Properties

Label 1080.2.q
Level $1080$
Weight $2$
Character orbit 1080.q
Rep. character $\chi_{1080}(361,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $24$
Newform subspaces $5$
Sturm bound $432$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.q (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 5 \)
Sturm bound: \(432\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1080, [\chi])\).

Total New Old
Modular forms 480 24 456
Cusp forms 384 24 360
Eisenstein series 96 0 96

Trace form

\( 24 q + 2 q^{5} - 2 q^{11} - 28 q^{17} - 12 q^{19} - 12 q^{25} + 6 q^{29} + 12 q^{31} + 24 q^{35} + 4 q^{41} + 18 q^{43} - 12 q^{47} - 6 q^{49} - 8 q^{53} - 2 q^{59} + 6 q^{61} + 8 q^{65} + 6 q^{67} + 8 q^{71}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1080, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1080.2.q.a 1080.q 9.c $2$ $8.624$ \(\Q(\sqrt{-3}) \) None 360.2.q.a \(0\) \(0\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q-\zeta_{6}q^{5}+(-5+5\zeta_{6})q^{11}-3q^{17}+\cdots\)
1080.2.q.b 1080.q 9.c $4$ $8.624$ \(\Q(\zeta_{12})\) None 360.2.q.b \(0\) \(0\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta_1-1)q^{5}+(\beta_{2}-2\beta_1)q^{7}+(-2\beta_{2}+2\beta_1)q^{11}+\cdots\)
1080.2.q.c 1080.q 9.c $4$ $8.624$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 360.2.q.c \(0\) \(0\) \(-2\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1+\beta _{1})q^{5}+(-\beta _{1}+\beta _{2})q^{7}+2q^{17}+\cdots\)
1080.2.q.d 1080.q 9.c $6$ $8.624$ 6.0.954288.1 None 360.2.q.d \(0\) \(0\) \(3\) \(5\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{3}q^{5}+(1-\beta _{1}-\beta _{2}-\beta _{3}-\beta _{5})q^{7}+\cdots\)
1080.2.q.e 1080.q 9.c $8$ $8.624$ 8.0.856615824.2 None 360.2.q.e \(0\) \(0\) \(4\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{1}q^{5}+\beta _{2}q^{7}+(-\beta _{2}+\beta _{6}-\beta _{7})q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1080, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1080, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(108, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(216, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 2}\)