Properties

Label 1080.2.q.c.361.1
Level $1080$
Weight $2$
Character 1080.361
Analytic conductor $8.624$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1080,2,Mod(361,1080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1080, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1080.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.62384341830\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1080.361
Dual form 1080.2.q.c.721.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{5} +(-1.72474 - 2.98735i) q^{7} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{5} +(-1.72474 - 2.98735i) q^{7} +2.00000 q^{17} -6.89898 q^{19} +(-3.72474 + 6.45145i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-0.949490 - 1.64456i) q^{29} +(-0.550510 + 0.953512i) q^{31} +3.44949 q^{35} -6.00000 q^{37} +(-4.94949 + 8.57277i) q^{41} +(-5.89898 - 10.2173i) q^{43} +(-4.72474 - 8.18350i) q^{47} +(-2.44949 + 4.24264i) q^{49} -7.79796 q^{53} +(-0.550510 + 0.953512i) q^{59} +(1.50000 + 2.59808i) q^{61} +(6.62372 - 11.4726i) q^{67} -9.79796 q^{71} +13.7980 q^{73} +(3.44949 + 5.97469i) q^{79} +(-2.72474 - 4.71940i) q^{83} +(-1.00000 + 1.73205i) q^{85} -2.79796 q^{89} +(3.44949 - 5.97469i) q^{95} +(-1.00000 - 1.73205i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{5} - 2 q^{7} + 8 q^{17} - 8 q^{19} - 10 q^{23} - 2 q^{25} + 6 q^{29} - 12 q^{31} + 4 q^{35} - 24 q^{37} - 10 q^{41} - 4 q^{43} - 14 q^{47} + 8 q^{53} - 12 q^{59} + 6 q^{61} + 2 q^{67} + 16 q^{73} + 4 q^{79} - 6 q^{83} - 4 q^{85} + 28 q^{89} + 4 q^{95} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) −1.72474 2.98735i −0.651892 1.12911i −0.982663 0.185399i \(-0.940642\pi\)
0.330771 0.943711i \(-0.392691\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 0 0
\(13\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −6.89898 −1.58273 −0.791367 0.611341i \(-0.790630\pi\)
−0.791367 + 0.611341i \(0.790630\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.72474 + 6.45145i −0.776663 + 1.34522i 0.157192 + 0.987568i \(0.449756\pi\)
−0.933855 + 0.357652i \(0.883578\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.949490 1.64456i −0.176316 0.305388i 0.764300 0.644861i \(-0.223085\pi\)
−0.940616 + 0.339473i \(0.889751\pi\)
\(30\) 0 0
\(31\) −0.550510 + 0.953512i −0.0988746 + 0.171256i −0.911219 0.411922i \(-0.864858\pi\)
0.812345 + 0.583178i \(0.198191\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.44949 0.583070
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.94949 + 8.57277i −0.772980 + 1.33884i 0.162942 + 0.986636i \(0.447902\pi\)
−0.935923 + 0.352206i \(0.885432\pi\)
\(42\) 0 0
\(43\) −5.89898 10.2173i −0.899586 1.55813i −0.828024 0.560692i \(-0.810535\pi\)
−0.0715617 0.997436i \(-0.522798\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.72474 8.18350i −0.689175 1.19369i −0.972105 0.234545i \(-0.924640\pi\)
0.282930 0.959140i \(-0.408693\pi\)
\(48\) 0 0
\(49\) −2.44949 + 4.24264i −0.349927 + 0.606092i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −7.79796 −1.07113 −0.535566 0.844493i \(-0.679902\pi\)
−0.535566 + 0.844493i \(0.679902\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −0.550510 + 0.953512i −0.0716703 + 0.124137i −0.899633 0.436646i \(-0.856166\pi\)
0.827963 + 0.560783i \(0.189500\pi\)
\(60\) 0 0
\(61\) 1.50000 + 2.59808i 0.192055 + 0.332650i 0.945931 0.324367i \(-0.105151\pi\)
−0.753876 + 0.657017i \(0.771818\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 6.62372 11.4726i 0.809217 1.40160i −0.104190 0.994557i \(-0.533225\pi\)
0.913407 0.407047i \(-0.133442\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −9.79796 −1.16280 −0.581402 0.813617i \(-0.697496\pi\)
−0.581402 + 0.813617i \(0.697496\pi\)
\(72\) 0 0
\(73\) 13.7980 1.61493 0.807464 0.589916i \(-0.200839\pi\)
0.807464 + 0.589916i \(0.200839\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3.44949 + 5.97469i 0.388098 + 0.672205i 0.992194 0.124706i \(-0.0397989\pi\)
−0.604096 + 0.796912i \(0.706466\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.72474 4.71940i −0.299080 0.518021i 0.676846 0.736125i \(-0.263346\pi\)
−0.975926 + 0.218104i \(0.930013\pi\)
\(84\) 0 0
\(85\) −1.00000 + 1.73205i −0.108465 + 0.187867i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.79796 −0.296583 −0.148292 0.988944i \(-0.547377\pi\)
−0.148292 + 0.988944i \(0.547377\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.44949 5.97469i 0.353910 0.612990i
\(96\) 0 0
\(97\) −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i \(-0.199042\pi\)
−0.912317 + 0.409484i \(0.865709\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.00000 1.73205i −0.0995037 0.172345i 0.811976 0.583691i \(-0.198392\pi\)
−0.911479 + 0.411346i \(0.865059\pi\)
\(102\) 0 0
\(103\) −5.00000 + 8.66025i −0.492665 + 0.853320i −0.999964 0.00844953i \(-0.997310\pi\)
0.507300 + 0.861770i \(0.330644\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.3485 1.19377 0.596886 0.802326i \(-0.296405\pi\)
0.596886 + 0.802326i \(0.296405\pi\)
\(108\) 0 0
\(109\) −10.7980 −1.03426 −0.517128 0.855908i \(-0.672999\pi\)
−0.517128 + 0.855908i \(0.672999\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.89898 + 8.48528i −0.460857 + 0.798228i −0.999004 0.0446231i \(-0.985791\pi\)
0.538147 + 0.842851i \(0.319125\pi\)
\(114\) 0 0
\(115\) −3.72474 6.45145i −0.347334 0.601601i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.44949 5.97469i −0.316214 0.547699i
\(120\) 0 0
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 0.348469 0.0309216 0.0154608 0.999880i \(-0.495078\pi\)
0.0154608 + 0.999880i \(0.495078\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.44949 2.51059i 0.126643 0.219351i −0.795731 0.605650i \(-0.792913\pi\)
0.922374 + 0.386299i \(0.126247\pi\)
\(132\) 0 0
\(133\) 11.8990 + 20.6096i 1.03177 + 1.78708i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.79796 + 16.9706i 0.837096 + 1.44989i 0.892312 + 0.451419i \(0.149082\pi\)
−0.0552162 + 0.998474i \(0.517585\pi\)
\(138\) 0 0
\(139\) −9.79796 + 16.9706i −0.831052 + 1.43942i 0.0661527 + 0.997810i \(0.478928\pi\)
−0.897205 + 0.441615i \(0.854406\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 1.89898 0.157702
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.5000 + 18.1865i −0.860194 + 1.48990i 0.0115483 + 0.999933i \(0.496324\pi\)
−0.871742 + 0.489966i \(0.837009\pi\)
\(150\) 0 0
\(151\) −6.00000 10.3923i −0.488273 0.845714i 0.511636 0.859202i \(-0.329040\pi\)
−0.999909 + 0.0134886i \(0.995706\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.550510 0.953512i −0.0442180 0.0765879i
\(156\) 0 0
\(157\) 11.8990 20.6096i 0.949642 1.64483i 0.203463 0.979083i \(-0.434780\pi\)
0.746179 0.665745i \(-0.231886\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 25.6969 2.02520
\(162\) 0 0
\(163\) −7.79796 −0.610783 −0.305392 0.952227i \(-0.598787\pi\)
−0.305392 + 0.952227i \(0.598787\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.17423 7.22999i 0.323012 0.559473i −0.658096 0.752934i \(-0.728638\pi\)
0.981108 + 0.193461i \(0.0619713\pi\)
\(168\) 0 0
\(169\) 6.50000 + 11.2583i 0.500000 + 0.866025i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.00000 10.3923i −0.456172 0.790112i 0.542583 0.840002i \(-0.317446\pi\)
−0.998755 + 0.0498898i \(0.984113\pi\)
\(174\) 0 0
\(175\) −1.72474 + 2.98735i −0.130378 + 0.225822i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 13.7980 1.03131 0.515654 0.856797i \(-0.327549\pi\)
0.515654 + 0.856797i \(0.327549\pi\)
\(180\) 0 0
\(181\) −9.69694 −0.720768 −0.360384 0.932804i \(-0.617354\pi\)
−0.360384 + 0.932804i \(0.617354\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 5.19615i 0.220564 0.382029i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.44949 12.9029i −0.539026 0.933621i −0.998957 0.0456658i \(-0.985459\pi\)
0.459931 0.887955i \(-0.347874\pi\)
\(192\) 0 0
\(193\) 1.10102 1.90702i 0.0792532 0.137271i −0.823675 0.567063i \(-0.808080\pi\)
0.902928 + 0.429792i \(0.141413\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 15.5959 1.11116 0.555582 0.831462i \(-0.312496\pi\)
0.555582 + 0.831462i \(0.312496\pi\)
\(198\) 0 0
\(199\) 22.8990 1.62327 0.811633 0.584168i \(-0.198579\pi\)
0.811633 + 0.584168i \(0.198579\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.27526 + 5.67291i −0.229878 + 0.398160i
\(204\) 0 0
\(205\) −4.94949 8.57277i −0.345687 0.598748i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −6.00000 + 10.3923i −0.413057 + 0.715436i −0.995222 0.0976347i \(-0.968872\pi\)
0.582165 + 0.813070i \(0.302206\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.7980 0.804614
\(216\) 0 0
\(217\) 3.79796 0.257822
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −2.72474 4.71940i −0.182462 0.316034i 0.760256 0.649623i \(-0.225073\pi\)
−0.942718 + 0.333589i \(0.891740\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.10102 7.10318i −0.272194 0.471454i 0.697229 0.716848i \(-0.254416\pi\)
−0.969423 + 0.245394i \(0.921083\pi\)
\(228\) 0 0
\(229\) 2.05051 3.55159i 0.135502 0.234696i −0.790287 0.612736i \(-0.790069\pi\)
0.925789 + 0.378041i \(0.123402\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 19.7980 1.29701 0.648504 0.761211i \(-0.275395\pi\)
0.648504 + 0.761211i \(0.275395\pi\)
\(234\) 0 0
\(235\) 9.44949 0.616417
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.10102 1.90702i 0.0712191 0.123355i −0.828217 0.560408i \(-0.810644\pi\)
0.899436 + 0.437053i \(0.143978\pi\)
\(240\) 0 0
\(241\) 1.84847 + 3.20164i 0.119070 + 0.206236i 0.919400 0.393325i \(-0.128675\pi\)
−0.800329 + 0.599561i \(0.795342\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.44949 4.24264i −0.156492 0.271052i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.89898 −0.182982 −0.0914910 0.995806i \(-0.529163\pi\)
−0.0914910 + 0.995806i \(0.529163\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.8990 24.0737i 0.866995 1.50168i 0.00194150 0.999998i \(-0.499382\pi\)
0.865053 0.501680i \(-0.167285\pi\)
\(258\) 0 0
\(259\) 10.3485 + 17.9241i 0.643023 + 1.11375i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 9.00000 + 15.5885i 0.554964 + 0.961225i 0.997906 + 0.0646755i \(0.0206012\pi\)
−0.442943 + 0.896550i \(0.646065\pi\)
\(264\) 0 0
\(265\) 3.89898 6.75323i 0.239512 0.414848i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −22.5959 −1.37770 −0.688849 0.724905i \(-0.741884\pi\)
−0.688849 + 0.724905i \(0.741884\pi\)
\(270\) 0 0
\(271\) 30.8990 1.87698 0.938490 0.345307i \(-0.112225\pi\)
0.938490 + 0.345307i \(0.112225\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 7.00000 + 12.1244i 0.420589 + 0.728482i 0.995997 0.0893846i \(-0.0284900\pi\)
−0.575408 + 0.817867i \(0.695157\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.05051 7.01569i −0.241633 0.418521i 0.719546 0.694444i \(-0.244350\pi\)
−0.961180 + 0.275923i \(0.911016\pi\)
\(282\) 0 0
\(283\) 1.82577 3.16232i 0.108530 0.187980i −0.806645 0.591037i \(-0.798719\pi\)
0.915175 + 0.403056i \(0.132052\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 34.1464 2.01560
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.79796 15.2385i 0.513982 0.890243i −0.485886 0.874022i \(-0.661503\pi\)
0.999868 0.0162213i \(-0.00516362\pi\)
\(294\) 0 0
\(295\) −0.550510 0.953512i −0.0320519 0.0555156i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −20.3485 + 35.2446i −1.17287 + 2.03146i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.00000 −0.171780
\(306\) 0 0
\(307\) −4.75255 −0.271242 −0.135621 0.990761i \(-0.543303\pi\)
−0.135621 + 0.990761i \(0.543303\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.44949 + 5.97469i −0.195603 + 0.338794i −0.947098 0.320945i \(-0.896000\pi\)
0.751495 + 0.659738i \(0.229333\pi\)
\(312\) 0 0
\(313\) 7.79796 + 13.5065i 0.440767 + 0.763430i 0.997747 0.0670957i \(-0.0213733\pi\)
−0.556980 + 0.830526i \(0.688040\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.8990 22.3417i −0.724479 1.25483i −0.959188 0.282769i \(-0.908747\pi\)
0.234709 0.972066i \(-0.424586\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −13.7980 −0.767739
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −16.2980 + 28.2289i −0.898536 + 1.55631i
\(330\) 0 0
\(331\) 3.44949 + 5.97469i 0.189601 + 0.328399i 0.945117 0.326731i \(-0.105947\pi\)
−0.755516 + 0.655130i \(0.772614\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.62372 + 11.4726i 0.361893 + 0.626817i
\(336\) 0 0
\(337\) 14.8990 25.8058i 0.811599 1.40573i −0.100145 0.994973i \(-0.531931\pi\)
0.911744 0.410758i \(-0.134736\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −7.24745 −0.391325
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.7980 + 22.1667i −0.687030 + 1.18997i 0.285764 + 0.958300i \(0.407753\pi\)
−0.972794 + 0.231671i \(0.925581\pi\)
\(348\) 0 0
\(349\) 1.15153 + 1.99451i 0.0616400 + 0.106764i 0.895199 0.445667i \(-0.147034\pi\)
−0.833559 + 0.552431i \(0.813700\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) 4.89898 8.48528i 0.260011 0.450352i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −28.6969 −1.51457 −0.757283 0.653087i \(-0.773474\pi\)
−0.757283 + 0.653087i \(0.773474\pi\)
\(360\) 0 0
\(361\) 28.5959 1.50505
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −6.89898 + 11.9494i −0.361109 + 0.625459i
\(366\) 0 0
\(367\) −11.0000 19.0526i −0.574195 0.994535i −0.996129 0.0879086i \(-0.971982\pi\)
0.421933 0.906627i \(-0.361352\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 13.4495 + 23.2952i 0.698263 + 1.20943i
\(372\) 0 0
\(373\) −10.7980 + 18.7026i −0.559097 + 0.968385i 0.438475 + 0.898743i \(0.355519\pi\)
−0.997572 + 0.0696412i \(0.977815\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 26.8990 1.38171 0.690854 0.722994i \(-0.257235\pi\)
0.690854 + 0.722994i \(0.257235\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.00000 1.73205i 0.0510976 0.0885037i −0.839345 0.543599i \(-0.817061\pi\)
0.890443 + 0.455095i \(0.150395\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −8.29796 14.3725i −0.420723 0.728714i 0.575287 0.817952i \(-0.304890\pi\)
−0.996010 + 0.0892375i \(0.971557\pi\)
\(390\) 0 0
\(391\) −7.44949 + 12.9029i −0.376737 + 0.652527i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.89898 −0.347125
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.7980 22.1667i 0.639100 1.10695i −0.346531 0.938038i \(-0.612641\pi\)
0.985631 0.168914i \(-0.0540262\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 4.79796 8.31031i 0.237244 0.410918i −0.722679 0.691184i \(-0.757089\pi\)
0.959922 + 0.280266i \(0.0904226\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 3.79796 0.186885
\(414\) 0 0
\(415\) 5.44949 0.267505
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 10.0000 17.3205i 0.488532 0.846162i −0.511381 0.859354i \(-0.670866\pi\)
0.999913 + 0.0131919i \(0.00419923\pi\)
\(420\) 0 0
\(421\) −12.7980 22.1667i −0.623734 1.08034i −0.988784 0.149352i \(-0.952281\pi\)
0.365050 0.930988i \(-0.381052\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1.00000 1.73205i −0.0485071 0.0840168i
\(426\) 0 0
\(427\) 5.17423 8.96204i 0.250399 0.433703i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.8990 −0.717659 −0.358829 0.933403i \(-0.616824\pi\)
−0.358829 + 0.933403i \(0.616824\pi\)
\(432\) 0 0
\(433\) −11.7980 −0.566974 −0.283487 0.958976i \(-0.591491\pi\)
−0.283487 + 0.958976i \(0.591491\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 25.6969 44.5084i 1.22925 2.12913i
\(438\) 0 0
\(439\) 8.89898 + 15.4135i 0.424725 + 0.735645i 0.996395 0.0848384i \(-0.0270374\pi\)
−0.571670 + 0.820484i \(0.693704\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.07321 7.05501i −0.193524 0.335194i 0.752892 0.658145i \(-0.228658\pi\)
−0.946416 + 0.322951i \(0.895325\pi\)
\(444\) 0 0
\(445\) 1.39898 2.42310i 0.0663180 0.114866i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −21.5959 −1.01917 −0.509587 0.860419i \(-0.670202\pi\)
−0.509587 + 0.860419i \(0.670202\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −8.79796 15.2385i −0.411551 0.712828i 0.583508 0.812107i \(-0.301680\pi\)
−0.995060 + 0.0992796i \(0.968346\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.05051 + 10.4798i 0.281800 + 0.488093i 0.971828 0.235690i \(-0.0757351\pi\)
−0.690028 + 0.723783i \(0.742402\pi\)
\(462\) 0 0
\(463\) −6.10102 + 10.5673i −0.283538 + 0.491103i −0.972254 0.233929i \(-0.924842\pi\)
0.688715 + 0.725032i \(0.258175\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −7.79796 −0.360847 −0.180423 0.983589i \(-0.557747\pi\)
−0.180423 + 0.983589i \(0.557747\pi\)
\(468\) 0 0
\(469\) −45.6969 −2.11009
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 3.44949 + 5.97469i 0.158273 + 0.274138i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 15.2474 + 26.4094i 0.696674 + 1.20667i 0.969613 + 0.244643i \(0.0786708\pi\)
−0.272939 + 0.962031i \(0.587996\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.00000 0.0908153
\(486\) 0 0
\(487\) −13.5959 −0.616090 −0.308045 0.951372i \(-0.599675\pi\)
−0.308045 + 0.951372i \(0.599675\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.89898 + 11.9494i −0.311347 + 0.539268i −0.978654 0.205514i \(-0.934113\pi\)
0.667308 + 0.744782i \(0.267447\pi\)
\(492\) 0 0
\(493\) −1.89898 3.28913i −0.0855257 0.148135i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 16.8990 + 29.2699i 0.758023 + 1.31293i
\(498\) 0 0
\(499\) 14.0000 24.2487i 0.626726 1.08552i −0.361478 0.932381i \(-0.617728\pi\)
0.988204 0.153141i \(-0.0489388\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −25.0454 −1.11672 −0.558360 0.829599i \(-0.688569\pi\)
−0.558360 + 0.829599i \(0.688569\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.05051 + 3.55159i −0.0908873 + 0.157421i −0.907885 0.419220i \(-0.862304\pi\)
0.816997 + 0.576641i \(0.195637\pi\)
\(510\) 0 0
\(511\) −23.7980 41.2193i −1.05276 1.82343i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.00000 8.66025i −0.220326 0.381616i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −9.20204 −0.403149 −0.201574 0.979473i \(-0.564606\pi\)
−0.201574 + 0.979473i \(0.564606\pi\)
\(522\) 0 0
\(523\) −34.3485 −1.50195 −0.750977 0.660329i \(-0.770417\pi\)
−0.750977 + 0.660329i \(0.770417\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.10102 + 1.90702i −0.0479612 + 0.0830712i
\(528\) 0 0
\(529\) −16.2474 28.1414i −0.706411 1.22354i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −6.17423 + 10.6941i −0.266935 + 0.462346i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 12.1010 0.520264 0.260132 0.965573i \(-0.416234\pi\)
0.260132 + 0.965573i \(0.416234\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 5.39898 9.35131i 0.231267 0.400566i
\(546\) 0 0
\(547\) 8.37628 + 14.5081i 0.358144 + 0.620323i 0.987651 0.156672i \(-0.0500765\pi\)
−0.629507 + 0.776995i \(0.716743\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.55051 + 11.3458i 0.279061 + 0.483348i
\(552\) 0 0
\(553\) 11.8990 20.6096i 0.505996 0.876411i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −43.7980 −1.85578 −0.927890 0.372855i \(-0.878379\pi\)
−0.927890 + 0.372855i \(0.878379\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −5.17423 + 8.96204i −0.218068 + 0.377705i −0.954217 0.299114i \(-0.903309\pi\)
0.736149 + 0.676819i \(0.236642\pi\)
\(564\) 0 0
\(565\) −4.89898 8.48528i −0.206102 0.356978i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.00000 + 8.66025i 0.209611 + 0.363057i 0.951592 0.307364i \(-0.0994469\pi\)
−0.741981 + 0.670421i \(0.766114\pi\)
\(570\) 0 0
\(571\) −12.8990 + 22.3417i −0.539805 + 0.934971i 0.459109 + 0.888380i \(0.348169\pi\)
−0.998914 + 0.0465904i \(0.985164\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 7.44949 0.310665
\(576\) 0 0
\(577\) −26.0000 −1.08239 −0.541197 0.840896i \(-0.682029\pi\)
−0.541197 + 0.840896i \(0.682029\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −9.39898 + 16.2795i −0.389935 + 0.675388i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 3.82577 + 6.62642i 0.157906 + 0.273502i 0.934113 0.356976i \(-0.116192\pi\)
−0.776207 + 0.630478i \(0.782859\pi\)
\(588\) 0 0
\(589\) 3.79796 6.57826i 0.156492 0.271052i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 31.3939 1.28919 0.644596 0.764523i \(-0.277026\pi\)
0.644596 + 0.764523i \(0.277026\pi\)
\(594\) 0 0
\(595\) 6.89898 0.282831
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.3485 + 21.3882i −0.504545 + 0.873897i 0.495441 + 0.868641i \(0.335006\pi\)
−0.999986 + 0.00525583i \(0.998327\pi\)
\(600\) 0 0
\(601\) −7.00000 12.1244i −0.285536 0.494563i 0.687203 0.726465i \(-0.258838\pi\)
−0.972739 + 0.231903i \(0.925505\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 5.50000 + 9.52628i 0.223607 + 0.387298i
\(606\) 0 0
\(607\) −1.07321 + 1.85886i −0.0435604 + 0.0754489i −0.886984 0.461801i \(-0.847203\pi\)
0.843423 + 0.537250i \(0.180537\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −29.5959 −1.19537 −0.597684 0.801732i \(-0.703912\pi\)
−0.597684 + 0.801732i \(0.703912\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −17.5959 + 30.4770i −0.708385 + 1.22696i 0.257071 + 0.966393i \(0.417243\pi\)
−0.965456 + 0.260566i \(0.916091\pi\)
\(618\) 0 0
\(619\) 12.3485 + 21.3882i 0.496327 + 0.859663i 0.999991 0.00423617i \(-0.00134842\pi\)
−0.503664 + 0.863900i \(0.668015\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.82577 + 8.35847i 0.193340 + 0.334875i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −15.5959 −0.620864 −0.310432 0.950596i \(-0.600474\pi\)
−0.310432 + 0.950596i \(0.600474\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −0.174235 + 0.301783i −0.00691429 + 0.0119759i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −6.94949 12.0369i −0.274488 0.475428i 0.695518 0.718509i \(-0.255175\pi\)
−0.970006 + 0.243081i \(0.921842\pi\)
\(642\) 0 0
\(643\) 10.0732 17.4473i 0.397249 0.688055i −0.596137 0.802883i \(-0.703298\pi\)
0.993385 + 0.114828i \(0.0366317\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.55051 −0.257527 −0.128764 0.991675i \(-0.541101\pi\)
−0.128764 + 0.991675i \(0.541101\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.8990 24.0737i 0.543909 0.942078i −0.454766 0.890611i \(-0.650277\pi\)
0.998675 0.0514670i \(-0.0163897\pi\)
\(654\) 0 0
\(655\) 1.44949 + 2.51059i 0.0566363 + 0.0980969i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.10102 + 8.83523i 0.198708 + 0.344172i 0.948110 0.317944i \(-0.102992\pi\)
−0.749402 + 0.662115i \(0.769659\pi\)
\(660\) 0 0
\(661\) −5.00000 + 8.66025i −0.194477 + 0.336845i −0.946729 0.322031i \(-0.895634\pi\)
0.752252 + 0.658876i \(0.228968\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −23.7980 −0.922845
\(666\) 0 0
\(667\) 14.1464 0.547752
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 8.00000 + 13.8564i 0.308377 + 0.534125i 0.978008 0.208569i \(-0.0668807\pi\)
−0.669630 + 0.742695i \(0.733547\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.10102 + 12.2993i 0.272914 + 0.472702i 0.969607 0.244668i \(-0.0786791\pi\)
−0.696692 + 0.717370i \(0.745346\pi\)
\(678\) 0 0
\(679\) −3.44949 + 5.97469i −0.132379 + 0.229288i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −23.3939 −0.895142 −0.447571 0.894248i \(-0.647711\pi\)
−0.447571 + 0.894248i \(0.647711\pi\)
\(684\) 0 0
\(685\) −19.5959 −0.748722
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −19.4495 33.6875i −0.739893 1.28153i −0.952543 0.304404i \(-0.901543\pi\)
0.212649 0.977129i \(-0.431791\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.79796 16.9706i −0.371658 0.643730i
\(696\) 0 0
\(697\) −9.89898 + 17.1455i −0.374951 + 0.649433i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −30.3939 −1.14796 −0.573980 0.818869i \(-0.694601\pi\)
−0.573980 + 0.818869i \(0.694601\pi\)
\(702\) 0 0
\(703\) 41.3939 1.56120
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.44949 + 5.97469i −0.129731 + 0.224701i
\(708\) 0 0
\(709\) −4.84847 8.39780i −0.182088 0.315386i 0.760503 0.649334i \(-0.224952\pi\)
−0.942591 + 0.333948i \(0.891619\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −4.10102 7.10318i −0.153584 0.266016i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 28.2929 1.05515 0.527573 0.849510i \(-0.323102\pi\)
0.527573 + 0.849510i \(0.323102\pi\)
\(720\) 0 0
\(721\) 34.4949 1.28466
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −0.949490 + 1.64456i −0.0352632 + 0.0610776i
\(726\) 0 0
\(727\) 15.6237 + 27.0611i 0.579452 + 1.00364i 0.995542 + 0.0943168i \(0.0300667\pi\)
−0.416090 + 0.909323i \(0.636600\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −11.7980 20.4347i −0.436363 0.755803i
\(732\) 0 0
\(733\) 14.7980 25.6308i 0.546575 0.946696i −0.451931 0.892053i \(-0.649265\pi\)
0.998506 0.0546429i \(-0.0174020\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −33.1010 −1.21764 −0.608820 0.793308i \(-0.708357\pi\)
−0.608820 + 0.793308i \(0.708357\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.52270 + 6.10150i −0.129235 + 0.223842i −0.923381 0.383886i \(-0.874586\pi\)
0.794145 + 0.607728i \(0.207919\pi\)
\(744\) 0 0
\(745\) −10.5000 18.1865i −0.384690 0.666303i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −21.2980 36.8891i −0.778210 1.34790i
\(750\) 0 0
\(751\) −13.1010 + 22.6916i −0.478063 + 0.828029i −0.999684 0.0251480i \(-0.991994\pi\)
0.521621 + 0.853177i \(0.325328\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.0000 0.436725
\(756\) 0 0
\(757\) 31.5959 1.14837 0.574187 0.818724i \(-0.305318\pi\)
0.574187 + 0.818724i \(0.305318\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.5000 30.3109i 0.634375 1.09877i −0.352273 0.935897i \(-0.614591\pi\)
0.986647 0.162872i \(-0.0520756\pi\)
\(762\) 0 0
\(763\) 18.6237 + 32.2572i 0.674224 + 1.16779i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 2.60102 4.50510i 0.0937952 0.162458i −0.815310 0.579025i \(-0.803433\pi\)
0.909105 + 0.416567i \(0.136767\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.20204 −0.223072 −0.111536 0.993760i \(-0.535577\pi\)
−0.111536 + 0.993760i \(0.535577\pi\)
\(774\) 0 0
\(775\) 1.10102 0.0395498
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 34.1464 59.1433i 1.22342 2.11903i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 11.8990 + 20.6096i 0.424693 + 0.735589i
\(786\) 0 0
\(787\) 24.7980 42.9513i 0.883952 1.53105i 0.0370414 0.999314i \(-0.488207\pi\)
0.846910 0.531736i \(-0.178460\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 33.7980 1.20172
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −4.00000 + 6.92820i −0.141687 + 0.245410i −0.928132 0.372251i \(-0.878586\pi\)
0.786445 + 0.617661i \(0.211919\pi\)
\(798\) 0 0
\(799\)