Properties

Label 1080.2.k.d.541.4
Level $1080$
Weight $2$
Character 1080.541
Analytic conductor $8.624$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1080,2,Mod(541,1080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1080.541"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,2,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.62384341830\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: 20.0.1780383353079852270621853183383699456.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - x^{18} + 5x^{16} + 28x^{12} - 28x^{10} + 112x^{8} + 320x^{4} - 256x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 541.4
Root \(-1.19357 - 0.758543i\) of defining polynomial
Character \(\chi\) \(=\) 1080.541
Dual form 1080.2.k.d.541.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.19357 + 0.758543i) q^{2} +(0.849224 - 1.81075i) q^{4} +1.00000i q^{5} +4.63236 q^{7} +(0.359923 + 2.80543i) q^{8} +(-0.758543 - 1.19357i) q^{10} +2.39533i q^{11} +1.95421i q^{13} +(-5.52905 + 3.51385i) q^{14} +(-2.55764 - 3.07547i) q^{16} -4.76655 q^{17} +6.29155i q^{19} +(1.81075 + 0.849224i) q^{20} +(-1.81696 - 2.85900i) q^{22} +5.28106 q^{23} -1.00000 q^{25} +(-1.48235 - 2.33248i) q^{26} +(3.93391 - 8.38805i) q^{28} -0.201291i q^{29} -3.26964 q^{31} +(5.38560 + 1.73071i) q^{32} +(5.68921 - 3.61563i) q^{34} +4.63236i q^{35} -1.43969i q^{37} +(-4.77242 - 7.50942i) q^{38} +(-2.80543 + 0.359923i) q^{40} +8.53808 q^{41} -9.10390i q^{43} +(4.33735 + 2.03417i) q^{44} +(-6.30332 + 4.00591i) q^{46} -10.4923 q^{47} +14.4588 q^{49} +(1.19357 - 0.758543i) q^{50} +(3.53858 + 1.65956i) q^{52} +3.03261i q^{53} -2.39533 q^{55} +(1.66730 + 12.9958i) q^{56} +(0.152688 + 0.240255i) q^{58} +2.75805i q^{59} +8.24576i q^{61} +(3.90254 - 2.48016i) q^{62} +(-7.74091 + 2.01948i) q^{64} -1.95421 q^{65} +12.0173i q^{67} +(-4.04787 + 8.63103i) q^{68} +(-3.51385 - 5.52905i) q^{70} +0.514512 q^{71} -4.03261 q^{73} +(1.09207 + 1.71838i) q^{74} +(11.3924 + 5.34294i) q^{76} +11.0960i q^{77} -1.43832 q^{79} +(3.07547 - 2.55764i) q^{80} +(-10.1908 + 6.47650i) q^{82} -7.66497i q^{83} -4.76655i q^{85} +(6.90570 + 10.8661i) q^{86} +(-6.71994 + 0.862136i) q^{88} +9.10390 q^{89} +9.05259i q^{91} +(4.48480 - 9.56268i) q^{92} +(12.5233 - 7.95885i) q^{94} -6.29155 q^{95} -11.6927 q^{97} +(-17.2576 + 10.9676i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 2 q^{4} - 2 q^{10} - 18 q^{16} + 16 q^{22} - 20 q^{25} + 16 q^{28} + 20 q^{31} - 6 q^{34} - 4 q^{40} + 54 q^{46} + 36 q^{49} + 56 q^{52} - 72 q^{58} - 28 q^{64} - 40 q^{73} + 58 q^{76} - 4 q^{79}+ \cdots + 40 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.19357 + 0.758543i −0.843982 + 0.536371i
\(3\) 0 0
\(4\) 0.849224 1.81075i 0.424612 0.905375i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) 4.63236 1.75087 0.875434 0.483338i \(-0.160576\pi\)
0.875434 + 0.483338i \(0.160576\pi\)
\(8\) 0.359923 + 2.80543i 0.127252 + 0.991870i
\(9\) 0 0
\(10\) −0.758543 1.19357i −0.239872 0.377440i
\(11\) 2.39533i 0.722220i 0.932523 + 0.361110i \(0.117602\pi\)
−0.932523 + 0.361110i \(0.882398\pi\)
\(12\) 0 0
\(13\) 1.95421i 0.541999i 0.962579 + 0.271000i \(0.0873542\pi\)
−0.962579 + 0.271000i \(0.912646\pi\)
\(14\) −5.52905 + 3.51385i −1.47770 + 0.939115i
\(15\) 0 0
\(16\) −2.55764 3.07547i −0.639409 0.768867i
\(17\) −4.76655 −1.15606 −0.578029 0.816016i \(-0.696178\pi\)
−0.578029 + 0.816016i \(0.696178\pi\)
\(18\) 0 0
\(19\) 6.29155i 1.44338i 0.692216 + 0.721691i \(0.256635\pi\)
−0.692216 + 0.721691i \(0.743365\pi\)
\(20\) 1.81075 + 0.849224i 0.404896 + 0.189892i
\(21\) 0 0
\(22\) −1.81696 2.85900i −0.387378 0.609541i
\(23\) 5.28106 1.10118 0.550589 0.834777i \(-0.314403\pi\)
0.550589 + 0.834777i \(0.314403\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −1.48235 2.33248i −0.290713 0.457438i
\(27\) 0 0
\(28\) 3.93391 8.38805i 0.743439 1.58519i
\(29\) 0.201291i 0.0373787i −0.999825 0.0186894i \(-0.994051\pi\)
0.999825 0.0186894i \(-0.00594935\pi\)
\(30\) 0 0
\(31\) −3.26964 −0.587244 −0.293622 0.955922i \(-0.594861\pi\)
−0.293622 + 0.955922i \(0.594861\pi\)
\(32\) 5.38560 + 1.73071i 0.952048 + 0.305949i
\(33\) 0 0
\(34\) 5.68921 3.61563i 0.975692 0.620076i
\(35\) 4.63236i 0.783012i
\(36\) 0 0
\(37\) 1.43969i 0.236684i −0.992973 0.118342i \(-0.962242\pi\)
0.992973 0.118342i \(-0.0377580\pi\)
\(38\) −4.77242 7.50942i −0.774188 1.21819i
\(39\) 0 0
\(40\) −2.80543 + 0.359923i −0.443578 + 0.0569089i
\(41\) 8.53808 1.33342 0.666712 0.745316i \(-0.267701\pi\)
0.666712 + 0.745316i \(0.267701\pi\)
\(42\) 0 0
\(43\) 9.10390i 1.38833i −0.719815 0.694166i \(-0.755774\pi\)
0.719815 0.694166i \(-0.244226\pi\)
\(44\) 4.33735 + 2.03417i 0.653880 + 0.306663i
\(45\) 0 0
\(46\) −6.30332 + 4.00591i −0.929374 + 0.590640i
\(47\) −10.4923 −1.53046 −0.765228 0.643759i \(-0.777374\pi\)
−0.765228 + 0.643759i \(0.777374\pi\)
\(48\) 0 0
\(49\) 14.4588 2.06554
\(50\) 1.19357 0.758543i 0.168796 0.107274i
\(51\) 0 0
\(52\) 3.53858 + 1.65956i 0.490713 + 0.230139i
\(53\) 3.03261i 0.416561i 0.978069 + 0.208280i \(0.0667867\pi\)
−0.978069 + 0.208280i \(0.933213\pi\)
\(54\) 0 0
\(55\) −2.39533 −0.322986
\(56\) 1.66730 + 12.9958i 0.222802 + 1.73663i
\(57\) 0 0
\(58\) 0.152688 + 0.240255i 0.0200489 + 0.0315470i
\(59\) 2.75805i 0.359068i 0.983752 + 0.179534i \(0.0574590\pi\)
−0.983752 + 0.179534i \(0.942541\pi\)
\(60\) 0 0
\(61\) 8.24576i 1.05576i 0.849319 + 0.527881i \(0.177013\pi\)
−0.849319 + 0.527881i \(0.822987\pi\)
\(62\) 3.90254 2.48016i 0.495624 0.314981i
\(63\) 0 0
\(64\) −7.74091 + 2.01948i −0.967614 + 0.252435i
\(65\) −1.95421 −0.242389
\(66\) 0 0
\(67\) 12.0173i 1.46815i 0.679071 + 0.734073i \(0.262383\pi\)
−0.679071 + 0.734073i \(0.737617\pi\)
\(68\) −4.04787 + 8.63103i −0.490876 + 1.04667i
\(69\) 0 0
\(70\) −3.51385 5.52905i −0.419985 0.660848i
\(71\) 0.514512 0.0610614 0.0305307 0.999534i \(-0.490280\pi\)
0.0305307 + 0.999534i \(0.490280\pi\)
\(72\) 0 0
\(73\) −4.03261 −0.471981 −0.235991 0.971755i \(-0.575833\pi\)
−0.235991 + 0.971755i \(0.575833\pi\)
\(74\) 1.09207 + 1.71838i 0.126951 + 0.199757i
\(75\) 0 0
\(76\) 11.3924 + 5.34294i 1.30680 + 0.612877i
\(77\) 11.0960i 1.26451i
\(78\) 0 0
\(79\) −1.43832 −0.161824 −0.0809118 0.996721i \(-0.525783\pi\)
−0.0809118 + 0.996721i \(0.525783\pi\)
\(80\) 3.07547 2.55764i 0.343848 0.285952i
\(81\) 0 0
\(82\) −10.1908 + 6.47650i −1.12539 + 0.715210i
\(83\) 7.66497i 0.841340i −0.907214 0.420670i \(-0.861795\pi\)
0.907214 0.420670i \(-0.138205\pi\)
\(84\) 0 0
\(85\) 4.76655i 0.517005i
\(86\) 6.90570 + 10.8661i 0.744661 + 1.17173i
\(87\) 0 0
\(88\) −6.71994 + 0.862136i −0.716348 + 0.0919040i
\(89\) 9.10390 0.965011 0.482506 0.875893i \(-0.339727\pi\)
0.482506 + 0.875893i \(0.339727\pi\)
\(90\) 0 0
\(91\) 9.05259i 0.948969i
\(92\) 4.48480 9.56268i 0.467573 0.996979i
\(93\) 0 0
\(94\) 12.5233 7.95885i 1.29168 0.820893i
\(95\) −6.29155 −0.645500
\(96\) 0 0
\(97\) −11.6927 −1.18721 −0.593605 0.804757i \(-0.702296\pi\)
−0.593605 + 0.804757i \(0.702296\pi\)
\(98\) −17.2576 + 10.9676i −1.74328 + 1.10789i
\(99\) 0 0
\(100\) −0.849224 + 1.81075i −0.0849224 + 0.181075i
\(101\) 17.6958i 1.76080i 0.474235 + 0.880398i \(0.342725\pi\)
−0.474235 + 0.880398i \(0.657275\pi\)
\(102\) 0 0
\(103\) 18.4865 1.82152 0.910762 0.412931i \(-0.135495\pi\)
0.910762 + 0.412931i \(0.135495\pi\)
\(104\) −5.48240 + 0.703365i −0.537593 + 0.0689706i
\(105\) 0 0
\(106\) −2.30036 3.61963i −0.223431 0.351570i
\(107\) 8.66810i 0.837977i −0.907992 0.418988i \(-0.862385\pi\)
0.907992 0.418988i \(-0.137615\pi\)
\(108\) 0 0
\(109\) 3.37816i 0.323569i −0.986826 0.161785i \(-0.948275\pi\)
0.986826 0.161785i \(-0.0517250\pi\)
\(110\) 2.85900 1.81696i 0.272595 0.173241i
\(111\) 0 0
\(112\) −11.8479 14.2467i −1.11952 1.34618i
\(113\) 11.0736 1.04171 0.520857 0.853644i \(-0.325612\pi\)
0.520857 + 0.853644i \(0.325612\pi\)
\(114\) 0 0
\(115\) 5.28106i 0.492461i
\(116\) −0.364487 0.170941i −0.0338418 0.0158715i
\(117\) 0 0
\(118\) −2.09210 3.29193i −0.192594 0.303047i
\(119\) −22.0804 −2.02410
\(120\) 0 0
\(121\) 5.26239 0.478399
\(122\) −6.25477 9.84190i −0.566280 0.891044i
\(123\) 0 0
\(124\) −2.77665 + 5.92050i −0.249351 + 0.531676i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −20.4865 −1.81788 −0.908939 0.416928i \(-0.863107\pi\)
−0.908939 + 0.416928i \(0.863107\pi\)
\(128\) 7.70746 8.28221i 0.681250 0.732051i
\(129\) 0 0
\(130\) 2.33248 1.48235i 0.204572 0.130011i
\(131\) 13.2901i 1.16116i −0.814203 0.580580i \(-0.802826\pi\)
0.814203 0.580580i \(-0.197174\pi\)
\(132\) 0 0
\(133\) 29.1447i 2.52717i
\(134\) −9.11563 14.3435i −0.787471 1.23909i
\(135\) 0 0
\(136\) −1.71559 13.3722i −0.147111 1.14666i
\(137\) 5.26253 0.449608 0.224804 0.974404i \(-0.427826\pi\)
0.224804 + 0.974404i \(0.427826\pi\)
\(138\) 0 0
\(139\) 22.9901i 1.94999i 0.222220 + 0.974996i \(0.428670\pi\)
−0.222220 + 0.974996i \(0.571330\pi\)
\(140\) 8.38805 + 3.93391i 0.708920 + 0.332476i
\(141\) 0 0
\(142\) −0.614107 + 0.390280i −0.0515347 + 0.0327516i
\(143\) −4.68097 −0.391443
\(144\) 0 0
\(145\) 0.201291 0.0167163
\(146\) 4.81320 3.05891i 0.398344 0.253157i
\(147\) 0 0
\(148\) −2.60693 1.22262i −0.214288 0.100499i
\(149\) 5.79871i 0.475049i 0.971382 + 0.237524i \(0.0763360\pi\)
−0.971382 + 0.237524i \(0.923664\pi\)
\(150\) 0 0
\(151\) 18.2924 1.48862 0.744308 0.667837i \(-0.232780\pi\)
0.744308 + 0.667837i \(0.232780\pi\)
\(152\) −17.6505 + 2.26448i −1.43165 + 0.183673i
\(153\) 0 0
\(154\) −8.41683 13.2439i −0.678247 1.06722i
\(155\) 3.26964i 0.262624i
\(156\) 0 0
\(157\) 12.5163i 0.998912i 0.866339 + 0.499456i \(0.166467\pi\)
−0.866339 + 0.499456i \(0.833533\pi\)
\(158\) 1.71674 1.09103i 0.136576 0.0867975i
\(159\) 0 0
\(160\) −1.73071 + 5.38560i −0.136825 + 0.425769i
\(161\) 24.4638 1.92802
\(162\) 0 0
\(163\) 7.07985i 0.554537i −0.960793 0.277268i \(-0.910571\pi\)
0.960793 0.277268i \(-0.0894291\pi\)
\(164\) 7.25074 15.4603i 0.566188 1.20725i
\(165\) 0 0
\(166\) 5.81421 + 9.14869i 0.451270 + 0.710076i
\(167\) −23.4190 −1.81222 −0.906109 0.423045i \(-0.860961\pi\)
−0.906109 + 0.423045i \(0.860961\pi\)
\(168\) 0 0
\(169\) 9.18108 0.706237
\(170\) 3.61563 + 5.68921i 0.277306 + 0.436343i
\(171\) 0 0
\(172\) −16.4849 7.73125i −1.25696 0.589502i
\(173\) 5.99508i 0.455798i −0.973685 0.227899i \(-0.926814\pi\)
0.973685 0.227899i \(-0.0731856\pi\)
\(174\) 0 0
\(175\) −4.63236 −0.350174
\(176\) 7.36676 6.12639i 0.555291 0.461794i
\(177\) 0 0
\(178\) −10.8661 + 6.90570i −0.814452 + 0.517604i
\(179\) 18.0554i 1.34952i −0.738036 0.674761i \(-0.764247\pi\)
0.738036 0.674761i \(-0.235753\pi\)
\(180\) 0 0
\(181\) 5.28106i 0.392538i 0.980550 + 0.196269i \(0.0628826\pi\)
−0.980550 + 0.196269i \(0.937117\pi\)
\(182\) −6.86678 10.8049i −0.509000 0.800913i
\(183\) 0 0
\(184\) 1.90078 + 14.8157i 0.140127 + 1.09223i
\(185\) 1.43969 0.105848
\(186\) 0 0
\(187\) 11.4175i 0.834928i
\(188\) −8.91030 + 18.9989i −0.649850 + 1.38564i
\(189\) 0 0
\(190\) 7.50942 4.77242i 0.544790 0.346227i
\(191\) −4.48971 −0.324864 −0.162432 0.986720i \(-0.551934\pi\)
−0.162432 + 0.986720i \(0.551934\pi\)
\(192\) 0 0
\(193\) −0.869389 −0.0625800 −0.0312900 0.999510i \(-0.509962\pi\)
−0.0312900 + 0.999510i \(0.509962\pi\)
\(194\) 13.9560 8.86939i 1.00198 0.636785i
\(195\) 0 0
\(196\) 12.2787 26.1812i 0.877052 1.87009i
\(197\) 15.8134i 1.12666i −0.826232 0.563330i \(-0.809520\pi\)
0.826232 0.563330i \(-0.190480\pi\)
\(198\) 0 0
\(199\) 11.2679 0.798757 0.399378 0.916786i \(-0.369226\pi\)
0.399378 + 0.916786i \(0.369226\pi\)
\(200\) −0.359923 2.80543i −0.0254504 0.198374i
\(201\) 0 0
\(202\) −13.4230 21.1212i −0.944441 1.48608i
\(203\) 0.932450i 0.0654452i
\(204\) 0 0
\(205\) 8.53808i 0.596325i
\(206\) −22.0649 + 14.0228i −1.53733 + 0.977013i
\(207\) 0 0
\(208\) 6.01010 4.99815i 0.416725 0.346559i
\(209\) −15.0704 −1.04244
\(210\) 0 0
\(211\) 5.78010i 0.397919i −0.980008 0.198959i \(-0.936244\pi\)
0.980008 0.198959i \(-0.0637561\pi\)
\(212\) 5.49130 + 2.57536i 0.377144 + 0.176877i
\(213\) 0 0
\(214\) 6.57513 + 10.3460i 0.449466 + 0.707237i
\(215\) 9.10390 0.620881
\(216\) 0 0
\(217\) −15.1461 −1.02819
\(218\) 2.56248 + 4.03208i 0.173553 + 0.273087i
\(219\) 0 0
\(220\) −2.03417 + 4.33735i −0.137144 + 0.292424i
\(221\) 9.31482i 0.626583i
\(222\) 0 0
\(223\) 9.30304 0.622978 0.311489 0.950250i \(-0.399172\pi\)
0.311489 + 0.950250i \(0.399172\pi\)
\(224\) 24.9480 + 8.01727i 1.66691 + 0.535676i
\(225\) 0 0
\(226\) −13.2171 + 8.39979i −0.879188 + 0.558745i
\(227\) 2.59429i 0.172189i −0.996287 0.0860945i \(-0.972561\pi\)
0.996287 0.0860945i \(-0.0274387\pi\)
\(228\) 0 0
\(229\) 25.4072i 1.67896i −0.543393 0.839478i \(-0.682861\pi\)
0.543393 0.839478i \(-0.317139\pi\)
\(230\) −4.00591 6.30332i −0.264142 0.415629i
\(231\) 0 0
\(232\) 0.564707 0.0724492i 0.0370748 0.00475652i
\(233\) 27.9430 1.83061 0.915303 0.402766i \(-0.131951\pi\)
0.915303 + 0.402766i \(0.131951\pi\)
\(234\) 0 0
\(235\) 10.4923i 0.684441i
\(236\) 4.99415 + 2.34221i 0.325091 + 0.152465i
\(237\) 0 0
\(238\) 26.3545 16.7489i 1.70831 1.08567i
\(239\) −11.4515 −0.740734 −0.370367 0.928886i \(-0.620768\pi\)
−0.370367 + 0.928886i \(0.620768\pi\)
\(240\) 0 0
\(241\) 14.0707 0.906372 0.453186 0.891416i \(-0.350287\pi\)
0.453186 + 0.891416i \(0.350287\pi\)
\(242\) −6.28103 + 3.99175i −0.403760 + 0.256599i
\(243\) 0 0
\(244\) 14.9310 + 7.00250i 0.955860 + 0.448289i
\(245\) 14.4588i 0.923736i
\(246\) 0 0
\(247\) −12.2950 −0.782312
\(248\) −1.17682 9.17275i −0.0747281 0.582470i
\(249\) 0 0
\(250\) 0.758543 + 1.19357i 0.0479745 + 0.0754881i
\(251\) 0.402581i 0.0254107i 0.999919 + 0.0127053i \(0.00404435\pi\)
−0.999919 + 0.0127053i \(0.995956\pi\)
\(252\) 0 0
\(253\) 12.6499i 0.795292i
\(254\) 24.4520 15.5399i 1.53426 0.975058i
\(255\) 0 0
\(256\) −2.91699 + 15.7319i −0.182312 + 0.983241i
\(257\) 26.4022 1.64693 0.823463 0.567369i \(-0.192039\pi\)
0.823463 + 0.567369i \(0.192039\pi\)
\(258\) 0 0
\(259\) 6.66918i 0.414403i
\(260\) −1.65956 + 3.53858i −0.102921 + 0.219453i
\(261\) 0 0
\(262\) 10.0811 + 15.8627i 0.622812 + 0.979998i
\(263\) 2.96470 0.182811 0.0914056 0.995814i \(-0.470864\pi\)
0.0914056 + 0.995814i \(0.470864\pi\)
\(264\) 0 0
\(265\) −3.03261 −0.186292
\(266\) −22.1076 34.7863i −1.35550 2.13289i
\(267\) 0 0
\(268\) 21.7603 + 10.2054i 1.32922 + 0.623392i
\(269\) 12.5294i 0.763933i 0.924176 + 0.381967i \(0.124753\pi\)
−0.924176 + 0.381967i \(0.875247\pi\)
\(270\) 0 0
\(271\) −16.0634 −0.975784 −0.487892 0.872904i \(-0.662234\pi\)
−0.487892 + 0.872904i \(0.662234\pi\)
\(272\) 12.1911 + 14.6594i 0.739194 + 0.888854i
\(273\) 0 0
\(274\) −6.28120 + 3.99186i −0.379461 + 0.241157i
\(275\) 2.39533i 0.144444i
\(276\) 0 0
\(277\) 19.5807i 1.17649i −0.808683 0.588245i \(-0.799819\pi\)
0.808683 0.588245i \(-0.200181\pi\)
\(278\) −17.4390 27.4403i −1.04592 1.64576i
\(279\) 0 0
\(280\) −12.9958 + 1.66730i −0.776646 + 0.0996400i
\(281\) −4.33761 −0.258760 −0.129380 0.991595i \(-0.541299\pi\)
−0.129380 + 0.991595i \(0.541299\pi\)
\(282\) 0 0
\(283\) 13.4755i 0.801036i −0.916289 0.400518i \(-0.868830\pi\)
0.916289 0.400518i \(-0.131170\pi\)
\(284\) 0.436936 0.931654i 0.0259274 0.0552835i
\(285\) 0 0
\(286\) 5.58707 3.55072i 0.330371 0.209958i
\(287\) 39.5514 2.33465
\(288\) 0 0
\(289\) 5.71998 0.336470
\(290\) −0.240255 + 0.152688i −0.0141082 + 0.00896613i
\(291\) 0 0
\(292\) −3.42459 + 7.30205i −0.200409 + 0.427320i
\(293\) 17.8134i 1.04067i −0.853962 0.520336i \(-0.825807\pi\)
0.853962 0.520336i \(-0.174193\pi\)
\(294\) 0 0
\(295\) −2.75805 −0.160580
\(296\) 4.03897 0.518180i 0.234760 0.0301186i
\(297\) 0 0
\(298\) −4.39857 6.92117i −0.254802 0.400933i
\(299\) 10.3203i 0.596837i
\(300\) 0 0
\(301\) 42.1725i 2.43078i
\(302\) −21.8333 + 13.8756i −1.25636 + 0.798450i
\(303\) 0 0
\(304\) 19.3495 16.0915i 1.10977 0.922911i
\(305\) −8.24576 −0.472151
\(306\) 0 0
\(307\) 20.3999i 1.16429i −0.813087 0.582143i \(-0.802214\pi\)
0.813087 0.582143i \(-0.197786\pi\)
\(308\) 20.0922 + 9.42302i 1.14486 + 0.536927i
\(309\) 0 0
\(310\) 2.48016 + 3.90254i 0.140864 + 0.221650i
\(311\) 19.8854 1.12760 0.563799 0.825912i \(-0.309339\pi\)
0.563799 + 0.825912i \(0.309339\pi\)
\(312\) 0 0
\(313\) −24.6108 −1.39108 −0.695541 0.718486i \(-0.744835\pi\)
−0.695541 + 0.718486i \(0.744835\pi\)
\(314\) −9.49418 14.9391i −0.535787 0.843064i
\(315\) 0 0
\(316\) −1.22146 + 2.60444i −0.0687122 + 0.146511i
\(317\) 19.3250i 1.08540i −0.839926 0.542701i \(-0.817402\pi\)
0.839926 0.542701i \(-0.182598\pi\)
\(318\) 0 0
\(319\) 0.482158 0.0269956
\(320\) −2.01948 7.74091i −0.112893 0.432730i
\(321\) 0 0
\(322\) −29.1993 + 18.5568i −1.62721 + 1.03413i
\(323\) 29.9890i 1.66863i
\(324\) 0 0
\(325\) 1.95421i 0.108400i
\(326\) 5.37037 + 8.45031i 0.297437 + 0.468019i
\(327\) 0 0
\(328\) 3.07305 + 23.9530i 0.169681 + 1.32258i
\(329\) −48.6040 −2.67963
\(330\) 0 0
\(331\) 5.91393i 0.325059i 0.986704 + 0.162529i \(0.0519652\pi\)
−0.986704 + 0.162529i \(0.948035\pi\)
\(332\) −13.8793 6.50928i −0.761728 0.357243i
\(333\) 0 0
\(334\) 27.9523 17.7643i 1.52948 0.972021i
\(335\) −12.0173 −0.656575
\(336\) 0 0
\(337\) 31.9081 1.73814 0.869072 0.494686i \(-0.164717\pi\)
0.869072 + 0.494686i \(0.164717\pi\)
\(338\) −10.9583 + 6.96425i −0.596051 + 0.378805i
\(339\) 0 0
\(340\) −8.63103 4.04787i −0.468083 0.219526i
\(341\) 7.83186i 0.424119i
\(342\) 0 0
\(343\) 34.5517 1.86561
\(344\) 25.5404 3.27671i 1.37704 0.176668i
\(345\) 0 0
\(346\) 4.54753 + 7.15556i 0.244477 + 0.384685i
\(347\) 25.0004i 1.34209i −0.741417 0.671045i \(-0.765846\pi\)
0.741417 0.671045i \(-0.234154\pi\)
\(348\) 0 0
\(349\) 6.22477i 0.333204i −0.986024 0.166602i \(-0.946720\pi\)
0.986024 0.166602i \(-0.0532796\pi\)
\(350\) 5.52905 3.51385i 0.295540 0.187823i
\(351\) 0 0
\(352\) −4.14562 + 12.9003i −0.220962 + 0.687588i
\(353\) −5.92940 −0.315590 −0.157795 0.987472i \(-0.550439\pi\)
−0.157795 + 0.987472i \(0.550439\pi\)
\(354\) 0 0
\(355\) 0.514512i 0.0273075i
\(356\) 7.73125 16.4849i 0.409755 0.873697i
\(357\) 0 0
\(358\) 13.6958 + 21.5504i 0.723845 + 1.13897i
\(359\) −28.4933 −1.50382 −0.751910 0.659265i \(-0.770867\pi\)
−0.751910 + 0.659265i \(0.770867\pi\)
\(360\) 0 0
\(361\) −20.5837 −1.08335
\(362\) −4.00591 6.30332i −0.210546 0.331295i
\(363\) 0 0
\(364\) 16.3920 + 7.68768i 0.859173 + 0.402944i
\(365\) 4.03261i 0.211076i
\(366\) 0 0
\(367\) −17.8541 −0.931976 −0.465988 0.884791i \(-0.654301\pi\)
−0.465988 + 0.884791i \(0.654301\pi\)
\(368\) −13.5070 16.2417i −0.704103 0.846658i
\(369\) 0 0
\(370\) −1.71838 + 1.09207i −0.0893342 + 0.0567740i
\(371\) 14.0481i 0.729343i
\(372\) 0 0
\(373\) 7.06438i 0.365780i 0.983133 + 0.182890i \(0.0585452\pi\)
−0.983133 + 0.182890i \(0.941455\pi\)
\(374\) 8.66064 + 13.6276i 0.447831 + 0.704664i
\(375\) 0 0
\(376\) −3.77642 29.4354i −0.194754 1.51801i
\(377\) 0.393363 0.0202592
\(378\) 0 0
\(379\) 4.76655i 0.244841i −0.992478 0.122421i \(-0.960934\pi\)
0.992478 0.122421i \(-0.0390657\pi\)
\(380\) −5.34294 + 11.3924i −0.274087 + 0.584420i
\(381\) 0 0
\(382\) 5.35878 3.40564i 0.274179 0.174248i
\(383\) 5.36637 0.274209 0.137104 0.990557i \(-0.456220\pi\)
0.137104 + 0.990557i \(0.456220\pi\)
\(384\) 0 0
\(385\) −11.0960 −0.565506
\(386\) 1.03768 0.659469i 0.0528164 0.0335661i
\(387\) 0 0
\(388\) −9.92969 + 21.1725i −0.504104 + 1.07487i
\(389\) 31.9686i 1.62087i 0.585828 + 0.810435i \(0.300769\pi\)
−0.585828 + 0.810435i \(0.699231\pi\)
\(390\) 0 0
\(391\) −25.1724 −1.27302
\(392\) 5.20405 + 40.5631i 0.262844 + 2.04875i
\(393\) 0 0
\(394\) 11.9952 + 18.8745i 0.604308 + 0.950882i
\(395\) 1.43832i 0.0723697i
\(396\) 0 0
\(397\) 18.9244i 0.949789i −0.880043 0.474894i \(-0.842486\pi\)
0.880043 0.474894i \(-0.157514\pi\)
\(398\) −13.4490 + 8.54715i −0.674137 + 0.428430i
\(399\) 0 0
\(400\) 2.55764 + 3.07547i 0.127882 + 0.153773i
\(401\) −2.17947 −0.108838 −0.0544189 0.998518i \(-0.517331\pi\)
−0.0544189 + 0.998518i \(0.517331\pi\)
\(402\) 0 0
\(403\) 6.38955i 0.318286i
\(404\) 32.0427 + 15.0277i 1.59418 + 0.747656i
\(405\) 0 0
\(406\) 0.707304 + 1.11295i 0.0351029 + 0.0552346i
\(407\) 3.44854 0.170938
\(408\) 0 0
\(409\) −3.78279 −0.187047 −0.0935236 0.995617i \(-0.529813\pi\)
−0.0935236 + 0.995617i \(0.529813\pi\)
\(410\) −6.47650 10.1908i −0.319852 0.503288i
\(411\) 0 0
\(412\) 15.6991 33.4744i 0.773441 1.64916i
\(413\) 12.7763i 0.628681i
\(414\) 0 0
\(415\) 7.66497 0.376259
\(416\) −3.38216 + 10.5246i −0.165824 + 0.516009i
\(417\) 0 0
\(418\) 17.9875 11.4315i 0.879800 0.559134i
\(419\) 28.0481i 1.37024i 0.728430 + 0.685120i \(0.240250\pi\)
−0.728430 + 0.685120i \(0.759750\pi\)
\(420\) 0 0
\(421\) 28.3719i 1.38276i −0.722490 0.691381i \(-0.757002\pi\)
0.722490 0.691381i \(-0.242998\pi\)
\(422\) 4.38446 + 6.89896i 0.213432 + 0.335836i
\(423\) 0 0
\(424\) −8.50778 + 1.09151i −0.413174 + 0.0530083i
\(425\) 4.76655 0.231212
\(426\) 0 0
\(427\) 38.1973i 1.84850i
\(428\) −15.6958 7.36116i −0.758683 0.355815i
\(429\) 0 0
\(430\) −10.8661 + 6.90570i −0.524012 + 0.333022i
\(431\) −15.2246 −0.733341 −0.366671 0.930351i \(-0.619502\pi\)
−0.366671 + 0.930351i \(0.619502\pi\)
\(432\) 0 0
\(433\) 21.1508 1.01644 0.508221 0.861226i \(-0.330303\pi\)
0.508221 + 0.861226i \(0.330303\pi\)
\(434\) 18.0780 11.4890i 0.867771 0.551490i
\(435\) 0 0
\(436\) −6.11701 2.86882i −0.292952 0.137391i
\(437\) 33.2261i 1.58942i
\(438\) 0 0
\(439\) 6.54732 0.312487 0.156243 0.987719i \(-0.450062\pi\)
0.156243 + 0.987719i \(0.450062\pi\)
\(440\) −0.862136 6.71994i −0.0411007 0.320361i
\(441\) 0 0
\(442\) 7.06569 + 11.1179i 0.336081 + 0.528825i
\(443\) 24.2042i 1.14998i 0.818161 + 0.574989i \(0.194994\pi\)
−0.818161 + 0.574989i \(0.805006\pi\)
\(444\) 0 0
\(445\) 9.10390i 0.431566i
\(446\) −11.1038 + 7.05676i −0.525782 + 0.334147i
\(447\) 0 0
\(448\) −35.8587 + 9.35497i −1.69416 + 0.441981i
\(449\) 1.56084 0.0736607 0.0368304 0.999322i \(-0.488274\pi\)
0.0368304 + 0.999322i \(0.488274\pi\)
\(450\) 0 0
\(451\) 20.4515i 0.963024i
\(452\) 9.40395 20.0515i 0.442324 0.943143i
\(453\) 0 0
\(454\) 1.96788 + 3.09647i 0.0923572 + 0.145324i
\(455\) −9.05259 −0.424392
\(456\) 0 0
\(457\) −9.16948 −0.428930 −0.214465 0.976732i \(-0.568801\pi\)
−0.214465 + 0.976732i \(0.568801\pi\)
\(458\) 19.2725 + 30.3253i 0.900544 + 1.41701i
\(459\) 0 0
\(460\) 9.56268 + 4.48480i 0.445862 + 0.209105i
\(461\) 11.0563i 0.514944i −0.966286 0.257472i \(-0.917110\pi\)
0.966286 0.257472i \(-0.0828895\pi\)
\(462\) 0 0
\(463\) −34.4988 −1.60330 −0.801649 0.597795i \(-0.796044\pi\)
−0.801649 + 0.597795i \(0.796044\pi\)
\(464\) −0.619062 + 0.514828i −0.0287393 + 0.0239003i
\(465\) 0 0
\(466\) −33.3519 + 21.1960i −1.54500 + 0.981884i
\(467\) 38.8495i 1.79774i 0.438213 + 0.898871i \(0.355612\pi\)
−0.438213 + 0.898871i \(0.644388\pi\)
\(468\) 0 0
\(469\) 55.6684i 2.57053i
\(470\) 7.95885 + 12.5233i 0.367114 + 0.577656i
\(471\) 0 0
\(472\) −7.73754 + 0.992689i −0.356149 + 0.0456922i
\(473\) 21.8068 1.00268
\(474\) 0 0
\(475\) 6.29155i 0.288676i
\(476\) −18.7512 + 39.9820i −0.859459 + 1.83257i
\(477\) 0 0
\(478\) 13.6681 8.68643i 0.625166 0.397308i
\(479\) −28.4575 −1.30026 −0.650128 0.759825i \(-0.725285\pi\)
−0.650128 + 0.759825i \(0.725285\pi\)
\(480\) 0 0
\(481\) 2.81346 0.128283
\(482\) −16.7944 + 10.6732i −0.764962 + 0.486152i
\(483\) 0 0
\(484\) 4.46895 9.52887i 0.203134 0.433131i
\(485\) 11.6927i 0.530936i
\(486\) 0 0
\(487\) −10.9552 −0.496429 −0.248214 0.968705i \(-0.579844\pi\)
−0.248214 + 0.968705i \(0.579844\pi\)
\(488\) −23.1329 + 2.96784i −1.04718 + 0.134348i
\(489\) 0 0
\(490\) −10.9676 17.2576i −0.495466 0.779617i
\(491\) 25.9440i 1.17084i −0.810731 0.585419i \(-0.800930\pi\)
0.810731 0.585419i \(-0.199070\pi\)
\(492\) 0 0
\(493\) 0.959461i 0.0432120i
\(494\) 14.6750 9.32629i 0.660257 0.419609i
\(495\) 0 0
\(496\) 8.36254 + 10.0557i 0.375489 + 0.451512i
\(497\) 2.38341 0.106910
\(498\) 0 0
\(499\) 20.5554i 0.920184i −0.887871 0.460092i \(-0.847816\pi\)
0.887871 0.460092i \(-0.152184\pi\)
\(500\) −1.81075 0.849224i −0.0809792 0.0379785i
\(501\) 0 0
\(502\) −0.305375 0.480509i −0.0136296 0.0214462i
\(503\) −3.22301 −0.143707 −0.0718535 0.997415i \(-0.522891\pi\)
−0.0718535 + 0.997415i \(0.522891\pi\)
\(504\) 0 0
\(505\) −17.6958 −0.787452
\(506\) −9.59549 15.0985i −0.426572 0.671212i
\(507\) 0 0
\(508\) −17.3976 + 37.0959i −0.771893 + 1.64586i
\(509\) 2.88647i 0.127941i −0.997952 0.0639703i \(-0.979624\pi\)
0.997952 0.0639703i \(-0.0203763\pi\)
\(510\) 0 0
\(511\) −18.6805 −0.826376
\(512\) −8.45166 20.9897i −0.373514 0.927625i
\(513\) 0 0
\(514\) −31.5130 + 20.0272i −1.38998 + 0.883364i
\(515\) 18.4865i 0.814610i
\(516\) 0 0
\(517\) 25.1325i 1.10533i
\(518\) 5.05886 + 7.96014i 0.222274 + 0.349749i
\(519\) 0 0
\(520\) −0.703365 5.48240i −0.0308446 0.240419i
\(521\) −13.3049 −0.582898 −0.291449 0.956586i \(-0.594137\pi\)
−0.291449 + 0.956586i \(0.594137\pi\)
\(522\) 0 0
\(523\) 34.2889i 1.49935i −0.661806 0.749675i \(-0.730210\pi\)
0.661806 0.749675i \(-0.269790\pi\)
\(524\) −24.0650 11.2863i −1.05129 0.493042i
\(525\) 0 0
\(526\) −3.53858 + 2.24885i −0.154289 + 0.0980547i
\(527\) 15.5849 0.678888
\(528\) 0 0
\(529\) 4.88960 0.212591
\(530\) 3.61963 2.30036i 0.157227 0.0999215i
\(531\) 0 0
\(532\) 52.7739 + 24.7504i 2.28804 + 1.07307i
\(533\) 16.6852i 0.722715i
\(534\) 0 0
\(535\) 8.66810 0.374755
\(536\) −33.7137 + 4.32530i −1.45621 + 0.186825i
\(537\) 0 0
\(538\) −9.50412 14.9548i −0.409752 0.644746i
\(539\) 34.6335i 1.49177i
\(540\) 0 0
\(541\) 15.5478i 0.668453i −0.942493 0.334226i \(-0.891525\pi\)
0.942493 0.334226i \(-0.108475\pi\)
\(542\) 19.1728 12.1848i 0.823544 0.523382i
\(543\) 0 0
\(544\) −25.6707 8.24951i −1.10062 0.353695i
\(545\) 3.37816 0.144705
\(546\) 0 0
\(547\) 5.65869i 0.241948i −0.992656 0.120974i \(-0.961398\pi\)
0.992656 0.120974i \(-0.0386018\pi\)
\(548\) 4.46907 9.52913i 0.190909 0.407064i
\(549\) 0 0
\(550\) 1.81696 + 2.85900i 0.0774755 + 0.121908i
\(551\) 1.26643 0.0539518
\(552\) 0 0
\(553\) −6.66281 −0.283332
\(554\) 14.8528 + 23.3710i 0.631036 + 0.992937i
\(555\) 0 0
\(556\) 41.6293 + 19.5237i 1.76548 + 0.827991i
\(557\) 5.26159i 0.222941i 0.993768 + 0.111470i \(0.0355560\pi\)
−0.993768 + 0.111470i \(0.964444\pi\)
\(558\) 0 0
\(559\) 17.7909 0.752475
\(560\) 14.2467 11.8479i 0.602032 0.500665i
\(561\) 0 0
\(562\) 5.17725 3.29027i 0.218389 0.138792i
\(563\) 0.523609i 0.0220675i 0.999939 + 0.0110337i \(0.00351222\pi\)
−0.999939 + 0.0110337i \(0.996488\pi\)
\(564\) 0 0
\(565\) 11.0736i 0.465869i
\(566\) 10.2218 + 16.0840i 0.429653 + 0.676060i
\(567\) 0 0
\(568\) 0.185185 + 1.44343i 0.00777019 + 0.0605650i
\(569\) 10.8202 0.453605 0.226803 0.973941i \(-0.427173\pi\)
0.226803 + 0.973941i \(0.427173\pi\)
\(570\) 0 0
\(571\) 45.7061i 1.91274i 0.292156 + 0.956371i \(0.405628\pi\)
−0.292156 + 0.956371i \(0.594372\pi\)
\(572\) −3.97519 + 8.47607i −0.166211 + 0.354402i
\(573\) 0 0
\(574\) −47.2075 + 30.0015i −1.97040 + 1.25224i
\(575\) −5.28106 −0.220235
\(576\) 0 0
\(577\) −18.5983 −0.774259 −0.387129 0.922025i \(-0.626533\pi\)
−0.387129 + 0.922025i \(0.626533\pi\)
\(578\) −6.82721 + 4.33886i −0.283974 + 0.180473i
\(579\) 0 0
\(580\) 0.170941 0.364487i 0.00709793 0.0151345i
\(581\) 35.5069i 1.47307i
\(582\) 0 0
\(583\) −7.26410 −0.300848
\(584\) −1.45143 11.3132i −0.0600606 0.468144i
\(585\) 0 0
\(586\) 13.5123 + 21.2616i 0.558186 + 0.878309i
\(587\) 32.9752i 1.36103i −0.732732 0.680517i \(-0.761755\pi\)
0.732732 0.680517i \(-0.238245\pi\)
\(588\) 0 0
\(589\) 20.5711i 0.847617i
\(590\) 3.29193 2.09210i 0.135527 0.0861306i
\(591\) 0 0
\(592\) −4.42773 + 3.68221i −0.181979 + 0.151338i
\(593\) 42.6200 1.75019 0.875097 0.483948i \(-0.160798\pi\)
0.875097 + 0.483948i \(0.160798\pi\)
\(594\) 0 0
\(595\) 22.0804i 0.905207i
\(596\) 10.5000 + 4.92440i 0.430097 + 0.201711i
\(597\) 0 0
\(598\) −7.82838 12.3180i −0.320126 0.503720i
\(599\) 26.0947 1.06620 0.533101 0.846052i \(-0.321027\pi\)
0.533101 + 0.846052i \(0.321027\pi\)
\(600\) 0 0
\(601\) 8.04009 0.327962 0.163981 0.986463i \(-0.447566\pi\)
0.163981 + 0.986463i \(0.447566\pi\)
\(602\) 31.9897 + 50.3359i 1.30380 + 2.05154i
\(603\) 0 0
\(604\) 15.5344 33.1230i 0.632084 1.34776i
\(605\) 5.26239i 0.213946i
\(606\) 0 0
\(607\) 7.65218 0.310593 0.155296 0.987868i \(-0.450367\pi\)
0.155296 + 0.987868i \(0.450367\pi\)
\(608\) −10.8889 + 33.8838i −0.441601 + 1.37417i
\(609\) 0 0
\(610\) 9.84190 6.25477i 0.398487 0.253248i
\(611\) 20.5041i 0.829506i
\(612\) 0 0
\(613\) 18.3475i 0.741047i −0.928823 0.370524i \(-0.879178\pi\)
0.928823 0.370524i \(-0.120822\pi\)
\(614\) 15.4742 + 24.3488i 0.624489 + 0.982636i
\(615\) 0 0
\(616\) −31.1292 + 3.99372i −1.25423 + 0.160912i
\(617\) 8.16298 0.328629 0.164315 0.986408i \(-0.447459\pi\)
0.164315 + 0.986408i \(0.447459\pi\)
\(618\) 0 0
\(619\) 40.3555i 1.62202i −0.585030 0.811012i \(-0.698917\pi\)
0.585030 0.811012i \(-0.301083\pi\)
\(620\) −5.92050 2.77665i −0.237773 0.111513i
\(621\) 0 0
\(622\) −23.7347 + 15.0840i −0.951673 + 0.604811i
\(623\) 42.1725 1.68961
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 29.3747 18.6683i 1.17405 0.746136i
\(627\) 0 0
\(628\) 22.6640 + 10.6292i 0.904390 + 0.424150i
\(629\) 6.86237i 0.273621i
\(630\) 0 0
\(631\) 5.21565 0.207632 0.103816 0.994597i \(-0.466895\pi\)
0.103816 + 0.994597i \(0.466895\pi\)
\(632\) −0.517685 4.03511i −0.0205924 0.160508i
\(633\) 0 0
\(634\) 14.6589 + 23.0658i 0.582178 + 0.916059i
\(635\) 20.4865i 0.812980i
\(636\) 0 0
\(637\) 28.2554i 1.11952i
\(638\) −0.575489 + 0.365737i −0.0227838 + 0.0144797i
\(639\) 0 0
\(640\) 8.28221 + 7.70746i 0.327383 + 0.304664i
\(641\) −14.1597 −0.559275 −0.279637 0.960106i \(-0.590214\pi\)
−0.279637 + 0.960106i \(0.590214\pi\)
\(642\) 0 0
\(643\) 11.7095i 0.461778i −0.972980 0.230889i \(-0.925837\pi\)
0.972980 0.230889i \(-0.0741634\pi\)
\(644\) 20.7752 44.2978i 0.818659 1.74558i
\(645\) 0 0
\(646\) 22.7480 + 35.7940i 0.895006 + 1.40830i
\(647\) 2.33183 0.0916738 0.0458369 0.998949i \(-0.485405\pi\)
0.0458369 + 0.998949i \(0.485405\pi\)
\(648\) 0 0
\(649\) −6.60646 −0.259326
\(650\) 1.48235 + 2.33248i 0.0581426 + 0.0914876i
\(651\) 0 0
\(652\) −12.8198 6.01238i −0.502064 0.235463i
\(653\) 16.7826i 0.656755i 0.944547 + 0.328377i \(0.106502\pi\)
−0.944547 + 0.328377i \(0.893498\pi\)
\(654\) 0 0
\(655\) 13.2901 0.519286
\(656\) −21.8373 26.2586i −0.852603 1.02522i
\(657\) 0 0
\(658\) 58.0124 36.8683i 2.26156 1.43727i
\(659\) 47.5355i 1.85172i −0.377865 0.925861i \(-0.623342\pi\)
0.377865 0.925861i \(-0.376658\pi\)
\(660\) 0 0
\(661\) 15.1189i 0.588057i −0.955797 0.294028i \(-0.905004\pi\)
0.955797 0.294028i \(-0.0949960\pi\)
\(662\) −4.48597 7.05869i −0.174352 0.274344i
\(663\) 0 0
\(664\) 21.5036 2.75880i 0.834500 0.107062i
\(665\) −29.1447 −1.13018
\(666\) 0 0
\(667\) 1.06303i 0.0411606i
\(668\) −19.8880 + 42.4060i −0.769489 + 1.64074i
\(669\) 0 0
\(670\) 14.3435 9.11563i 0.554137 0.352168i
\(671\) −19.7513 −0.762492
\(672\) 0 0
\(673\) −29.0868 −1.12121 −0.560607 0.828082i \(-0.689432\pi\)
−0.560607 + 0.828082i \(0.689432\pi\)
\(674\) −38.0846 + 24.2037i −1.46696 + 0.932290i
\(675\) 0 0
\(676\) 7.79679 16.6246i 0.299877 0.639409i
\(677\) 25.6431i 0.985545i 0.870158 + 0.492772i \(0.164016\pi\)
−0.870158 + 0.492772i \(0.835984\pi\)
\(678\) 0 0
\(679\) −54.1646 −2.07865
\(680\) 13.3722 1.71559i 0.512802 0.0657900i
\(681\) 0 0
\(682\) 5.94081 + 9.34789i 0.227485 + 0.357949i
\(683\) 21.0523i 0.805542i −0.915301 0.402771i \(-0.868047\pi\)
0.915301 0.402771i \(-0.131953\pi\)
\(684\) 0 0
\(685\) 5.26253i 0.201071i
\(686\) −41.2399 + 26.2089i −1.57455 + 1.00066i
\(687\) 0 0
\(688\) −27.9987 + 23.2845i −1.06744 + 0.887712i
\(689\) −5.92634 −0.225776
\(690\) 0 0
\(691\) 22.9903i 0.874594i −0.899317 0.437297i \(-0.855936\pi\)
0.899317 0.437297i \(-0.144064\pi\)
\(692\) −10.8556 5.09117i −0.412668 0.193537i
\(693\) 0 0
\(694\) 18.9639 + 29.8397i 0.719858 + 1.13270i
\(695\) −22.9901 −0.872063
\(696\) 0 0
\(697\) −40.6971 −1.54151
\(698\) 4.72176 + 7.42971i 0.178721 + 0.281219i
\(699\) 0 0
\(700\) −3.93391 + 8.38805i −0.148688 + 0.317038i
\(701\) 42.7645i 1.61519i 0.589735 + 0.807597i \(0.299232\pi\)
−0.589735 + 0.807597i \(0.700768\pi\)
\(702\) 0 0
\(703\) 9.05791 0.341626
\(704\) −4.83733 18.5420i −0.182314 0.698830i
\(705\) 0 0
\(706\) 7.07716 4.49771i 0.266352 0.169273i
\(707\) 81.9733i 3.08292i
\(708\) 0 0
\(709\) 28.5449i 1.07203i 0.844209 + 0.536014i \(0.180070\pi\)
−0.844209 + 0.536014i \(0.819930\pi\)
\(710\) −0.390280 0.614107i −0.0146469 0.0230470i
\(711\) 0 0
\(712\) 3.27671 + 25.5404i 0.122800 + 0.957166i
\(713\) −17.2672 −0.646660
\(714\) 0 0
\(715\) 4.68097i 0.175058i
\(716\) −32.6938 15.3331i −1.22182 0.573024i
\(717\) 0 0
\(718\) 34.0088 21.6134i 1.26920 0.806606i
\(719\) 9.39342 0.350315 0.175158 0.984540i \(-0.443956\pi\)
0.175158 + 0.984540i \(0.443956\pi\)
\(720\) 0 0
\(721\) 85.6359 3.18925
\(722\) 24.5681 15.6136i 0.914329 0.581078i
\(723\) 0 0
\(724\) 9.56268 + 4.48480i 0.355394 + 0.166676i
\(725\) 0.201291i 0.00747574i
\(726\) 0 0
\(727\) 15.5974 0.578476 0.289238 0.957257i \(-0.406598\pi\)
0.289238 + 0.957257i \(0.406598\pi\)
\(728\) −25.3964 + 3.25824i −0.941254 + 0.120758i
\(729\) 0 0
\(730\) 3.05891 + 4.81320i 0.113215 + 0.178145i
\(731\) 43.3942i 1.60499i
\(732\) 0 0
\(733\) 38.0264i 1.40454i −0.711912 0.702269i \(-0.752170\pi\)
0.711912 0.702269i \(-0.247830\pi\)
\(734\) 21.3101 13.5431i 0.786571 0.499885i
\(735\) 0 0
\(736\) 28.4417 + 9.13998i 1.04837 + 0.336904i
\(737\) −28.7854 −1.06032
\(738\) 0 0
\(739\) 15.5308i 0.571309i 0.958333 + 0.285654i \(0.0922109\pi\)
−0.958333 + 0.285654i \(0.907789\pi\)
\(740\) 1.22262 2.60693i 0.0449445 0.0958325i
\(741\) 0 0
\(742\) −10.6561 16.7674i −0.391198 0.615552i
\(743\) 28.8169 1.05719 0.528594 0.848875i \(-0.322719\pi\)
0.528594 + 0.848875i \(0.322719\pi\)
\(744\) 0 0
\(745\) −5.79871 −0.212448
\(746\) −5.35864 8.43184i −0.196194 0.308712i
\(747\) 0 0
\(748\) −20.6742 9.69599i −0.755923 0.354520i
\(749\) 40.1538i 1.46719i
\(750\) 0 0
\(751\) −2.22432 −0.0811664 −0.0405832 0.999176i \(-0.512922\pi\)
−0.0405832 + 0.999176i \(0.512922\pi\)
\(752\) 26.8354 + 32.2687i 0.978588 + 1.17672i
\(753\) 0 0
\(754\) −0.469507 + 0.298383i −0.0170984 + 0.0108665i
\(755\) 18.2924i 0.665729i
\(756\) 0 0
\(757\) 43.7191i 1.58900i −0.607265 0.794499i \(-0.707733\pi\)
0.607265 0.794499i \(-0.292267\pi\)
\(758\) 3.61563 + 5.68921i 0.131326 + 0.206642i
\(759\) 0 0
\(760\) −2.26448 17.6505i −0.0821413 0.640252i
\(761\) 4.33761 0.157238 0.0786192 0.996905i \(-0.474949\pi\)
0.0786192 + 0.996905i \(0.474949\pi\)
\(762\) 0 0
\(763\) 15.6489i 0.566527i
\(764\) −3.81277 + 8.12974i −0.137941 + 0.294124i
\(765\) 0 0
\(766\) −6.40515 + 4.07063i −0.231427 + 0.147078i
\(767\) −5.38981 −0.194615
\(768\) 0 0
\(769\) −13.7789 −0.496879 −0.248439 0.968647i \(-0.579918\pi\)
−0.248439 + 0.968647i \(0.579918\pi\)
\(770\) 13.2439 8.41683i 0.477277 0.303321i
\(771\) 0 0
\(772\) −0.738306 + 1.57425i −0.0265722 + 0.0566584i
\(773\) 42.9986i 1.54655i −0.634070 0.773276i \(-0.718617\pi\)
0.634070 0.773276i \(-0.281383\pi\)
\(774\) 0 0
\(775\) 3.26964 0.117449
\(776\) −4.20846 32.8030i −0.151075 1.17756i
\(777\) 0 0
\(778\) −24.2495 38.1567i −0.869388 1.36799i
\(779\) 53.7178i 1.92464i
\(780\) 0 0
\(781\) 1.23243i 0.0440997i
\(782\) 30.0451 19.0944i 1.07441 0.682814i
\(783\) 0 0
\(784\) −36.9803 44.4674i −1.32072 1.58812i
\(785\) −12.5163 −0.446727
\(786\) 0 0
\(787\) 37.6437i 1.34185i 0.741525 + 0.670926i \(0.234103\pi\)
−0.741525 + 0.670926i \(0.765897\pi\)
\(788\) −28.6342 13.4292i −1.02005 0.478394i
\(789\) 0 0
\(790\) 1.09103 + 1.71674i 0.0388170 + 0.0610787i
\(791\) 51.2968 1.82390
\(792\) 0 0
\(793\) −16.1139 −0.572222
\(794\) 14.3550 + 22.5876i 0.509439 + 0.801605i
\(795\) 0 0
\(796\) 9.56893 20.4033i 0.339162 0.723175i
\(797\) 2.69524i 0.0954704i −0.998860 0.0477352i \(-0.984800\pi\)
0.998860 0.0477352i \(-0.0152004\pi\)
\(798\) 0 0
\(799\) 50.0120 1.76930
\(800\) −5.38560 1.73071i −0.190410 0.0611898i
\(801\) 0 0
\(802\) 2.60136 1.65323i 0.0918571 0.0583774i
\(803\) 9.65943i 0.340874i
\(804\) 0 0
\(805\) 24.4638i 0.862235i
\(806\) 4.84675 + 7.62638i 0.170719 + 0.268628i
\(807\) 0 0
\(808\) −49.6444 + 6.36913i −1.74648 + 0.224065i
\(809\) −29.8268 −1.04866 −0.524328 0.851517i \(-0.675683\pi\)
−0.524328 + 0.851517i \(0.675683\pi\)
\(810\) 0 0
\(811\) 17.7273i 0.622489i 0.950330 + 0.311245i \(0.100746\pi\)
−0.950330 + 0.311245i \(0.899254\pi\)
\(812\) −1.68844 0.791859i −0.0592525 0.0277888i
\(813\) 0 0
\(814\) −4.11608 + 2.61587i −0.144269 + 0.0916862i
\(815\) 7.07985 0.247996
\(816\) 0 0
\(817\) 57.2777 2.00389
\(818\) 4.51503 2.86941i 0.157864 0.100327i
\(819\) 0 0
\(820\) 15.4603 + 7.25074i 0.539898 + 0.253207i
\(821\) 17.2808i 0.603105i −0.953450 0.301552i \(-0.902495\pi\)
0.953450 0.301552i \(-0.0975048\pi\)
\(822\) 0 0
\(823\) −3.83186 −0.133570 −0.0667852 0.997767i \(-0.521274\pi\)
−0.0667852 + 0.997767i \(0.521274\pi\)
\(824\) 6.65371 + 51.8625i 0.231793 + 1.80672i
\(825\) 0 0
\(826\) −9.69138 15.2494i −0.337206 0.530595i
\(827\) 11.8492i 0.412036i −0.978548 0.206018i \(-0.933949\pi\)
0.978548 0.206018i \(-0.0660506\pi\)
\(828\) 0 0
\(829\) 0.601935i 0.0209061i −0.999945 0.0104530i \(-0.996673\pi\)
0.999945 0.0104530i \(-0.00332736\pi\)
\(830\) −9.14869 + 5.81421i −0.317555 + 0.201814i
\(831\) 0 0
\(832\) −3.94649 15.1273i −0.136820 0.524446i
\(833\) −68.9184 −2.38788
\(834\) 0 0
\(835\) 23.4190i 0.810448i
\(836\) −12.7981 + 27.2887i −0.442632 + 0.943798i
\(837\) 0 0
\(838\) −21.2757 33.4774i −0.734958 1.15646i
\(839\) 1.99004 0.0687039 0.0343520 0.999410i \(-0.489063\pi\)
0.0343520 + 0.999410i \(0.489063\pi\)
\(840\) 0 0
\(841\) 28.9595 0.998603
\(842\) 21.5213 + 33.8639i 0.741674 + 1.16703i
\(843\) 0 0
\(844\) −10.4663 4.90860i −0.360266 0.168961i
\(845\) 9.18108i 0.315839i
\(846\) 0 0
\(847\) 24.3773 0.837613
\(848\) 9.32668 7.75631i 0.320280 0.266353i
\(849\) 0 0
\(850\) −5.68921 + 3.61563i −0.195138 + 0.124015i
\(851\) 7.60311i 0.260631i
\(852\) 0 0
\(853\) 47.3134i 1.61998i 0.586444 + 0.809989i \(0.300527\pi\)
−0.586444 + 0.809989i \(0.699473\pi\)
\(854\) −28.9743 45.5912i −0.991481 1.56010i
\(855\) 0 0
\(856\) 24.3178 3.11985i 0.831164 0.106634i
\(857\) −40.3552 −1.37851 −0.689254 0.724520i \(-0.742062\pi\)
−0.689254 + 0.724520i \(0.742062\pi\)
\(858\) 0 0
\(859\) 41.0795i 1.40162i −0.713350 0.700808i \(-0.752823\pi\)
0.713350 0.700808i \(-0.247177\pi\)
\(860\) 7.73125 16.4849i 0.263633 0.562130i
\(861\) 0 0
\(862\) 18.1716 11.5485i 0.618927 0.393343i
\(863\) 23.4889 0.799570 0.399785 0.916609i \(-0.369085\pi\)
0.399785 + 0.916609i \(0.369085\pi\)
\(864\) 0 0
\(865\) 5.99508 0.203839
\(866\) −25.2450 + 16.0438i −0.857860 + 0.545191i
\(867\) 0 0
\(868\) −12.8625 + 27.4259i −0.436580 + 0.930895i
\(869\) 3.44525i 0.116872i
\(870\) 0 0
\(871\) −23.4843 −0.795734
\(872\) 9.47721 1.21588i 0.320939 0.0411749i
\(873\) 0 0
\(874\) −25.2034 39.6577i −0.852518 1.34144i
\(875\) 4.63236i 0.156602i
\(876\) 0 0
\(877\) 13.7849i 0.465482i −0.972539 0.232741i \(-0.925231\pi\)
0.972539 0.232741i \(-0.0747694\pi\)
\(878\) −7.81469 + 4.96643i −0.263733 + 0.167609i
\(879\) 0 0
\(880\) 6.12639 + 7.36676i 0.206520 + 0.248333i
\(881\) 5.93246 0.199870 0.0999348 0.994994i \(-0.468137\pi\)
0.0999348 + 0.994994i \(0.468137\pi\)
\(882\) 0 0
\(883\) 24.1403i 0.812384i 0.913788 + 0.406192i \(0.133144\pi\)
−0.913788 + 0.406192i \(0.866856\pi\)
\(884\) −16.8668 7.91037i −0.567292 0.266054i
\(885\) 0 0
\(886\) −18.3600 28.8895i −0.616815 0.970561i
\(887\) −19.5964 −0.657984 −0.328992 0.944333i \(-0.606709\pi\)
−0.328992 + 0.944333i \(0.606709\pi\)
\(888\) 0 0
\(889\) −94.9006 −3.18286
\(890\) −6.90570 10.8661i −0.231480 0.364234i
\(891\) 0 0
\(892\) 7.90037 16.8455i 0.264524 0.564029i
\(893\) 66.0128i 2.20903i
\(894\) 0 0
\(895\) 18.0554 0.603525
\(896\) 35.7037 38.3662i 1.19278 1.28172i
\(897\) 0 0
\(898\) −1.86298 + 1.18397i −0.0621684 + 0.0395095i
\(899\) 0.658147i 0.0219504i
\(900\) 0 0
\(901\) 14.4551i 0.481568i
\(902\) −15.5134 24.4103i −0.516539 0.812776i
\(903\) 0 0
\(904\) 3.98564 + 31.0662i 0.132560 + 1.03325i
\(905\) −5.28106 −0.175548
\(906\) 0 0
\(907\) 24.3272i 0.807770i 0.914810 + 0.403885i \(0.132340\pi\)
−0.914810 + 0.403885i \(0.867660\pi\)
\(908\) −4.69761 2.20313i −0.155896 0.0731135i
\(909\) 0 0
\(910\) 10.8049 6.86678i 0.358179 0.227632i
\(911\) 39.2591 1.30071 0.650357 0.759629i \(-0.274619\pi\)
0.650357 + 0.759629i \(0.274619\pi\)
\(912\) 0 0
\(913\) 18.3601 0.607632
\(914\) 10.9444 6.95545i 0.362009 0.230066i
\(915\) 0 0
\(916\) −46.0061 21.5764i −1.52009 0.712905i
\(917\) 61.5644i 2.03304i
\(918\) 0 0
\(919\) −6.58169 −0.217110 −0.108555 0.994090i \(-0.534622\pi\)
−0.108555 + 0.994090i \(0.534622\pi\)
\(920\) −14.8157 + 1.90078i −0.488458 + 0.0626668i
\(921\) 0 0
\(922\) 8.38670 + 13.1965i 0.276201 + 0.434604i
\(923\) 1.00546i 0.0330952i
\(924\) 0 0
\(925\) 1.43969i 0.0473368i
\(926\) 41.1768 26.1689i 1.35315 0.859962i
\(927\) 0 0
\(928\) 0.348376 1.08407i 0.0114360 0.0355863i
\(929\) 15.0642 0.494242 0.247121 0.968985i \(-0.420516\pi\)
0.247121 + 0.968985i \(0.420516\pi\)
\(930\) 0 0
\(931\) 90.9681i 2.98136i
\(932\) 23.7299 50.5978i 0.777297 1.65739i
\(933\) 0 0
\(934\) −29.4691 46.3697i −0.964257 1.51726i
\(935\) 11.4175 0.373391
\(936\) 0 0
\(937\) 54.0670 1.76629 0.883146 0.469099i \(-0.155421\pi\)
0.883146 + 0.469099i \(0.155421\pi\)
\(938\) −42.2269 66.4442i −1.37876 2.16948i
\(939\) 0 0
\(940\) −18.9989 8.91030i −0.619676 0.290622i
\(941\) 16.2573i 0.529973i −0.964252 0.264986i \(-0.914633\pi\)
0.964252 0.264986i \(-0.0853674\pi\)
\(942\) 0 0
\(943\) 45.0901 1.46834
\(944\) 8.48230 7.05410i 0.276076 0.229591i
\(945\) 0 0
\(946\) −26.0280 + 16.5414i −0.846244 + 0.537809i
\(947\) 7.94302i 0.258113i 0.991637 + 0.129057i \(0.0411949\pi\)
−0.991637 + 0.129057i \(0.958805\pi\)
\(948\) 0 0
\(949\) 7.88055i 0.255813i
\(950\) 4.77242 + 7.50942i 0.154838 + 0.243638i
\(951\) 0 0
\(952\) −7.94724 61.9450i −0.257572 2.00765i
\(953\) 10.5096 0.340439 0.170219 0.985406i \(-0.445552\pi\)
0.170219 + 0.985406i \(0.445552\pi\)
\(954\) 0 0
\(955\) 4.48971i 0.145283i
\(956\) −9.72486 + 20.7358i −0.314524 + 0.670642i
\(957\) 0 0
\(958\) 33.9661 21.5862i 1.09739 0.697420i
\(959\) 24.3779 0.787205
\(960\) 0 0
\(961\) −20.3095 −0.655144
\(962\) −3.35806 + 2.13413i −0.108268 + 0.0688071i
\(963\) 0 0
\(964\) 11.9492 25.4785i 0.384857 0.820607i
\(965\) 0.869389i 0.0279866i
\(966\) 0 0
\(967\) −17.4035 −0.559659 −0.279830 0.960050i \(-0.590278\pi\)
−0.279830 + 0.960050i \(0.590278\pi\)
\(968\) 1.89406 + 14.7633i 0.0608773 + 0.474510i
\(969\) 0 0
\(970\) 8.86939 + 13.9560i 0.284779 + 0.448101i
\(971\) 12.4994i 0.401125i −0.979681 0.200563i \(-0.935723\pi\)
0.979681 0.200563i \(-0.0642770\pi\)
\(972\) 0 0
\(973\) 106.498i 3.41418i
\(974\) 13.0758 8.31001i 0.418977 0.266270i
\(975\) 0 0
\(976\) 25.3596 21.0897i 0.811740 0.675064i
\(977\) −14.2994 −0.457478 −0.228739 0.973488i \(-0.573460\pi\)
−0.228739 + 0.973488i \(0.573460\pi\)
\(978\) 0 0
\(979\) 21.8068i 0.696950i
\(980\) 26.1812 + 12.2787i 0.836328 + 0.392230i
\(981\) 0 0
\(982\) 19.6797 + 30.9661i 0.628004 + 0.988167i
\(983\) 43.3572 1.38288 0.691441 0.722433i \(-0.256976\pi\)
0.691441 + 0.722433i \(0.256976\pi\)
\(984\) 0 0
\(985\) 15.8134 0.503858
\(986\) −0.727793 1.14519i −0.0231776 0.0364701i
\(987\) 0 0
\(988\) −10.4412 + 22.2632i −0.332179 + 0.708286i
\(989\) 48.0782i 1.52880i
\(990\) 0 0
\(991\) −13.0947 −0.415967 −0.207983 0.978132i \(-0.566690\pi\)
−0.207983 + 0.978132i \(0.566690\pi\)
\(992\) −17.6089 5.65879i −0.559085 0.179667i
\(993\) 0 0
\(994\) −2.84477 + 1.80792i −0.0902305 + 0.0573436i
\(995\) 11.2679i 0.357215i
\(996\) 0 0
\(997\) 53.5961i 1.69741i 0.528870 + 0.848703i \(0.322616\pi\)
−0.528870 + 0.848703i \(0.677384\pi\)
\(998\) 15.5921 + 24.5343i 0.493560 + 0.776619i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.2.k.d.541.4 yes 20
3.2 odd 2 inner 1080.2.k.d.541.17 yes 20
4.3 odd 2 4320.2.k.d.2161.12 20
8.3 odd 2 4320.2.k.d.2161.1 20
8.5 even 2 inner 1080.2.k.d.541.3 20
12.11 even 2 4320.2.k.d.2161.2 20
24.5 odd 2 inner 1080.2.k.d.541.18 yes 20
24.11 even 2 4320.2.k.d.2161.11 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.k.d.541.3 20 8.5 even 2 inner
1080.2.k.d.541.4 yes 20 1.1 even 1 trivial
1080.2.k.d.541.17 yes 20 3.2 odd 2 inner
1080.2.k.d.541.18 yes 20 24.5 odd 2 inner
4320.2.k.d.2161.1 20 8.3 odd 2
4320.2.k.d.2161.2 20 12.11 even 2
4320.2.k.d.2161.11 20 24.11 even 2
4320.2.k.d.2161.12 20 4.3 odd 2