Properties

Label 1080.1.p
Level $1080$
Weight $1$
Character orbit 1080.p
Rep. character $\chi_{1080}(379,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $2$
Sturm bound $216$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1080.p (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(216\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1080, [\chi])\).

Total New Old
Modular forms 20 4 16
Cusp forms 8 4 4
Eisenstein series 12 0 12

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 4 0 0 0

Trace form

\( 4 q - 2 q^{4} + 2 q^{10} - 2 q^{16} + 4 q^{19} + 4 q^{25} - 6 q^{34} - 4 q^{40} - 2 q^{46} - 4 q^{49} + 4 q^{64} - 2 q^{76} - 4 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(1080, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1080.1.p.a 1080.p 40.e $2$ $0.539$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-15}) \) None 1080.1.p.a \(-1\) \(0\) \(-2\) \(0\) \(q+\zeta_{6}^{2}q^{2}-\zeta_{6}q^{4}-q^{5}+q^{8}-\zeta_{6}^{2}q^{10}+\cdots\)
1080.1.p.b 1080.p 40.e $2$ $0.539$ \(\Q(\sqrt{-3}) \) $D_{6}$ \(\Q(\sqrt{-15}) \) None 1080.1.p.a \(1\) \(0\) \(2\) \(0\) \(q-\zeta_{6}^{2}q^{2}-\zeta_{6}q^{4}+q^{5}-q^{8}-\zeta_{6}^{2}q^{10}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1080, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1080, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 2}\)