Properties

Label 1080.2.q.c.721.2
Level $1080$
Weight $2$
Character 1080.721
Analytic conductor $8.624$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1080,2,Mod(361,1080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1080, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1080.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.62384341830\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 721.2
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1080.721
Dual form 1080.2.q.c.361.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{5} +(0.724745 - 1.25529i) q^{7} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{5} +(0.724745 - 1.25529i) q^{7} +2.00000 q^{17} +2.89898 q^{19} +(-1.27526 - 2.20881i) q^{23} +(-0.500000 + 0.866025i) q^{25} +(3.94949 - 6.84072i) q^{29} +(-5.44949 - 9.43879i) q^{31} -1.44949 q^{35} -6.00000 q^{37} +(-0.0505103 - 0.0874863i) q^{41} +(3.89898 - 6.75323i) q^{43} +(-2.27526 + 3.94086i) q^{47} +(2.44949 + 4.24264i) q^{49} +11.7980 q^{53} +(-5.44949 - 9.43879i) q^{59} +(1.50000 - 2.59808i) q^{61} +(-5.62372 - 9.74058i) q^{67} +9.79796 q^{71} -5.79796 q^{73} +(-1.44949 + 2.51059i) q^{79} +(-0.275255 + 0.476756i) q^{83} +(-1.00000 - 1.73205i) q^{85} +16.7980 q^{89} +(-1.44949 - 2.51059i) q^{95} +(-1.00000 + 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{5} - 2 q^{7} + 8 q^{17} - 8 q^{19} - 10 q^{23} - 2 q^{25} + 6 q^{29} - 12 q^{31} + 4 q^{35} - 24 q^{37} - 10 q^{41} - 4 q^{43} - 14 q^{47} + 8 q^{53} - 12 q^{59} + 6 q^{61} + 2 q^{67} + 16 q^{73} + 4 q^{79} - 6 q^{83} - 4 q^{85} + 28 q^{89} + 4 q^{95} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) 0.724745 1.25529i 0.273928 0.474457i −0.695936 0.718104i \(-0.745010\pi\)
0.969864 + 0.243647i \(0.0783437\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0 0
\(13\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) 2.89898 0.665072 0.332536 0.943091i \(-0.392096\pi\)
0.332536 + 0.943091i \(0.392096\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1.27526 2.20881i −0.265909 0.460568i 0.701892 0.712283i \(-0.252339\pi\)
−0.967801 + 0.251715i \(0.919005\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.94949 6.84072i 0.733402 1.27029i −0.222019 0.975042i \(-0.571265\pi\)
0.955421 0.295247i \(-0.0954019\pi\)
\(30\) 0 0
\(31\) −5.44949 9.43879i −0.978757 1.69526i −0.666933 0.745117i \(-0.732393\pi\)
−0.311824 0.950140i \(-0.600940\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.44949 −0.245008
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.0505103 0.0874863i −0.00788838 0.0136631i 0.862054 0.506816i \(-0.169178\pi\)
−0.869943 + 0.493153i \(0.835844\pi\)
\(42\) 0 0
\(43\) 3.89898 6.75323i 0.594589 1.02986i −0.399016 0.916944i \(-0.630648\pi\)
0.993605 0.112914i \(-0.0360185\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.27526 + 3.94086i −0.331880 + 0.574833i −0.982880 0.184244i \(-0.941016\pi\)
0.651000 + 0.759077i \(0.274350\pi\)
\(48\) 0 0
\(49\) 2.44949 + 4.24264i 0.349927 + 0.606092i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.7980 1.62057 0.810287 0.586033i \(-0.199311\pi\)
0.810287 + 0.586033i \(0.199311\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.44949 9.43879i −0.709463 1.22883i −0.965057 0.262042i \(-0.915604\pi\)
0.255593 0.966784i \(-0.417729\pi\)
\(60\) 0 0
\(61\) 1.50000 2.59808i 0.192055 0.332650i −0.753876 0.657017i \(-0.771818\pi\)
0.945931 + 0.324367i \(0.105151\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −5.62372 9.74058i −0.687047 1.19000i −0.972789 0.231694i \(-0.925573\pi\)
0.285741 0.958307i \(-0.407760\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 9.79796 1.16280 0.581402 0.813617i \(-0.302504\pi\)
0.581402 + 0.813617i \(0.302504\pi\)
\(72\) 0 0
\(73\) −5.79796 −0.678600 −0.339300 0.940678i \(-0.610190\pi\)
−0.339300 + 0.940678i \(0.610190\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −1.44949 + 2.51059i −0.163080 + 0.282463i −0.935972 0.352075i \(-0.885476\pi\)
0.772892 + 0.634538i \(0.218810\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.275255 + 0.476756i −0.0302132 + 0.0523308i −0.880737 0.473606i \(-0.842952\pi\)
0.850523 + 0.525937i \(0.176285\pi\)
\(84\) 0 0
\(85\) −1.00000 1.73205i −0.108465 0.187867i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.7980 1.78058 0.890290 0.455394i \(-0.150502\pi\)
0.890290 + 0.455394i \(0.150502\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.44949 2.51059i −0.148715 0.257581i
\(96\) 0 0
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.00000 + 1.73205i −0.0995037 + 0.172345i −0.911479 0.411346i \(-0.865059\pi\)
0.811976 + 0.583691i \(0.198392\pi\)
\(102\) 0 0
\(103\) −5.00000 8.66025i −0.492665 0.853320i 0.507300 0.861770i \(-0.330644\pi\)
−0.999964 + 0.00844953i \(0.997310\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.34847 −0.227035 −0.113518 0.993536i \(-0.536212\pi\)
−0.113518 + 0.993536i \(0.536212\pi\)
\(108\) 0 0
\(109\) 8.79796 0.842692 0.421346 0.906900i \(-0.361558\pi\)
0.421346 + 0.906900i \(0.361558\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.89898 + 8.48528i 0.460857 + 0.798228i 0.999004 0.0446231i \(-0.0142087\pi\)
−0.538147 + 0.842851i \(0.680875\pi\)
\(114\) 0 0
\(115\) −1.27526 + 2.20881i −0.118918 + 0.205972i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.44949 2.51059i 0.132875 0.230145i
\(120\) 0 0
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −14.3485 −1.27322 −0.636610 0.771186i \(-0.719664\pi\)
−0.636610 + 0.771186i \(0.719664\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.44949 5.97469i −0.301383 0.522011i 0.675066 0.737757i \(-0.264115\pi\)
−0.976450 + 0.215746i \(0.930782\pi\)
\(132\) 0 0
\(133\) 2.10102 3.63907i 0.182182 0.315548i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.79796 + 16.9706i −0.837096 + 1.44989i 0.0552162 + 0.998474i \(0.482415\pi\)
−0.892312 + 0.451419i \(0.850918\pi\)
\(138\) 0 0
\(139\) 9.79796 + 16.9706i 0.831052 + 1.43942i 0.897205 + 0.441615i \(0.145594\pi\)
−0.0661527 + 0.997810i \(0.521072\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −7.89898 −0.655975
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.5000 18.1865i −0.860194 1.48990i −0.871742 0.489966i \(-0.837009\pi\)
0.0115483 0.999933i \(-0.496324\pi\)
\(150\) 0 0
\(151\) −6.00000 + 10.3923i −0.488273 + 0.845714i −0.999909 0.0134886i \(-0.995706\pi\)
0.511636 + 0.859202i \(0.329040\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.44949 + 9.43879i −0.437714 + 0.758142i
\(156\) 0 0
\(157\) 2.10102 + 3.63907i 0.167680 + 0.290430i 0.937604 0.347706i \(-0.113039\pi\)
−0.769924 + 0.638136i \(0.779706\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.69694 −0.291360
\(162\) 0 0
\(163\) 11.7980 0.924087 0.462044 0.886857i \(-0.347116\pi\)
0.462044 + 0.886857i \(0.347116\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.17423 5.49794i −0.245630 0.425443i 0.716679 0.697403i \(-0.245661\pi\)
−0.962308 + 0.271960i \(0.912328\pi\)
\(168\) 0 0
\(169\) 6.50000 11.2583i 0.500000 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.00000 + 10.3923i −0.456172 + 0.790112i −0.998755 0.0498898i \(-0.984113\pi\)
0.542583 + 0.840002i \(0.317446\pi\)
\(174\) 0 0
\(175\) 0.724745 + 1.25529i 0.0547856 + 0.0948914i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.79796 −0.433360 −0.216680 0.976243i \(-0.569523\pi\)
−0.216680 + 0.976243i \(0.569523\pi\)
\(180\) 0 0
\(181\) 19.6969 1.46406 0.732031 0.681271i \(-0.238573\pi\)
0.732031 + 0.681271i \(0.238573\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 + 5.19615i 0.220564 + 0.382029i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.55051 + 4.41761i −0.184548 + 0.319647i −0.943424 0.331588i \(-0.892416\pi\)
0.758876 + 0.651235i \(0.225749\pi\)
\(192\) 0 0
\(193\) 10.8990 + 18.8776i 0.784526 + 1.35884i 0.929282 + 0.369371i \(0.120427\pi\)
−0.144756 + 0.989467i \(0.546240\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −23.5959 −1.68114 −0.840570 0.541703i \(-0.817780\pi\)
−0.840570 + 0.541703i \(0.817780\pi\)
\(198\) 0 0
\(199\) 13.1010 0.928707 0.464353 0.885650i \(-0.346287\pi\)
0.464353 + 0.885650i \(0.346287\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.72474 9.91555i −0.401798 0.695935i
\(204\) 0 0
\(205\) −0.0505103 + 0.0874863i −0.00352779 + 0.00611031i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −6.00000 10.3923i −0.413057 0.715436i 0.582165 0.813070i \(-0.302206\pi\)
−0.995222 + 0.0976347i \(0.968872\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −7.79796 −0.531816
\(216\) 0 0
\(217\) −15.7980 −1.07244
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −0.275255 + 0.476756i −0.0184324 + 0.0319259i −0.875094 0.483952i \(-0.839201\pi\)
0.856662 + 0.515878i \(0.172534\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.8990 + 24.0737i −0.922508 + 1.59783i −0.126986 + 0.991904i \(0.540530\pi\)
−0.795521 + 0.605926i \(0.792803\pi\)
\(228\) 0 0
\(229\) 6.94949 + 12.0369i 0.459235 + 0.795419i 0.998921 0.0464480i \(-0.0147902\pi\)
−0.539686 + 0.841867i \(0.681457\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.202041 0.0132361 0.00661807 0.999978i \(-0.497893\pi\)
0.00661807 + 0.999978i \(0.497893\pi\)
\(234\) 0 0
\(235\) 4.55051 0.296843
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 10.8990 + 18.8776i 0.704996 + 1.22109i 0.966693 + 0.255939i \(0.0823847\pi\)
−0.261696 + 0.965150i \(0.584282\pi\)
\(240\) 0 0
\(241\) −12.8485 + 22.2542i −0.827643 + 1.43352i 0.0722401 + 0.997387i \(0.476985\pi\)
−0.899883 + 0.436132i \(0.856348\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.44949 4.24264i 0.156492 0.271052i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.89898 0.435460 0.217730 0.976009i \(-0.430135\pi\)
0.217730 + 0.976009i \(0.430135\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.10102 + 7.10318i 0.255815 + 0.443084i 0.965116 0.261821i \(-0.0843230\pi\)
−0.709302 + 0.704905i \(0.750990\pi\)
\(258\) 0 0
\(259\) −4.34847 + 7.53177i −0.270201 + 0.468001i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.00000 15.5885i 0.554964 0.961225i −0.442943 0.896550i \(-0.646065\pi\)
0.997906 0.0646755i \(-0.0206012\pi\)
\(264\) 0 0
\(265\) −5.89898 10.2173i −0.362371 0.627646i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 16.5959 1.01187 0.505935 0.862571i \(-0.331147\pi\)
0.505935 + 0.862571i \(0.331147\pi\)
\(270\) 0 0
\(271\) 21.1010 1.28180 0.640898 0.767626i \(-0.278562\pi\)
0.640898 + 0.767626i \(0.278562\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7.00000 12.1244i 0.420589 0.728482i −0.575408 0.817867i \(-0.695157\pi\)
0.995997 + 0.0893846i \(0.0284900\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.94949 + 15.5010i −0.533882 + 0.924710i 0.465335 + 0.885135i \(0.345934\pi\)
−0.999217 + 0.0395756i \(0.987399\pi\)
\(282\) 0 0
\(283\) 9.17423 + 15.8902i 0.545352 + 0.944577i 0.998585 + 0.0531847i \(0.0169372\pi\)
−0.453233 + 0.891392i \(0.649729\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −0.146428 −0.00864338
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.7980 18.7026i −0.630823 1.09262i −0.987384 0.158346i \(-0.949384\pi\)
0.356560 0.934272i \(-0.383949\pi\)
\(294\) 0 0
\(295\) −5.44949 + 9.43879i −0.317282 + 0.549548i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −5.65153 9.78874i −0.325749 0.564214i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.00000 −0.171780
\(306\) 0 0
\(307\) −29.2474 −1.66924 −0.834620 0.550826i \(-0.814313\pi\)
−0.834620 + 0.550826i \(0.814313\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.44949 + 2.51059i 0.0821930 + 0.142362i 0.904192 0.427127i \(-0.140474\pi\)
−0.821999 + 0.569489i \(0.807141\pi\)
\(312\) 0 0
\(313\) −11.7980 + 20.4347i −0.666860 + 1.15504i 0.311917 + 0.950109i \(0.399029\pi\)
−0.978777 + 0.204926i \(0.934305\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.10102 + 5.37113i −0.174171 + 0.301672i −0.939874 0.341522i \(-0.889058\pi\)
0.765703 + 0.643194i \(0.222391\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 5.79796 0.322607
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3.29796 + 5.71223i 0.181822 + 0.314926i
\(330\) 0 0
\(331\) −1.44949 + 2.51059i −0.0796712 + 0.137994i −0.903108 0.429413i \(-0.858720\pi\)
0.823437 + 0.567408i \(0.192054\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.62372 + 9.74058i −0.307257 + 0.532185i
\(336\) 0 0
\(337\) 5.10102 + 8.83523i 0.277870 + 0.481285i 0.970855 0.239667i \(-0.0770381\pi\)
−0.692985 + 0.720952i \(0.743705\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 17.2474 0.931275
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.79796 + 11.7744i 0.364934 + 0.632083i 0.988765 0.149475i \(-0.0477584\pi\)
−0.623832 + 0.781559i \(0.714425\pi\)
\(348\) 0 0
\(349\) 15.8485 27.4504i 0.848349 1.46938i −0.0343315 0.999410i \(-0.510930\pi\)
0.882681 0.469973i \(-0.155736\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) −4.89898 8.48528i −0.260011 0.450352i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0.696938 0.0367830 0.0183915 0.999831i \(-0.494145\pi\)
0.0183915 + 0.999831i \(0.494145\pi\)
\(360\) 0 0
\(361\) −10.5959 −0.557680
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.89898 + 5.02118i 0.151740 + 0.262821i
\(366\) 0 0
\(367\) −11.0000 + 19.0526i −0.574195 + 0.994535i 0.421933 + 0.906627i \(0.361352\pi\)
−0.996129 + 0.0879086i \(0.971982\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 8.55051 14.8099i 0.443920 0.768893i
\(372\) 0 0
\(373\) 8.79796 + 15.2385i 0.455541 + 0.789020i 0.998719 0.0505973i \(-0.0161125\pi\)
−0.543178 + 0.839618i \(0.682779\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 17.1010 0.878420 0.439210 0.898384i \(-0.355258\pi\)
0.439210 + 0.898384i \(0.355258\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.00000 + 1.73205i 0.0510976 + 0.0885037i 0.890443 0.455095i \(-0.150395\pi\)
−0.839345 + 0.543599i \(0.817061\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11.2980 19.5686i 0.572829 0.992169i −0.423444 0.905922i \(-0.639179\pi\)
0.996274 0.0862473i \(-0.0274875\pi\)
\(390\) 0 0
\(391\) −2.55051 4.41761i −0.128985 0.223408i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.89898 0.145863
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.79796 11.7744i −0.339474 0.587986i 0.644860 0.764301i \(-0.276916\pi\)
−0.984334 + 0.176315i \(0.943582\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −14.7980 25.6308i −0.731712 1.26736i −0.956151 0.292874i \(-0.905388\pi\)
0.224439 0.974488i \(-0.427945\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −15.7980 −0.777367
\(414\) 0 0
\(415\) 0.550510 0.0270235
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.0000 + 17.3205i 0.488532 + 0.846162i 0.999913 0.0131919i \(-0.00419923\pi\)
−0.511381 + 0.859354i \(0.670866\pi\)
\(420\) 0 0
\(421\) 6.79796 11.7744i 0.331312 0.573850i −0.651457 0.758685i \(-0.725842\pi\)
0.982769 + 0.184836i \(0.0591753\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.00000 + 1.73205i −0.0485071 + 0.0840168i
\(426\) 0 0
\(427\) −2.17423 3.76588i −0.105219 0.182244i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.10102 −0.245708 −0.122854 0.992425i \(-0.539205\pi\)
−0.122854 + 0.992425i \(0.539205\pi\)
\(432\) 0 0
\(433\) 7.79796 0.374746 0.187373 0.982289i \(-0.440003\pi\)
0.187373 + 0.982289i \(0.440003\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.69694 6.40329i −0.176849 0.306311i
\(438\) 0 0
\(439\) −0.898979 + 1.55708i −0.0429059 + 0.0743153i −0.886681 0.462382i \(-0.846995\pi\)
0.843775 + 0.536697i \(0.180328\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 13.0732 22.6435i 0.621127 1.07582i −0.368149 0.929767i \(-0.620008\pi\)
0.989276 0.146057i \(-0.0466583\pi\)
\(444\) 0 0
\(445\) −8.39898 14.5475i −0.398150 0.689616i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17.5959 0.830403 0.415201 0.909730i \(-0.363711\pi\)
0.415201 + 0.909730i \(0.363711\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 10.7980 18.7026i 0.505107 0.874871i −0.494875 0.868964i \(-0.664786\pi\)
0.999983 0.00590738i \(-0.00188039\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 10.9495 18.9651i 0.509969 0.883291i −0.489965 0.871742i \(-0.662990\pi\)
0.999933 0.0115492i \(-0.00367632\pi\)
\(462\) 0 0
\(463\) −15.8990 27.5378i −0.738888 1.27979i −0.952996 0.302982i \(-0.902018\pi\)
0.214108 0.976810i \(-0.431316\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11.7980 0.545944 0.272972 0.962022i \(-0.411993\pi\)
0.272972 + 0.962022i \(0.411993\pi\)
\(468\) 0 0
\(469\) −16.3031 −0.752805
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −1.44949 + 2.51059i −0.0665072 + 0.115194i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −9.24745 + 16.0171i −0.422527 + 0.731838i −0.996186 0.0872564i \(-0.972190\pi\)
0.573659 + 0.819094i \(0.305523\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) 25.5959 1.15986 0.579931 0.814666i \(-0.303080\pi\)
0.579931 + 0.814666i \(0.303080\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.89898 + 5.02118i 0.130829 + 0.226603i 0.923996 0.382401i \(-0.124903\pi\)
−0.793167 + 0.609004i \(0.791569\pi\)
\(492\) 0 0
\(493\) 7.89898 13.6814i 0.355752 0.616181i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 7.10102 12.2993i 0.318524 0.551700i
\(498\) 0 0
\(499\) 14.0000 + 24.2487i 0.626726 + 1.08552i 0.988204 + 0.153141i \(0.0489388\pi\)
−0.361478 + 0.932381i \(0.617728\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 19.0454 0.849193 0.424596 0.905383i \(-0.360416\pi\)
0.424596 + 0.905383i \(0.360416\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −6.94949 12.0369i −0.308031 0.533525i 0.669901 0.742451i \(-0.266337\pi\)
−0.977931 + 0.208926i \(0.933003\pi\)
\(510\) 0 0
\(511\) −4.20204 + 7.27815i −0.185887 + 0.321966i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.00000 + 8.66025i −0.220326 + 0.381616i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.7980 −1.26166 −0.630831 0.775920i \(-0.717286\pi\)
−0.630831 + 0.775920i \(0.717286\pi\)
\(522\) 0 0
\(523\) −19.6515 −0.859301 −0.429651 0.902995i \(-0.641363\pi\)
−0.429651 + 0.902995i \(0.641363\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.8990 18.8776i −0.474767 0.822321i
\(528\) 0 0
\(529\) 8.24745 14.2850i 0.358585 0.621087i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.17423 + 2.03383i 0.0507666 + 0.0879303i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 21.8990 0.941511 0.470755 0.882264i \(-0.343981\pi\)
0.470755 + 0.882264i \(0.343981\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −4.39898 7.61926i −0.188432 0.326373i
\(546\) 0 0
\(547\) 20.6237 35.7213i 0.881807 1.52733i 0.0324764 0.999473i \(-0.489661\pi\)
0.849330 0.527862i \(-0.177006\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11.4495 19.8311i 0.487765 0.844833i
\(552\) 0 0
\(553\) 2.10102 + 3.63907i 0.0893445 + 0.154749i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −24.2020 −1.02547 −0.512737 0.858546i \(-0.671368\pi\)
−0.512737 + 0.858546i \(0.671368\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.17423 + 3.76588i 0.0916331 + 0.158713i 0.908198 0.418540i \(-0.137458\pi\)
−0.816565 + 0.577253i \(0.804125\pi\)
\(564\) 0 0
\(565\) 4.89898 8.48528i 0.206102 0.356978i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.00000 8.66025i 0.209611 0.363057i −0.741981 0.670421i \(-0.766114\pi\)
0.951592 + 0.307364i \(0.0994469\pi\)
\(570\) 0 0
\(571\) −3.10102 5.37113i −0.129774 0.224775i 0.793815 0.608159i \(-0.208092\pi\)
−0.923589 + 0.383385i \(0.874758\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.55051 0.106364
\(576\) 0 0
\(577\) −26.0000 −1.08239 −0.541197 0.840896i \(-0.682029\pi\)
−0.541197 + 0.840896i \(0.682029\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0.398979 + 0.691053i 0.0165525 + 0.0286697i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.1742 19.3543i 0.461210 0.798839i −0.537812 0.843065i \(-0.680749\pi\)
0.999022 + 0.0442259i \(0.0140821\pi\)
\(588\) 0 0
\(589\) −15.7980 27.3629i −0.650944 1.12747i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −27.3939 −1.12493 −0.562466 0.826821i \(-0.690147\pi\)
−0.562466 + 0.826821i \(0.690147\pi\)
\(594\) 0 0
\(595\) −2.89898 −0.118847
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.34847 + 4.06767i 0.0959559 + 0.166200i 0.910007 0.414593i \(-0.136076\pi\)
−0.814051 + 0.580793i \(0.802743\pi\)
\(600\) 0 0
\(601\) −7.00000 + 12.1244i −0.285536 + 0.494563i −0.972739 0.231903i \(-0.925505\pi\)
0.687203 + 0.726465i \(0.258838\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.50000 9.52628i 0.223607 0.387298i
\(606\) 0 0
\(607\) 16.0732 + 27.8396i 0.652392 + 1.12998i 0.982541 + 0.186047i \(0.0595676\pi\)
−0.330149 + 0.943929i \(0.607099\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 9.59592 0.387575 0.193788 0.981043i \(-0.437923\pi\)
0.193788 + 0.981043i \(0.437923\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21.5959 + 37.4052i 0.869419 + 1.50588i 0.862592 + 0.505901i \(0.168840\pi\)
0.00682740 + 0.999977i \(0.497827\pi\)
\(618\) 0 0
\(619\) −2.34847 + 4.06767i −0.0943929 + 0.163493i −0.909355 0.416021i \(-0.863424\pi\)
0.814962 + 0.579514i \(0.196758\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.1742 21.0864i 0.487750 0.844808i
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) 23.5959 0.939339 0.469669 0.882842i \(-0.344373\pi\)
0.469669 + 0.882842i \(0.344373\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 7.17423 + 12.4261i 0.284701 + 0.493116i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −2.05051 + 3.55159i −0.0809903 + 0.140279i −0.903676 0.428218i \(-0.859142\pi\)
0.822685 + 0.568497i \(0.192475\pi\)
\(642\) 0 0
\(643\) −7.07321 12.2512i −0.278940 0.483139i 0.692181 0.721724i \(-0.256650\pi\)
−0.971122 + 0.238585i \(0.923317\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −11.4495 −0.450126 −0.225063 0.974344i \(-0.572259\pi\)
−0.225063 + 0.974344i \(0.572259\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.10102 + 7.10318i 0.160485 + 0.277969i 0.935043 0.354535i \(-0.115361\pi\)
−0.774558 + 0.632503i \(0.782027\pi\)
\(654\) 0 0
\(655\) −3.44949 + 5.97469i −0.134783 + 0.233451i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 14.8990 25.8058i 0.580382 1.00525i −0.415052 0.909798i \(-0.636237\pi\)
0.995434 0.0954532i \(-0.0304300\pi\)
\(660\) 0 0
\(661\) −5.00000 8.66025i −0.194477 0.336845i 0.752252 0.658876i \(-0.228968\pi\)
−0.946729 + 0.322031i \(0.895634\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −4.20204 −0.162948
\(666\) 0 0
\(667\) −20.1464 −0.780073
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 8.00000 13.8564i 0.308377 0.534125i −0.669630 0.742695i \(-0.733547\pi\)
0.978008 + 0.208569i \(0.0668807\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 16.8990 29.2699i 0.649481 1.12493i −0.333767 0.942656i \(-0.608320\pi\)
0.983247 0.182278i \(-0.0583469\pi\)
\(678\) 0 0
\(679\) 1.44949 + 2.51059i 0.0556263 + 0.0963476i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 35.3939 1.35431 0.677155 0.735841i \(-0.263213\pi\)
0.677155 + 0.735841i \(0.263213\pi\)
\(684\) 0 0
\(685\) 19.5959 0.748722
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −14.5505 + 25.2022i −0.553527 + 0.958738i 0.444489 + 0.895784i \(0.353385\pi\)
−0.998016 + 0.0629534i \(0.979948\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 9.79796 16.9706i 0.371658 0.643730i
\(696\) 0 0
\(697\) −0.101021 0.174973i −0.00382642 0.00662756i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 28.3939 1.07242 0.536211 0.844084i \(-0.319855\pi\)
0.536211 + 0.844084i \(0.319855\pi\)
\(702\) 0 0
\(703\) −17.3939 −0.656022
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.44949 + 2.51059i 0.0545137 + 0.0944205i
\(708\) 0 0
\(709\) 9.84847 17.0580i 0.369867 0.640628i −0.619677 0.784857i \(-0.712737\pi\)
0.989544 + 0.144228i \(0.0460699\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −13.8990 + 24.0737i −0.520521 + 0.901569i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −40.2929 −1.50267 −0.751335 0.659921i \(-0.770590\pi\)
−0.751335 + 0.659921i \(0.770590\pi\)
\(720\) 0 0
\(721\) −14.4949 −0.539818
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.94949 + 6.84072i 0.146680 + 0.254058i
\(726\) 0 0
\(727\) 3.37628 5.84788i 0.125219 0.216886i −0.796599 0.604508i \(-0.793370\pi\)
0.921819 + 0.387622i \(0.126703\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 7.79796 13.5065i 0.288418 0.499555i
\(732\) 0 0
\(733\) −4.79796 8.31031i −0.177217 0.306948i 0.763710 0.645560i \(-0.223376\pi\)
−0.940926 + 0.338612i \(0.890043\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −42.8990 −1.57806 −0.789032 0.614352i \(-0.789418\pi\)
−0.789032 + 0.614352i \(0.789418\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 18.5227 + 32.0823i 0.679532 + 1.17698i 0.975122 + 0.221669i \(0.0711505\pi\)
−0.295590 + 0.955315i \(0.595516\pi\)
\(744\) 0 0
\(745\) −10.5000 + 18.1865i −0.384690 + 0.666303i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.70204 + 2.94802i −0.0621912 + 0.107718i
\(750\) 0 0
\(751\) −22.8990 39.6622i −0.835596 1.44729i −0.893545 0.448975i \(-0.851789\pi\)
0.0579489 0.998320i \(-0.481544\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.0000 0.436725
\(756\) 0 0
\(757\) −7.59592 −0.276078 −0.138039 0.990427i \(-0.544080\pi\)
−0.138039 + 0.990427i \(0.544080\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.5000 + 30.3109i 0.634375 + 1.09877i 0.986647 + 0.162872i \(0.0520756\pi\)
−0.352273 + 0.935897i \(0.614591\pi\)
\(762\) 0 0
\(763\) 6.37628 11.0440i 0.230837 0.399821i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 12.3990 + 21.4757i 0.447119 + 0.774432i 0.998197 0.0600212i \(-0.0191168\pi\)
−0.551078 + 0.834453i \(0.685784\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −25.7980 −0.927888 −0.463944 0.885865i \(-0.653566\pi\)
−0.463944 + 0.885865i \(0.653566\pi\)
\(774\) 0 0
\(775\) 10.8990 0.391503
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −0.146428 0.253621i −0.00524633 0.00908692i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.10102 3.63907i 0.0749886 0.129884i
\(786\) 0 0
\(787\) 5.20204 + 9.01020i 0.185433 + 0.321179i 0.943722 0.330739i \(-0.107298\pi\)
−0.758290 + 0.651918i \(0.773965\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 14.2020 0.504966
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.00000 6.92820i −0.141687 0.245410i 0.786445 0.617661i \(-0.211919\pi\)
−0.928132 + 0.372251i \(0.878586\pi\)
\(798\) 0 0
\(799\) −4.55051 + 7.88171i