# Properties

 Label 1080.2.a.f Level $1080$ Weight $2$ Character orbit 1080.a Self dual yes Analytic conductor $8.624$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1080,2,Mod(1,1080)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1080, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1080.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1080 = 2^{3} \cdot 3^{3} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1080.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$8.62384341830$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{5} + 2 q^{7}+O(q^{10})$$ q - q^5 + 2 * q^7 $$q - q^{5} + 2 q^{7} - q^{11} + q^{13} + q^{17} + 4 q^{19} - q^{23} + q^{25} + 5 q^{29} + q^{31} - 2 q^{35} + 6 q^{37} + 7 q^{43} - 7 q^{47} - 3 q^{49} + 12 q^{53} + q^{55} + 4 q^{59} + 10 q^{61} - q^{65} - 4 q^{67} - 12 q^{71} + 6 q^{73} - 2 q^{77} + 15 q^{79} - 2 q^{83} - q^{85} + 12 q^{89} + 2 q^{91} - 4 q^{95} + 10 q^{97}+O(q^{100})$$ q - q^5 + 2 * q^7 - q^11 + q^13 + q^17 + 4 * q^19 - q^23 + q^25 + 5 * q^29 + q^31 - 2 * q^35 + 6 * q^37 + 7 * q^43 - 7 * q^47 - 3 * q^49 + 12 * q^53 + q^55 + 4 * q^59 + 10 * q^61 - q^65 - 4 * q^67 - 12 * q^71 + 6 * q^73 - 2 * q^77 + 15 * q^79 - 2 * q^83 - q^85 + 12 * q^89 + 2 * q^91 - 4 * q^95 + 10 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 2.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$+1$$
$$5$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1080.2.a.f 1
3.b odd 2 1 1080.2.a.k yes 1
4.b odd 2 1 2160.2.a.d 1
5.b even 2 1 5400.2.a.m 1
5.c odd 4 2 5400.2.f.m 2
8.b even 2 1 8640.2.a.cb 1
8.d odd 2 1 8640.2.a.bk 1
9.c even 3 2 3240.2.q.o 2
9.d odd 6 2 3240.2.q.c 2
12.b even 2 1 2160.2.a.n 1
15.d odd 2 1 5400.2.a.n 1
15.e even 4 2 5400.2.f.p 2
24.f even 2 1 8640.2.a.i 1
24.h odd 2 1 8640.2.a.v 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.2.a.f 1 1.a even 1 1 trivial
1080.2.a.k yes 1 3.b odd 2 1
2160.2.a.d 1 4.b odd 2 1
2160.2.a.n 1 12.b even 2 1
3240.2.q.c 2 9.d odd 6 2
3240.2.q.o 2 9.c even 3 2
5400.2.a.m 1 5.b even 2 1
5400.2.a.n 1 15.d odd 2 1
5400.2.f.m 2 5.c odd 4 2
5400.2.f.p 2 15.e even 4 2
8640.2.a.i 1 24.f even 2 1
8640.2.a.v 1 24.h odd 2 1
8640.2.a.bk 1 8.d odd 2 1
8640.2.a.cb 1 8.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1080))$$:

 $$T_{7} - 2$$ T7 - 2 $$T_{11} + 1$$ T11 + 1 $$T_{17} - 1$$ T17 - 1

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T - 2$$
$11$ $$T + 1$$
$13$ $$T - 1$$
$17$ $$T - 1$$
$19$ $$T - 4$$
$23$ $$T + 1$$
$29$ $$T - 5$$
$31$ $$T - 1$$
$37$ $$T - 6$$
$41$ $$T$$
$43$ $$T - 7$$
$47$ $$T + 7$$
$53$ $$T - 12$$
$59$ $$T - 4$$
$61$ $$T - 10$$
$67$ $$T + 4$$
$71$ $$T + 12$$
$73$ $$T - 6$$
$79$ $$T - 15$$
$83$ $$T + 2$$
$89$ $$T - 12$$
$97$ $$T - 10$$