Properties

 Label 1080.2.a.h Level $1080$ Weight $2$ Character orbit 1080.a Self dual yes Analytic conductor $8.624$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1080,2,Mod(1,1080)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1080, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1080.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1080 = 2^{3} \cdot 3^{3} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1080.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$8.62384341830$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{5} - 2 q^{7}+O(q^{10})$$ q + q^5 - 2 * q^7 $$q + q^{5} - 2 q^{7} - 6 q^{13} - 7 q^{17} + 7 q^{19} - 7 q^{23} + q^{25} - 6 q^{29} + 3 q^{31} - 2 q^{35} - 6 q^{37} - 4 q^{41} + 8 q^{43} + 4 q^{47} - 3 q^{49} + 5 q^{53} - 6 q^{59} - 3 q^{61} - 6 q^{65} - 10 q^{67} - 12 q^{71} + 16 q^{73} + q^{79} - 9 q^{83} - 7 q^{85} + 4 q^{89} + 12 q^{91} + 7 q^{95} - 16 q^{97}+O(q^{100})$$ q + q^5 - 2 * q^7 - 6 * q^13 - 7 * q^17 + 7 * q^19 - 7 * q^23 + q^25 - 6 * q^29 + 3 * q^31 - 2 * q^35 - 6 * q^37 - 4 * q^41 + 8 * q^43 + 4 * q^47 - 3 * q^49 + 5 * q^53 - 6 * q^59 - 3 * q^61 - 6 * q^65 - 10 * q^67 - 12 * q^71 + 16 * q^73 + q^79 - 9 * q^83 - 7 * q^85 + 4 * q^89 + 12 * q^91 + 7 * q^95 - 16 * q^97

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 1.00000 0 −2.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$5$$ $$-1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1080.2.a.h yes 1
3.b odd 2 1 1080.2.a.b 1
4.b odd 2 1 2160.2.a.u 1
5.b even 2 1 5400.2.a.bi 1
5.c odd 4 2 5400.2.f.o 2
8.b even 2 1 8640.2.a.h 1
8.d odd 2 1 8640.2.a.x 1
9.c even 3 2 3240.2.q.i 2
9.d odd 6 2 3240.2.q.v 2
12.b even 2 1 2160.2.a.i 1
15.d odd 2 1 5400.2.a.bh 1
15.e even 4 2 5400.2.f.n 2
24.f even 2 1 8640.2.a.ca 1
24.h odd 2 1 8640.2.a.bm 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.2.a.b 1 3.b odd 2 1
1080.2.a.h yes 1 1.a even 1 1 trivial
2160.2.a.i 1 12.b even 2 1
2160.2.a.u 1 4.b odd 2 1
3240.2.q.i 2 9.c even 3 2
3240.2.q.v 2 9.d odd 6 2
5400.2.a.bh 1 15.d odd 2 1
5400.2.a.bi 1 5.b even 2 1
5400.2.f.n 2 15.e even 4 2
5400.2.f.o 2 5.c odd 4 2
8640.2.a.h 1 8.b even 2 1
8640.2.a.x 1 8.d odd 2 1
8640.2.a.bm 1 24.h odd 2 1
8640.2.a.ca 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1080))$$:

 $$T_{7} + 2$$ T7 + 2 $$T_{11}$$ T11 $$T_{17} + 7$$ T17 + 7

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T - 1$$
$7$ $$T + 2$$
$11$ $$T$$
$13$ $$T + 6$$
$17$ $$T + 7$$
$19$ $$T - 7$$
$23$ $$T + 7$$
$29$ $$T + 6$$
$31$ $$T - 3$$
$37$ $$T + 6$$
$41$ $$T + 4$$
$43$ $$T - 8$$
$47$ $$T - 4$$
$53$ $$T - 5$$
$59$ $$T + 6$$
$61$ $$T + 3$$
$67$ $$T + 10$$
$71$ $$T + 12$$
$73$ $$T - 16$$
$79$ $$T - 1$$
$83$ $$T + 9$$
$89$ $$T - 4$$
$97$ $$T + 16$$