Properties

Label 108.5.g.a.17.1
Level 108
Weight 5
Character 108.17
Analytic conductor 11.164
Analytic rank 0
Dimension 8
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 108.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.1639560131\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{10} \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 17.1
Root \(-3.05006 - 3.25531i\) of \(x^{8} - 3 x^{7} + 6 x^{6} + 121 x^{5} + 1104 x^{4} - 1647 x^{3} + 6529 x^{2} + 85254 x + 440076\)
Character \(\chi\) \(=\) 108.17
Dual form 108.5.g.a.89.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-27.4152 - 15.8282i) q^{5} +(37.6830 + 65.2688i) q^{7} +O(q^{10})\) \(q+(-27.4152 - 15.8282i) q^{5} +(37.6830 + 65.2688i) q^{7} +(123.267 - 71.1682i) q^{11} +(96.3079 - 166.810i) q^{13} -325.855i q^{17} +314.164 q^{19} +(443.852 + 256.258i) q^{23} +(188.564 + 326.602i) q^{25} +(136.614 - 78.8739i) q^{29} +(183.725 - 318.221i) q^{31} -2385.82i q^{35} +1737.04 q^{37} +(342.317 + 197.637i) q^{41} +(-360.381 - 624.198i) q^{43} +(-2153.71 + 1243.45i) q^{47} +(-1639.52 + 2839.72i) q^{49} +3986.04i q^{53} -4505.86 q^{55} +(2136.75 + 1233.65i) q^{59} +(-1240.49 - 2148.59i) q^{61} +(-5280.61 + 3048.76i) q^{65} +(3298.19 - 5712.64i) q^{67} -5828.07i q^{71} -8790.44 q^{73} +(9290.13 + 5363.66i) q^{77} +(1934.52 + 3350.69i) q^{79} +(-10422.5 + 6017.43i) q^{83} +(-5157.70 + 8933.39i) q^{85} -7637.03i q^{89} +14516.7 q^{91} +(-8612.88 - 4972.65i) q^{95} +(1455.75 + 2521.44i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 9q^{5} + 13q^{7} + O(q^{10}) \) \( 8q + 9q^{5} + 13q^{7} + 18q^{11} - 5q^{13} + 562q^{19} + 1719q^{23} + 353q^{25} - 2115q^{29} + 187q^{31} + 16q^{37} + 7920q^{41} - 68q^{43} - 13689q^{47} - 327q^{49} - 1818q^{55} + 20052q^{59} - 1937q^{61} - 25965q^{65} + 154q^{67} - 7802q^{73} + 25641q^{77} - 2195q^{79} - 37017q^{83} - 3042q^{85} + 15830q^{91} + 37116q^{95} + 7282q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −27.4152 15.8282i −1.09661 0.633128i −0.161281 0.986908i \(-0.551563\pi\)
−0.935329 + 0.353780i \(0.884896\pi\)
\(6\) 0 0
\(7\) 37.6830 + 65.2688i 0.769041 + 1.33202i 0.938084 + 0.346409i \(0.112599\pi\)
−0.169043 + 0.985609i \(0.554068\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 123.267 71.1682i 1.01873 0.588167i 0.104997 0.994473i \(-0.466517\pi\)
0.913737 + 0.406306i \(0.133183\pi\)
\(12\) 0 0
\(13\) 96.3079 166.810i 0.569870 0.987043i −0.426709 0.904389i \(-0.640327\pi\)
0.996578 0.0826539i \(-0.0263396\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 325.855i 1.12753i −0.825937 0.563763i \(-0.809353\pi\)
0.825937 0.563763i \(-0.190647\pi\)
\(18\) 0 0
\(19\) 314.164 0.870260 0.435130 0.900368i \(-0.356702\pi\)
0.435130 + 0.900368i \(0.356702\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 443.852 + 256.258i 0.839040 + 0.484420i 0.856938 0.515420i \(-0.172364\pi\)
−0.0178977 + 0.999840i \(0.505697\pi\)
\(24\) 0 0
\(25\) 188.564 + 326.602i 0.301702 + 0.522564i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 136.614 78.8739i 0.162442 0.0937859i −0.416575 0.909101i \(-0.636770\pi\)
0.579017 + 0.815315i \(0.303436\pi\)
\(30\) 0 0
\(31\) 183.725 318.221i 0.191181 0.331135i −0.754461 0.656345i \(-0.772102\pi\)
0.945642 + 0.325210i \(0.105435\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2385.82i 1.94760i
\(36\) 0 0
\(37\) 1737.04 1.26884 0.634419 0.772989i \(-0.281239\pi\)
0.634419 + 0.772989i \(0.281239\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 342.317 + 197.637i 0.203639 + 0.117571i 0.598352 0.801234i \(-0.295823\pi\)
−0.394713 + 0.918805i \(0.629156\pi\)
\(42\) 0 0
\(43\) −360.381 624.198i −0.194906 0.337587i 0.751964 0.659204i \(-0.229107\pi\)
−0.946870 + 0.321618i \(0.895773\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2153.71 + 1243.45i −0.974971 + 0.562900i −0.900748 0.434342i \(-0.856981\pi\)
−0.0742227 + 0.997242i \(0.523648\pi\)
\(48\) 0 0
\(49\) −1639.52 + 2839.72i −0.682847 + 1.18273i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3986.04i 1.41902i 0.704694 + 0.709512i \(0.251084\pi\)
−0.704694 + 0.709512i \(0.748916\pi\)
\(54\) 0 0
\(55\) −4505.86 −1.48954
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2136.75 + 1233.65i 0.613831 + 0.354396i 0.774463 0.632619i \(-0.218020\pi\)
−0.160632 + 0.987014i \(0.551353\pi\)
\(60\) 0 0
\(61\) −1240.49 2148.59i −0.333375 0.577422i 0.649796 0.760108i \(-0.274854\pi\)
−0.983171 + 0.182686i \(0.941521\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5280.61 + 3048.76i −1.24985 + 0.721601i
\(66\) 0 0
\(67\) 3298.19 5712.64i 0.734728 1.27259i −0.220115 0.975474i \(-0.570643\pi\)
0.954843 0.297112i \(-0.0960233\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5828.07i 1.15613i −0.815990 0.578066i \(-0.803807\pi\)
0.815990 0.578066i \(-0.196193\pi\)
\(72\) 0 0
\(73\) −8790.44 −1.64955 −0.824774 0.565463i \(-0.808697\pi\)
−0.824774 + 0.565463i \(0.808697\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 9290.13 + 5363.66i 1.56690 + 0.904648i
\(78\) 0 0
\(79\) 1934.52 + 3350.69i 0.309970 + 0.536883i 0.978355 0.206932i \(-0.0663478\pi\)
−0.668386 + 0.743815i \(0.733014\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −10422.5 + 6017.43i −1.51292 + 0.873483i −0.513032 + 0.858370i \(0.671478\pi\)
−0.999886 + 0.0151136i \(0.995189\pi\)
\(84\) 0 0
\(85\) −5157.70 + 8933.39i −0.713868 + 1.23646i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7637.03i 0.964150i −0.876130 0.482075i \(-0.839883\pi\)
0.876130 0.482075i \(-0.160117\pi\)
\(90\) 0 0
\(91\) 14516.7 1.75301
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8612.88 4972.65i −0.954336 0.550986i
\(96\) 0 0
\(97\) 1455.75 + 2521.44i 0.154719 + 0.267981i 0.932957 0.359989i \(-0.117219\pi\)
−0.778238 + 0.627970i \(0.783886\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9442.90 5451.86i 0.925683 0.534444i 0.0402396 0.999190i \(-0.487188\pi\)
0.885444 + 0.464746i \(0.153855\pi\)
\(102\) 0 0
\(103\) 3638.56 6302.16i 0.342969 0.594039i −0.642014 0.766693i \(-0.721901\pi\)
0.984983 + 0.172654i \(0.0552341\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5525.48i 0.482617i −0.970449 0.241308i \(-0.922424\pi\)
0.970449 0.241308i \(-0.0775765\pi\)
\(108\) 0 0
\(109\) 7186.35 0.604861 0.302431 0.953171i \(-0.402202\pi\)
0.302431 + 0.953171i \(0.402202\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10742.0 + 6201.93i 0.841260 + 0.485702i 0.857692 0.514163i \(-0.171897\pi\)
−0.0164323 + 0.999865i \(0.505231\pi\)
\(114\) 0 0
\(115\) −8112.21 14050.8i −0.613400 1.06244i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 21268.2 12279.2i 1.50188 0.867113i
\(120\) 0 0
\(121\) 2809.31 4865.88i 0.191880 0.332346i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7846.74i 0.502191i
\(126\) 0 0
\(127\) 9013.28 0.558824 0.279412 0.960171i \(-0.409860\pi\)
0.279412 + 0.960171i \(0.409860\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −309.401 178.633i −0.0180293 0.0104092i 0.490958 0.871183i \(-0.336647\pi\)
−0.508988 + 0.860774i \(0.669980\pi\)
\(132\) 0 0
\(133\) 11838.6 + 20505.1i 0.669265 + 1.15920i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12811.2 + 7396.54i −0.682571 + 0.394083i −0.800823 0.598901i \(-0.795604\pi\)
0.118252 + 0.992984i \(0.462271\pi\)
\(138\) 0 0
\(139\) −1079.62 + 1869.95i −0.0558779 + 0.0967834i −0.892611 0.450827i \(-0.851129\pi\)
0.836733 + 0.547611i \(0.184462\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 27416.2i 1.34071i
\(144\) 0 0
\(145\) −4993.73 −0.237514
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −24982.1 14423.4i −1.12527 0.649675i −0.182529 0.983201i \(-0.558428\pi\)
−0.942741 + 0.333526i \(0.891762\pi\)
\(150\) 0 0
\(151\) 4752.65 + 8231.82i 0.208440 + 0.361029i 0.951223 0.308503i \(-0.0998280\pi\)
−0.742783 + 0.669532i \(0.766495\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −10073.7 + 5816.07i −0.419302 + 0.242084i
\(156\) 0 0
\(157\) 4937.68 8552.31i 0.200320 0.346964i −0.748312 0.663347i \(-0.769135\pi\)
0.948631 + 0.316383i \(0.102469\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 38626.3i 1.49015i
\(162\) 0 0
\(163\) −22464.8 −0.845525 −0.422763 0.906240i \(-0.638940\pi\)
−0.422763 + 0.906240i \(0.638940\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 14694.7 + 8484.01i 0.526901 + 0.304206i 0.739753 0.672878i \(-0.234942\pi\)
−0.212853 + 0.977084i \(0.568275\pi\)
\(168\) 0 0
\(169\) −4269.94 7395.76i −0.149503 0.258946i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 32441.8 18730.3i 1.08396 0.625825i 0.151998 0.988381i \(-0.451429\pi\)
0.931962 + 0.362556i \(0.118096\pi\)
\(174\) 0 0
\(175\) −14211.3 + 24614.7i −0.464043 + 0.803745i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 44760.9i 1.39699i 0.715615 + 0.698495i \(0.246147\pi\)
−0.715615 + 0.698495i \(0.753853\pi\)
\(180\) 0 0
\(181\) −29208.0 −0.891548 −0.445774 0.895146i \(-0.647071\pi\)
−0.445774 + 0.895146i \(0.647071\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −47621.4 27494.2i −1.39142 0.803337i
\(186\) 0 0
\(187\) −23190.5 40167.1i −0.663173 1.14865i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −25988.4 + 15004.4i −0.712383 + 0.411294i −0.811943 0.583737i \(-0.801590\pi\)
0.0995598 + 0.995032i \(0.468257\pi\)
\(192\) 0 0
\(193\) 8615.87 14923.1i 0.231305 0.400632i −0.726888 0.686756i \(-0.759034\pi\)
0.958192 + 0.286125i \(0.0923672\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 67892.1i 1.74939i 0.484673 + 0.874695i \(0.338938\pi\)
−0.484673 + 0.874695i \(0.661062\pi\)
\(198\) 0 0
\(199\) −26996.5 −0.681713 −0.340857 0.940115i \(-0.610717\pi\)
−0.340857 + 0.940115i \(0.610717\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 10296.0 + 5944.41i 0.249849 + 0.144250i
\(204\) 0 0
\(205\) −6256.47 10836.5i −0.148875 0.257859i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 38726.0 22358.5i 0.886564 0.511858i
\(210\) 0 0
\(211\) −11819.5 + 20472.1i −0.265482 + 0.459829i −0.967690 0.252143i \(-0.918865\pi\)
0.702207 + 0.711972i \(0.252198\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 22816.7i 0.493601i
\(216\) 0 0
\(217\) 27693.2 0.588103
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −54355.9 31382.4i −1.11292 0.642543i
\(222\) 0 0
\(223\) 28978.0 + 50191.3i 0.582718 + 1.00930i 0.995156 + 0.0983112i \(0.0313441\pi\)
−0.412438 + 0.910986i \(0.635323\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −8712.47 + 5030.15i −0.169079 + 0.0976178i −0.582151 0.813080i \(-0.697789\pi\)
0.413073 + 0.910698i \(0.364456\pi\)
\(228\) 0 0
\(229\) −28899.8 + 50056.0i −0.551093 + 0.954520i 0.447104 + 0.894482i \(0.352456\pi\)
−0.998196 + 0.0600381i \(0.980878\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 68323.8i 1.25852i −0.777195 0.629260i \(-0.783358\pi\)
0.777195 0.629260i \(-0.216642\pi\)
\(234\) 0 0
\(235\) 78726.0 1.42555
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 30122.2 + 17391.1i 0.527340 + 0.304460i 0.739933 0.672681i \(-0.234857\pi\)
−0.212592 + 0.977141i \(0.568191\pi\)
\(240\) 0 0
\(241\) −45982.8 79644.5i −0.791701 1.37127i −0.924913 0.380178i \(-0.875863\pi\)
0.133213 0.991087i \(-0.457471\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 89895.4 51901.2i 1.49763 0.864659i
\(246\) 0 0
\(247\) 30256.5 52405.7i 0.495935 0.858984i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 69806.6i 1.10802i −0.832509 0.554012i \(-0.813096\pi\)
0.832509 0.554012i \(-0.186904\pi\)
\(252\) 0 0
\(253\) 72949.7 1.13968
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −15210.4 8781.70i −0.230289 0.132957i 0.380416 0.924815i \(-0.375781\pi\)
−0.610705 + 0.791858i \(0.709114\pi\)
\(258\) 0 0
\(259\) 65456.8 + 113375.i 0.975788 + 1.69011i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −26492.4 + 15295.4i −0.383009 + 0.221131i −0.679127 0.734021i \(-0.737641\pi\)
0.296117 + 0.955152i \(0.404308\pi\)
\(264\) 0 0
\(265\) 63091.8 109278.i 0.898423 1.55611i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 59574.8i 0.823299i −0.911342 0.411650i \(-0.864953\pi\)
0.911342 0.411650i \(-0.135047\pi\)
\(270\) 0 0
\(271\) −94290.1 −1.28389 −0.641945 0.766751i \(-0.721872\pi\)
−0.641945 + 0.766751i \(0.721872\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 46487.4 + 26839.5i 0.614709 + 0.354902i
\(276\) 0 0
\(277\) 49687.7 + 86061.7i 0.647574 + 1.12163i 0.983700 + 0.179815i \(0.0575499\pi\)
−0.336126 + 0.941817i \(0.609117\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −68740.8 + 39687.5i −0.870567 + 0.502622i −0.867536 0.497374i \(-0.834298\pi\)
−0.00303013 + 0.999995i \(0.500965\pi\)
\(282\) 0 0
\(283\) −33460.0 + 57954.4i −0.417785 + 0.723625i −0.995716 0.0924607i \(-0.970527\pi\)
0.577931 + 0.816085i \(0.303860\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 29790.2i 0.361667i
\(288\) 0 0
\(289\) −22660.4 −0.271314
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 48467.1 + 27982.5i 0.564562 + 0.325950i 0.754974 0.655754i \(-0.227649\pi\)
−0.190413 + 0.981704i \(0.560983\pi\)
\(294\) 0 0
\(295\) −39053.0 67641.7i −0.448756 0.777268i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 85493.0 49359.4i 0.956287 0.552112i
\(300\) 0 0
\(301\) 27160.4 47043.3i 0.299781 0.519236i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 78538.8i 0.844276i
\(306\) 0 0
\(307\) 8707.80 0.0923914 0.0461957 0.998932i \(-0.485290\pi\)
0.0461957 + 0.998932i \(0.485290\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 48339.3 + 27908.7i 0.499781 + 0.288549i 0.728623 0.684915i \(-0.240161\pi\)
−0.228842 + 0.973464i \(0.573494\pi\)
\(312\) 0 0
\(313\) −29519.7 51129.6i −0.301316 0.521895i 0.675118 0.737710i \(-0.264093\pi\)
−0.976434 + 0.215815i \(0.930759\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 26277.2 15171.2i 0.261494 0.150973i −0.363522 0.931586i \(-0.618426\pi\)
0.625016 + 0.780612i \(0.285093\pi\)
\(318\) 0 0
\(319\) 11226.6 19445.1i 0.110323 0.191086i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 102372.i 0.981240i
\(324\) 0 0
\(325\) 72640.8 0.687724
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −162316. 93713.5i −1.49958 0.865785i
\(330\) 0 0
\(331\) −63460.5 109917.i −0.579225 1.00325i −0.995568 0.0940397i \(-0.970022\pi\)
0.416343 0.909207i \(-0.363311\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −180842. + 104409.i −1.61142 + 0.930353i
\(336\) 0 0
\(337\) −89198.2 + 154496.i −0.785410 + 1.36037i 0.143344 + 0.989673i \(0.454214\pi\)
−0.928754 + 0.370697i \(0.879119\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 52301.4i 0.449785i
\(342\) 0 0
\(343\) −66173.6 −0.562466
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 97741.3 + 56431.0i 0.811744 + 0.468661i 0.847561 0.530697i \(-0.178070\pi\)
−0.0358168 + 0.999358i \(0.511403\pi\)
\(348\) 0 0
\(349\) 36754.1 + 63660.0i 0.301756 + 0.522656i 0.976534 0.215365i \(-0.0690940\pi\)
−0.674778 + 0.738021i \(0.735761\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −183043. + 105680.i −1.46894 + 0.848091i −0.999394 0.0348180i \(-0.988915\pi\)
−0.469544 + 0.882909i \(0.655582\pi\)
\(354\) 0 0
\(355\) −92247.8 + 159778.i −0.731980 + 1.26783i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 36755.1i 0.285186i 0.989781 + 0.142593i \(0.0455440\pi\)
−0.989781 + 0.142593i \(0.954456\pi\)
\(360\) 0 0
\(361\) −31622.1 −0.242648
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 240992. + 139137.i 1.80891 + 1.04437i
\(366\) 0 0
\(367\) 73577.0 + 127439.i 0.546273 + 0.946173i 0.998526 + 0.0542832i \(0.0172874\pi\)
−0.452252 + 0.891890i \(0.649379\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −260164. + 150206.i −1.89016 + 1.09129i
\(372\) 0 0
\(373\) 21799.0 37757.1i 0.156682 0.271382i −0.776988 0.629515i \(-0.783253\pi\)
0.933670 + 0.358134i \(0.116587\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 30384.7i 0.213783i
\(378\) 0 0
\(379\) −169833. −1.18234 −0.591170 0.806547i \(-0.701334\pi\)
−0.591170 + 0.806547i \(0.701334\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 106228. + 61330.5i 0.724169 + 0.418099i 0.816285 0.577649i \(-0.196030\pi\)
−0.0921163 + 0.995748i \(0.529363\pi\)
\(384\) 0 0
\(385\) −169794. 294092.i −1.14552 1.98409i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 50495.3 29153.5i 0.333696 0.192660i −0.323785 0.946131i \(-0.604955\pi\)
0.657481 + 0.753471i \(0.271622\pi\)
\(390\) 0 0
\(391\) 83503.0 144631.i 0.546196 0.946039i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 122480.i 0.785002i
\(396\) 0 0
\(397\) −134572. −0.853834 −0.426917 0.904291i \(-0.640400\pi\)
−0.426917 + 0.904291i \(0.640400\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −185654. 107187.i −1.15456 0.666584i −0.204563 0.978853i \(-0.565577\pi\)
−0.949994 + 0.312269i \(0.898911\pi\)
\(402\) 0 0
\(403\) −35388.3 61294.4i −0.217896 0.377408i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 214119. 123622.i 1.29261 0.746288i
\(408\) 0 0
\(409\) 24369.5 42209.2i 0.145680 0.252325i −0.783946 0.620828i \(-0.786796\pi\)
0.929626 + 0.368503i \(0.120130\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 185951.i 1.09018i
\(414\) 0 0
\(415\) 380980. 2.21211
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 59650.3 + 34439.1i 0.339770 + 0.196166i 0.660170 0.751116i \(-0.270484\pi\)
−0.320400 + 0.947282i \(0.603817\pi\)
\(420\) 0 0
\(421\) 157677. + 273105.i 0.889620 + 1.54087i 0.840325 + 0.542083i \(0.182364\pi\)
0.0492953 + 0.998784i \(0.484302\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 106425. 61444.5i 0.589204 0.340177i
\(426\) 0 0
\(427\) 93490.6 161930.i 0.512758 0.888122i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 151597.i 0.816088i −0.912962 0.408044i \(-0.866211\pi\)
0.912962 0.408044i \(-0.133789\pi\)
\(432\) 0 0
\(433\) −237835. −1.26853 −0.634265 0.773116i \(-0.718697\pi\)
−0.634265 + 0.773116i \(0.718697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 139442. + 80507.1i 0.730183 + 0.421571i
\(438\) 0 0
\(439\) −32350.4 56032.6i −0.167861 0.290745i 0.769806 0.638278i \(-0.220353\pi\)
−0.937668 + 0.347533i \(0.887019\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4469.49 2580.46i 0.0227746 0.0131489i −0.488569 0.872525i \(-0.662481\pi\)
0.511344 + 0.859376i \(0.329148\pi\)
\(444\) 0 0
\(445\) −120880. + 209371.i −0.610430 + 1.05730i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 165679.i 0.821816i 0.911677 + 0.410908i \(0.134788\pi\)
−0.911677 + 0.410908i \(0.865212\pi\)
\(450\) 0 0
\(451\) 56261.8 0.276605
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −397979. 229773.i −1.92237 1.10988i
\(456\) 0 0
\(457\) 204489. + 354185.i 0.979121 + 1.69589i 0.665603 + 0.746306i \(0.268174\pi\)
0.313519 + 0.949582i \(0.398492\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 75485.9 43581.8i 0.355193 0.205071i −0.311777 0.950155i \(-0.600924\pi\)
0.666970 + 0.745085i \(0.267591\pi\)
\(462\) 0 0
\(463\) −8403.24 + 14554.8i −0.0391999 + 0.0678962i −0.884960 0.465668i \(-0.845814\pi\)
0.845760 + 0.533564i \(0.179148\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 394500.i 1.80889i −0.426585 0.904447i \(-0.640284\pi\)
0.426585 0.904447i \(-0.359716\pi\)
\(468\) 0 0
\(469\) 497143. 2.26014
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −88846.0 51295.3i −0.397114 0.229274i
\(474\) 0 0
\(475\) 59240.0 + 102607.i 0.262559 + 0.454766i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 90406.6 52196.3i 0.394030 0.227493i −0.289875 0.957065i \(-0.593614\pi\)
0.683905 + 0.729571i \(0.260280\pi\)
\(480\) 0 0
\(481\) 167291. 289756.i 0.723072 1.25240i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 92167.7i 0.391828i
\(486\) 0 0
\(487\) 106236. 0.447936 0.223968 0.974597i \(-0.428099\pi\)
0.223968 + 0.974597i \(0.428099\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −78832.6 45514.0i −0.326997 0.188792i 0.327510 0.944848i \(-0.393790\pi\)
−0.654507 + 0.756056i \(0.727124\pi\)
\(492\) 0 0
\(493\) −25701.5 44516.2i −0.105746 0.183157i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 380391. 219619.i 1.53999 0.889113i
\(498\) 0 0
\(499\) 69176.0 119816.i 0.277814 0.481188i −0.693027 0.720912i \(-0.743723\pi\)
0.970841 + 0.239723i \(0.0770567\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 63792.4i 0.252135i 0.992022 + 0.126067i \(0.0402356\pi\)
−0.992022 + 0.126067i \(0.959764\pi\)
\(504\) 0 0
\(505\) −345172. −1.35348
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 423634. + 244585.i 1.63514 + 0.944049i 0.982473 + 0.186405i \(0.0596838\pi\)
0.652668 + 0.757644i \(0.273650\pi\)
\(510\) 0 0
\(511\) −331250. 573742.i −1.26857 2.19723i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −199504. + 115184.i −0.752206 + 0.434286i
\(516\) 0 0
\(517\) −176987. + 306551.i −0.662158 + 1.14689i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 339386.i 1.25031i 0.780500 + 0.625156i \(0.214965\pi\)
−0.780500 + 0.625156i \(0.785035\pi\)
\(522\) 0 0
\(523\) 379243. 1.38648 0.693242 0.720705i \(-0.256182\pi\)
0.693242 + 0.720705i \(0.256182\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −103694. 59867.6i −0.373363 0.215561i
\(528\) 0 0
\(529\) −8583.94 14867.8i −0.0306744 0.0531295i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 65935.7 38068.0i 0.232095 0.134000i
\(534\) 0 0
\(535\) −87458.4 + 151482.i −0.305558 + 0.529242i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 466725.i 1.60651i
\(540\) 0 0
\(541\) −494913. −1.69096 −0.845481 0.534005i \(-0.820686\pi\)
−0.845481 + 0.534005i \(0.820686\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −197016. 113747.i −0.663297 0.382955i
\(546\) 0 0
\(547\) 93045.4 + 161159.i 0.310971 + 0.538618i 0.978573 0.205901i \(-0.0660124\pi\)
−0.667602 + 0.744519i \(0.732679\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 42919.1 24779.3i 0.141367 0.0816181i
\(552\) 0 0
\(553\) −145797. + 252528.i −0.476759 + 0.825770i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 119662.i 0.385698i 0.981228 + 0.192849i \(0.0617728\pi\)
−0.981228 + 0.192849i \(0.938227\pi\)
\(558\) 0 0
\(559\) −138830. −0.444283
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −22885.5 13213.0i −0.0722012 0.0416854i 0.463465 0.886115i \(-0.346606\pi\)
−0.535666 + 0.844430i \(0.679939\pi\)
\(564\) 0 0
\(565\) −196331. 340055.i −0.615023 1.06525i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −453562. + 261864.i −1.40092 + 0.808820i −0.994487 0.104862i \(-0.966560\pi\)
−0.406430 + 0.913682i \(0.633226\pi\)
\(570\) 0 0
\(571\) 161586. 279875.i 0.495600 0.858405i −0.504387 0.863478i \(-0.668281\pi\)
0.999987 + 0.00507280i \(0.00161473\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 193284.i 0.584603i
\(576\) 0 0
\(577\) 350692. 1.05335 0.526676 0.850066i \(-0.323438\pi\)
0.526676 + 0.850066i \(0.323438\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −785501. 453509.i −2.32699 1.34349i
\(582\) 0 0
\(583\) 283679. + 491346.i 0.834622 + 1.44561i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 415397. 239829.i 1.20555 0.696027i 0.243769 0.969833i \(-0.421616\pi\)
0.961785 + 0.273806i \(0.0882827\pi\)
\(588\) 0 0
\(589\) 57719.7 99973.4i 0.166377 0.288173i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 177843.i 0.505740i 0.967500 + 0.252870i \(0.0813745\pi\)
−0.967500 + 0.252870i \(0.918625\pi\)
\(594\) 0 0
\(595\) −777430. −2.19597
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16977.8 9802.11i −0.0473180 0.0273191i 0.476154 0.879362i \(-0.342030\pi\)
−0.523472 + 0.852043i \(0.675364\pi\)
\(600\) 0 0
\(601\) −197404. 341913.i −0.546520 0.946600i −0.998510 0.0545772i \(-0.982619\pi\)
0.451990 0.892023i \(-0.350714\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −154036. + 88932.8i −0.420835 + 0.242969i
\(606\) 0 0
\(607\) −351729. + 609212.i −0.954620 + 1.65345i −0.219386 + 0.975638i \(0.570405\pi\)
−0.735235 + 0.677813i \(0.762928\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 479015.i 1.28312i
\(612\) 0 0
\(613\) 96392.2 0.256520 0.128260 0.991741i \(-0.459061\pi\)
0.128260 + 0.991741i \(0.459061\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 439772. + 253903.i 1.15520 + 0.666956i 0.950149 0.311796i \(-0.100930\pi\)
0.205052 + 0.978751i \(0.434264\pi\)
\(618\) 0 0
\(619\) 43453.6 + 75263.9i 0.113408 + 0.196429i 0.917142 0.398560i \(-0.130490\pi\)
−0.803734 + 0.594989i \(0.797157\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 498460. 287786.i 1.28426 0.741470i
\(624\) 0 0
\(625\) 242052. 419247.i 0.619654 1.07327i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 566023.i 1.43065i
\(630\) 0 0
\(631\) −571591. −1.43558 −0.717788 0.696261i \(-0.754846\pi\)
−0.717788 + 0.696261i \(0.754846\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −247101. 142664.i −0.612812 0.353807i
\(636\) 0 0
\(637\) 315797. + 546976.i 0.778267 + 1.34800i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −332304. + 191856.i −0.808759 + 0.466937i −0.846525 0.532350i \(-0.821309\pi\)
0.0377659 + 0.999287i \(0.487976\pi\)
\(642\) 0 0
\(643\) 405119. 701687.i 0.979853 1.69716i 0.316965 0.948437i \(-0.397336\pi\)
0.662888 0.748718i \(-0.269330\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 687173.i 1.64156i 0.571243 + 0.820781i \(0.306461\pi\)
−0.571243 + 0.820781i \(0.693539\pi\)
\(648\) 0 0
\(649\) 351187. 0.833775
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 189470. + 109391.i 0.444339 + 0.256539i 0.705437 0.708773i \(-0.250751\pi\)
−0.261097 + 0.965312i \(0.584084\pi\)
\(654\) 0 0
\(655\) 5654.87 + 9794.52i 0.0131807 + 0.0228297i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −71298.2 + 41164.1i −0.164175 + 0.0947867i −0.579836 0.814733i \(-0.696884\pi\)
0.415661 + 0.909520i \(0.363550\pi\)
\(660\) 0 0
\(661\) −205017. + 355100.i −0.469231 + 0.812732i −0.999381 0.0351716i \(-0.988802\pi\)
0.530150 + 0.847904i \(0.322136\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 749537.i 1.69492i
\(666\) 0 0
\(667\) 80848.4 0.181727
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −305822. 176566.i −0.679241 0.392160i
\(672\) 0 0
\(673\) −265864. 460490.i −0.586989 1.01669i −0.994624 0.103549i \(-0.966980\pi\)
0.407636 0.913145i \(-0.366353\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −149580. + 86360.3i −0.326361 + 0.188424i −0.654224 0.756301i \(-0.727005\pi\)
0.327864 + 0.944725i \(0.393671\pi\)
\(678\) 0 0
\(679\) −109714. + 190030.i −0.237970 + 0.412177i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 452646.i 0.970324i −0.874424 0.485162i \(-0.838761\pi\)
0.874424 0.485162i \(-0.161239\pi\)
\(684\) 0 0
\(685\) 468296. 0.998019
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 664912. + 383887.i 1.40064 + 0.808658i
\(690\) 0 0
\(691\) −117795. 204027.i −0.246701 0.427298i 0.715908 0.698195i \(-0.246013\pi\)
−0.962608 + 0.270897i \(0.912680\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 59196.0 34176.8i 0.122553 0.0707558i
\(696\) 0 0
\(697\) 64400.9 111546.i 0.132564 0.229608i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 41298.8i 0.0840430i 0.999117 + 0.0420215i \(0.0133798\pi\)
−0.999117 + 0.0420215i \(0.986620\pi\)
\(702\) 0 0
\(703\) 545715. 1.10422
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 711673. + 410885.i 1.42378 + 0.822018i
\(708\) 0 0
\(709\) −32914.9 57010.2i −0.0654786 0.113412i 0.831428 0.555633i \(-0.187524\pi\)
−0.896906 + 0.442221i \(0.854191\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 163093. 94162.0i 0.320817 0.185224i
\(714\) 0 0
\(715\) −433950. + 751623.i −0.848843 + 1.47024i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 551850.i 1.06749i −0.845646 0.533745i \(-0.820784\pi\)
0.845646 0.533745i \(-0.179216\pi\)
\(720\) 0 0
\(721\) 548447. 1.05503
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 51520.8 + 29745.6i 0.0980182 + 0.0565908i
\(726\) 0 0
\(727\) −69946.0 121150.i −0.132341 0.229221i 0.792238 0.610213i \(-0.208916\pi\)
−0.924579 + 0.380992i \(0.875583\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −203398. + 117432.i −0.380638 + 0.219761i
\(732\) 0 0
\(733\) 348037. 602817.i 0.647764 1.12196i −0.335891 0.941901i \(-0.609038\pi\)
0.983656 0.180060i \(-0.0576291\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 938905.i 1.72857i
\(738\) 0 0
\(739\) 360220. 0.659598 0.329799 0.944051i \(-0.393019\pi\)
0.329799 + 0.944051i \(0.393019\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −55134.1 31831.7i −0.0998718 0.0576610i 0.449232 0.893415i \(-0.351698\pi\)
−0.549104 + 0.835754i \(0.685031\pi\)
\(744\) 0 0
\(745\) 456594. + 790844.i 0.822655 + 1.42488i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 360641. 208216.i 0.642854 0.371152i
\(750\) 0 0
\(751\) 369552. 640082.i 0.655232 1.13490i −0.326603 0.945162i \(-0.605904\pi\)
0.981836 0.189734i \(-0.0607626\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 300903.i 0.527877i
\(756\) 0 0
\(757\) −315416. −0.550416 −0.275208 0.961385i \(-0.588747\pi\)
−0.275208 + 0.961385i \(0.588747\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −814012. 469970.i −1.40560 0.811523i −0.410640 0.911798i \(-0.634695\pi\)
−0.994960 + 0.100274i \(0.968028\pi\)
\(762\) 0 0
\(763\) 270803. + 469045.i 0.465163 + 0.805685i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 411571. 237621.i 0.699607 0.403919i
\(768\) 0 0
\(769\) −173503. + 300517.i −0.293397 + 0.508178i −0.974611 0.223906i \(-0.928119\pi\)
0.681214 + 0.732085i \(0.261452\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 4630.27i 0.00774903i −0.999992 0.00387451i \(-0.998767\pi\)
0.999992 0.00387451i \(-0.00123330\pi\)
\(774\) 0 0
\(775\) 138576. 0.230719
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 107544. + 62090.3i 0.177219 + 0.102317i
\(780\) 0 0
\(781\) −414773. 718407.i −0.679999 1.17779i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −270735. + 156309.i −0.439345 + 0.253656i
\(786\) 0 0
\(787\) −251477. + 435571.i −0.406021 + 0.703250i −0.994440 0.105307i \(-0.966417\pi\)
0.588418 + 0.808557i \(0.299751\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 934828.i 1.49410i
\(792\) 0 0
\(793\) −477875. −0.759921
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −210541. 121556.i −0.331451 0.191363i 0.325034 0.945702i \(-0.394624\pi\)
−0.656485 + 0.754339i \(0.727958\pi\)
\(798\) 0 0
\(799\) 405183. + 701797.i 0.634684 + 1.09930i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.08357e6 + 625599.i −1.68045 + 0.970209i