Properties

Label 1080.2.f
Level $1080$
Weight $2$
Character orbit 1080.f
Rep. character $\chi_{1080}(649,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $7$
Sturm bound $432$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 7 \)
Sturm bound: \(432\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1080, [\chi])\).

Total New Old
Modular forms 240 24 216
Cusp forms 192 24 168
Eisenstein series 48 0 48

Trace form

\( 24 q + O(q^{10}) \) \( 24 q - 18 q^{25} - 12 q^{49} - 6 q^{55} + 48 q^{61} + 12 q^{79} - 24 q^{85} + 72 q^{91} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1080, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1080.2.f.a 1080.f 5.b $2$ $8.624$ \(\Q(\sqrt{-1}) \) None 1080.2.f.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(i-2)q^{5}+2 i q^{7}-2 q^{11}+2 i q^{13}+\cdots\)
1080.2.f.b 1080.f 5.b $2$ $8.624$ \(\Q(\sqrt{-1}) \) None 1080.2.f.b \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2 i-1)q^{5}+4 i q^{7}-q^{11}+\cdots\)
1080.2.f.c 1080.f 5.b $2$ $8.624$ \(\Q(\sqrt{-1}) \) None 1080.2.f.b \(0\) \(0\) \(2\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2 i+1)q^{5}+4 i q^{7}+q^{11}+i q^{13}+\cdots\)
1080.2.f.d 1080.f 5.b $2$ $8.624$ \(\Q(\sqrt{-1}) \) None 1080.2.f.a \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-i+2)q^{5}+2 i q^{7}+2 q^{11}+\cdots\)
1080.2.f.e 1080.f 5.b $4$ $8.624$ \(\Q(i, \sqrt{6})\) None 1080.2.f.e \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1-\beta _{2}+\beta _{3})q^{5}-\beta _{2}q^{7}+(2-\beta _{1}+\cdots)q^{11}+\cdots\)
1080.2.f.f 1080.f 5.b $4$ $8.624$ \(\Q(i, \sqrt{6})\) None 1080.2.f.e \(0\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta _{2}-\beta _{3})q^{5}-\beta _{2}q^{7}+(-2+\beta _{1}+\cdots)q^{11}+\cdots\)
1080.2.f.g 1080.f 5.b $8$ $8.624$ 8.0.2702336256.1 None 1080.2.f.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{5}-\beta _{1}q^{7}+(-2\beta _{3}-\beta _{6}+2\beta _{7})q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1080, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1080, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(540, [\chi])\)\(^{\oplus 2}\)