# Properties

 Label 1080.2.a.c Level $1080$ Weight $2$ Character orbit 1080.a Self dual yes Analytic conductor $8.624$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1080,2,Mod(1,1080)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1080, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1080.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1080 = 2^{3} \cdot 3^{3} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1080.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$8.62384341830$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{5} - q^{7}+O(q^{10})$$ q - q^5 - q^7 $$q - q^{5} - q^{7} + 2 q^{11} - 5 q^{13} + 4 q^{17} - 5 q^{19} + 2 q^{23} + q^{25} - 10 q^{29} - 8 q^{31} + q^{35} - 3 q^{37} - 6 q^{41} + 4 q^{43} + 8 q^{47} - 6 q^{49} - 6 q^{53} - 2 q^{55} + 4 q^{59} - 5 q^{61} + 5 q^{65} - 7 q^{67} - 6 q^{71} - 9 q^{73} - 2 q^{77} + 3 q^{79} - 2 q^{83} - 4 q^{85} + 5 q^{91} + 5 q^{95} + 7 q^{97}+O(q^{100})$$ q - q^5 - q^7 + 2 * q^11 - 5 * q^13 + 4 * q^17 - 5 * q^19 + 2 * q^23 + q^25 - 10 * q^29 - 8 * q^31 + q^35 - 3 * q^37 - 6 * q^41 + 4 * q^43 + 8 * q^47 - 6 * q^49 - 6 * q^53 - 2 * q^55 + 4 * q^59 - 5 * q^61 + 5 * q^65 - 7 * q^67 - 6 * q^71 - 9 * q^73 - 2 * q^77 + 3 * q^79 - 2 * q^83 - 4 * q^85 + 5 * q^91 + 5 * q^95 + 7 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 −1.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$+1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1080.2.a.c 1
3.b odd 2 1 1080.2.a.i yes 1
4.b odd 2 1 2160.2.a.g 1
5.b even 2 1 5400.2.a.bc 1
5.c odd 4 2 5400.2.f.t 2
8.b even 2 1 8640.2.a.bp 1
8.d odd 2 1 8640.2.a.bw 1
9.c even 3 2 3240.2.q.t 2
9.d odd 6 2 3240.2.q.h 2
12.b even 2 1 2160.2.a.t 1
15.d odd 2 1 5400.2.a.ba 1
15.e even 4 2 5400.2.f.k 2
24.f even 2 1 8640.2.a.q 1
24.h odd 2 1 8640.2.a.n 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.2.a.c 1 1.a even 1 1 trivial
1080.2.a.i yes 1 3.b odd 2 1
2160.2.a.g 1 4.b odd 2 1
2160.2.a.t 1 12.b even 2 1
3240.2.q.h 2 9.d odd 6 2
3240.2.q.t 2 9.c even 3 2
5400.2.a.ba 1 15.d odd 2 1
5400.2.a.bc 1 5.b even 2 1
5400.2.f.k 2 15.e even 4 2
5400.2.f.t 2 5.c odd 4 2
8640.2.a.n 1 24.h odd 2 1
8640.2.a.q 1 24.f even 2 1
8640.2.a.bp 1 8.b even 2 1
8640.2.a.bw 1 8.d odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1080))$$:

 $$T_{7} + 1$$ T7 + 1 $$T_{11} - 2$$ T11 - 2 $$T_{17} - 4$$ T17 - 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T + 1$$
$11$ $$T - 2$$
$13$ $$T + 5$$
$17$ $$T - 4$$
$19$ $$T + 5$$
$23$ $$T - 2$$
$29$ $$T + 10$$
$31$ $$T + 8$$
$37$ $$T + 3$$
$41$ $$T + 6$$
$43$ $$T - 4$$
$47$ $$T - 8$$
$53$ $$T + 6$$
$59$ $$T - 4$$
$61$ $$T + 5$$
$67$ $$T + 7$$
$71$ $$T + 6$$
$73$ $$T + 9$$
$79$ $$T - 3$$
$83$ $$T + 2$$
$89$ $$T$$
$97$ $$T - 7$$