Properties

Label 1080.2.d.b
Level $1080$
Weight $2$
Character orbit 1080.d
Analytic conductor $8.624$
Analytic rank $0$
Dimension $4$
CM discriminant -120
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1080,2,Mod(109,1080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1080.109"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-8,0,0,0,0,0,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.62384341830\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 2 q^{4} - \beta_{2} q^{5} + 2 \beta_1 q^{8} - \beta_{3} q^{10} + (\beta_{2} + 3 \beta_1) q^{11} + (\beta_{3} - 3) q^{13} + 4 q^{16} + (3 \beta_{2} + \beta_1) q^{17} + 2 \beta_{2} q^{20}+ \cdots - 7 \beta_1 q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} - 12 q^{13} + 16 q^{16} + 24 q^{22} - 20 q^{25} - 4 q^{31} + 8 q^{34} - 12 q^{43} - 16 q^{46} + 28 q^{49} + 24 q^{52} + 20 q^{55} - 48 q^{58} - 32 q^{64} - 28 q^{79} + 60 q^{85} - 48 q^{88}+ \cdots + 32 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 4x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - \nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 7\nu ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{3} + 7\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
109.1
1.58114 + 0.707107i
−1.58114 + 0.707107i
−1.58114 0.707107i
1.58114 0.707107i
1.41421i 0 −2.00000 2.23607i 0 0 2.82843i 0 −3.16228
109.2 1.41421i 0 −2.00000 2.23607i 0 0 2.82843i 0 3.16228
109.3 1.41421i 0 −2.00000 2.23607i 0 0 2.82843i 0 3.16228
109.4 1.41421i 0 −2.00000 2.23607i 0 0 2.82843i 0 −3.16228
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
120.i odd 2 1 CM by \(\Q(\sqrt{-30}) \)
3.b odd 2 1 inner
40.f even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1080.2.d.b 4
3.b odd 2 1 inner 1080.2.d.b 4
4.b odd 2 1 4320.2.d.b 4
5.b even 2 1 1080.2.d.c yes 4
8.b even 2 1 1080.2.d.c yes 4
8.d odd 2 1 4320.2.d.e 4
12.b even 2 1 4320.2.d.b 4
15.d odd 2 1 1080.2.d.c yes 4
20.d odd 2 1 4320.2.d.e 4
24.f even 2 1 4320.2.d.e 4
24.h odd 2 1 1080.2.d.c yes 4
40.e odd 2 1 4320.2.d.b 4
40.f even 2 1 inner 1080.2.d.b 4
60.h even 2 1 4320.2.d.e 4
120.i odd 2 1 CM 1080.2.d.b 4
120.m even 2 1 4320.2.d.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.2.d.b 4 1.a even 1 1 trivial
1080.2.d.b 4 3.b odd 2 1 inner
1080.2.d.b 4 40.f even 2 1 inner
1080.2.d.b 4 120.i odd 2 1 CM
1080.2.d.c yes 4 5.b even 2 1
1080.2.d.c yes 4 8.b even 2 1
1080.2.d.c yes 4 15.d odd 2 1
1080.2.d.c yes 4 24.h odd 2 1
4320.2.d.b 4 4.b odd 2 1
4320.2.d.b 4 12.b even 2 1
4320.2.d.b 4 40.e odd 2 1
4320.2.d.b 4 120.m even 2 1
4320.2.d.e 4 8.d odd 2 1
4320.2.d.e 4 20.d odd 2 1
4320.2.d.e 4 24.f even 2 1
4320.2.d.e 4 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1080, [\chi])\):

\( T_{7} \) Copy content Toggle raw display
\( T_{11}^{4} + 46T_{11}^{2} + 169 \) Copy content Toggle raw display
\( T_{13}^{2} + 6T_{13} - 1 \) Copy content Toggle raw display
\( T_{53} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 46T^{2} + 169 \) Copy content Toggle raw display
$13$ \( (T^{2} + 6 T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 94T^{2} + 1849 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + 106T^{2} + 1369 \) Copy content Toggle raw display
$29$ \( T^{4} + 154T^{2} + 4489 \) Copy content Toggle raw display
$31$ \( (T^{2} + 2 T - 89)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 40)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 6 T - 31)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 154T^{2} + 169 \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( (T^{2} + 20)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} - 160)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 14 T - 41)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less