1083.1.l.b.821.1 6 19.17 even 9
1083.1.l.b.821.1 6 57.17 odd 18
1083.1.l.b.956.1 6 19.5 even 9
1083.1.l.b.956.1 6 57.5 odd 18
1425.1.o.a.524.1 4 95.88 even 12
1425.1.o.a.524.1 4 285.278 odd 12
1425.1.o.a.524.2 4 95.12 even 12
1425.1.o.a.524.2 4 285.107 odd 12
1425.1.o.a.824.1 4 95.27 even 12
1425.1.o.a.824.1 4 285.122 odd 12
1425.1.o.a.824.2 4 95.8 even 12
1425.1.o.a.824.2 4 285.8 odd 12
1425.1.t.a.26.1 2 95.84 odd 6
1425.1.t.a.26.1 2 285.179 even 6
1425.1.t.a.1151.1 2 95.69 odd 6
1425.1.t.a.1151.1 2 285.164 even 6
1539.1.j.a.26.1 2 171.103 odd 6
1539.1.j.a.26.1 2 171.122 even 6
1539.1.j.a.296.1 2 171.88 odd 6
1539.1.j.a.296.1 2 171.164 even 6
1539.1.n.a.539.1 2 171.65 even 6
1539.1.n.a.539.1 2 171.160 odd 6
1539.1.n.a.1322.1 2 171.31 odd 6
1539.1.n.a.1322.1 2 171.50 even 6
2793.1.n.a.410.1 2 133.107 odd 6
2793.1.n.a.410.1 2 399.107 even 6
2793.1.n.a.1451.1 2 133.46 odd 6
2793.1.n.a.1451.1 2 399.179 even 6
2793.1.n.b.410.1 2 133.12 even 6
2793.1.n.b.410.1 2 399.278 odd 6
2793.1.n.b.1451.1 2 133.122 even 6
2793.1.n.b.1451.1 2 399.122 odd 6
2793.1.bf.a.197.1 2 133.27 even 6
2793.1.bf.a.197.1 2 399.293 odd 6
2793.1.bf.a.638.1 2 133.69 even 6
2793.1.bf.a.638.1 2 399.335 odd 6
2793.1.bi.a.1892.1 2 133.31 even 6
2793.1.bi.a.1892.1 2 399.164 odd 6
2793.1.bi.a.2762.1 2 133.103 even 6
2793.1.bi.a.2762.1 2 399.236 odd 6
2793.1.bi.b.1892.1 2 133.88 odd 6
2793.1.bi.b.1892.1 2 399.221 even 6
2793.1.bi.b.2762.1 2 133.65 odd 6
2793.1.bi.b.2762.1 2 399.65 even 6
3648.1.bl.a.1793.1 2 152.27 even 6
3648.1.bl.a.1793.1 2 456.179 odd 6
3648.1.bl.a.2177.1 2 152.107 even 6
3648.1.bl.a.2177.1 2 456.107 odd 6
3648.1.bl.b.1793.1 2 152.141 odd 6
3648.1.bl.b.1793.1 2 456.293 even 6
3648.1.bl.b.2177.1 2 152.69 odd 6
3648.1.bl.b.2177.1 2 456.221 even 6