Properties

Label 108.5.d.b.55.16
Level 108
Weight 5
Character 108.55
Analytic conductor 11.164
Analytic rank 0
Dimension 16
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 108.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.1639560131\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{32}\cdot 3^{24} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 55.16
Root \(0.222504 + 0.385387i\) of \(x^{16} + 38 x^{14} + 1016 x^{12} + 13512 x^{10} + 130640 x^{8} + 569472 x^{6} + 1783808 x^{4} + 352256 x^{2} + 65536\)
Character \(\chi\) \(=\) 108.55
Dual form 108.5.d.b.55.15

$q$-expansion

\(f(q)\) \(=\) \(q+(3.98139 + 0.385387i) q^{2} +(15.7030 + 3.06876i) q^{4} -22.8093 q^{5} +82.1204i q^{7} +(61.3369 + 18.2696i) q^{8} +O(q^{10})\) \(q+(3.98139 + 0.385387i) q^{2} +(15.7030 + 3.06876i) q^{4} -22.8093 q^{5} +82.1204i q^{7} +(61.3369 + 18.2696i) q^{8} +(-90.8127 - 8.79041i) q^{10} +107.306i q^{11} +57.1351 q^{13} +(-31.6482 + 326.954i) q^{14} +(237.165 + 96.3771i) q^{16} +291.903 q^{17} +304.924i q^{19} +(-358.173 - 69.9961i) q^{20} +(-41.3543 + 427.227i) q^{22} -982.813i q^{23} -104.737 q^{25} +(227.477 + 22.0191i) q^{26} +(-252.008 + 1289.53i) q^{28} -1049.98 q^{29} +783.041i q^{31} +(907.106 + 475.115i) q^{32} +(1162.18 + 112.496i) q^{34} -1873.11i q^{35} +1404.40 q^{37} +(-117.514 + 1214.02i) q^{38} +(-1399.05 - 416.717i) q^{40} -363.412 q^{41} -64.7059i q^{43} +(-329.295 + 1685.02i) q^{44} +(378.764 - 3912.96i) q^{46} -3495.66i q^{47} -4342.77 q^{49} +(-416.998 - 40.3642i) q^{50} +(897.189 + 175.334i) q^{52} +3268.87 q^{53} -2447.57i q^{55} +(-1500.31 + 5037.02i) q^{56} +(-4180.37 - 404.648i) q^{58} +867.469i q^{59} +6034.94 q^{61} +(-301.774 + 3117.59i) q^{62} +(3428.44 + 2241.21i) q^{64} -1303.21 q^{65} -3421.54i q^{67} +(4583.74 + 895.780i) q^{68} +(721.872 - 7457.58i) q^{70} -3188.67i q^{71} -4267.98 q^{73} +(5591.47 + 541.239i) q^{74} +(-935.737 + 4788.20i) q^{76} -8812.00 q^{77} -7530.43i q^{79} +(-5409.57 - 2198.29i) q^{80} +(-1446.89 - 140.055i) q^{82} +586.258i q^{83} -6658.11 q^{85} +(24.9368 - 257.619i) q^{86} +(-1960.44 + 6581.81i) q^{88} +5789.27 q^{89} +4691.96i q^{91} +(3016.01 - 15433.1i) q^{92} +(1347.18 - 13917.6i) q^{94} -6955.09i q^{95} +10837.8 q^{97} +(-17290.3 - 1673.65i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 28q^{4} + O(q^{10}) \) \( 16q + 28q^{4} + 176q^{10} + 176q^{13} + 88q^{16} + 384q^{22} + 2736q^{25} + 1812q^{28} + 1520q^{34} + 80q^{37} - 688q^{40} - 1824q^{46} - 7904q^{49} - 5236q^{52} - 11584q^{58} - 1648q^{61} + 5056q^{64} + 26688q^{70} + 80q^{73} - 8388q^{76} - 38464q^{82} - 16832q^{85} - 29520q^{88} - 4512q^{94} + 14864q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.98139 + 0.385387i 0.995348 + 0.0963469i
\(3\) 0 0
\(4\) 15.7030 + 3.06876i 0.981435 + 0.191797i
\(5\) −22.8093 −0.912371 −0.456186 0.889885i \(-0.650785\pi\)
−0.456186 + 0.889885i \(0.650785\pi\)
\(6\) 0 0
\(7\) 82.1204i 1.67593i 0.545726 + 0.837964i \(0.316254\pi\)
−0.545726 + 0.837964i \(0.683746\pi\)
\(8\) 61.3369 + 18.2696i 0.958390 + 0.285463i
\(9\) 0 0
\(10\) −90.8127 8.79041i −0.908127 0.0879041i
\(11\) 107.306i 0.886825i 0.896318 + 0.443413i \(0.146232\pi\)
−0.896318 + 0.443413i \(0.853768\pi\)
\(12\) 0 0
\(13\) 57.1351 0.338077 0.169039 0.985609i \(-0.445934\pi\)
0.169039 + 0.985609i \(0.445934\pi\)
\(14\) −31.6482 + 326.954i −0.161470 + 1.66813i
\(15\) 0 0
\(16\) 237.165 + 96.3771i 0.926428 + 0.376473i
\(17\) 291.903 1.01005 0.505023 0.863106i \(-0.331484\pi\)
0.505023 + 0.863106i \(0.331484\pi\)
\(18\) 0 0
\(19\) 304.924i 0.844664i 0.906441 + 0.422332i \(0.138788\pi\)
−0.906441 + 0.422332i \(0.861212\pi\)
\(20\) −358.173 69.9961i −0.895433 0.174990i
\(21\) 0 0
\(22\) −41.3543 + 427.227i −0.0854428 + 0.882699i
\(23\) 982.813i 1.85787i −0.370243 0.928935i \(-0.620726\pi\)
0.370243 0.928935i \(-0.379274\pi\)
\(24\) 0 0
\(25\) −104.737 −0.167579
\(26\) 227.477 + 22.0191i 0.336505 + 0.0325727i
\(27\) 0 0
\(28\) −252.008 + 1289.53i −0.321438 + 1.64481i
\(29\) −1049.98 −1.24849 −0.624244 0.781230i \(-0.714593\pi\)
−0.624244 + 0.781230i \(0.714593\pi\)
\(30\) 0 0
\(31\) 783.041i 0.814819i 0.913246 + 0.407409i \(0.133568\pi\)
−0.913246 + 0.407409i \(0.866432\pi\)
\(32\) 907.106 + 475.115i 0.885846 + 0.463980i
\(33\) 0 0
\(34\) 1162.18 + 112.496i 1.00535 + 0.0973148i
\(35\) 1873.11i 1.52907i
\(36\) 0 0
\(37\) 1404.40 1.02586 0.512930 0.858431i \(-0.328560\pi\)
0.512930 + 0.858431i \(0.328560\pi\)
\(38\) −117.514 + 1214.02i −0.0813808 + 0.840735i
\(39\) 0 0
\(40\) −1399.05 416.717i −0.874407 0.260448i
\(41\) −363.412 −0.216188 −0.108094 0.994141i \(-0.534475\pi\)
−0.108094 + 0.994141i \(0.534475\pi\)
\(42\) 0 0
\(43\) 64.7059i 0.0349951i −0.999847 0.0174975i \(-0.994430\pi\)
0.999847 0.0174975i \(-0.00556992\pi\)
\(44\) −329.295 + 1685.02i −0.170091 + 0.870361i
\(45\) 0 0
\(46\) 378.764 3912.96i 0.179000 1.84923i
\(47\) 3495.66i 1.58246i −0.611518 0.791230i \(-0.709441\pi\)
0.611518 0.791230i \(-0.290559\pi\)
\(48\) 0 0
\(49\) −4342.77 −1.80873
\(50\) −416.998 40.3642i −0.166799 0.0161457i
\(51\) 0 0
\(52\) 897.189 + 175.334i 0.331801 + 0.0648423i
\(53\) 3268.87 1.16371 0.581856 0.813292i \(-0.302327\pi\)
0.581856 + 0.813292i \(0.302327\pi\)
\(54\) 0 0
\(55\) 2447.57i 0.809114i
\(56\) −1500.31 + 5037.02i −0.478415 + 1.60619i
\(57\) 0 0
\(58\) −4180.37 404.648i −1.24268 0.120288i
\(59\) 867.469i 0.249201i 0.992207 + 0.124601i \(0.0397650\pi\)
−0.992207 + 0.124601i \(0.960235\pi\)
\(60\) 0 0
\(61\) 6034.94 1.62186 0.810929 0.585144i \(-0.198962\pi\)
0.810929 + 0.585144i \(0.198962\pi\)
\(62\) −301.774 + 3117.59i −0.0785052 + 0.811028i
\(63\) 0 0
\(64\) 3428.44 + 2241.21i 0.837022 + 0.547170i
\(65\) −1303.21 −0.308452
\(66\) 0 0
\(67\) 3421.54i 0.762205i −0.924533 0.381103i \(-0.875544\pi\)
0.924533 0.381103i \(-0.124456\pi\)
\(68\) 4583.74 + 895.780i 0.991294 + 0.193724i
\(69\) 0 0
\(70\) 721.872 7457.58i 0.147321 1.52195i
\(71\) 3188.67i 0.632547i −0.948668 0.316273i \(-0.897568\pi\)
0.948668 0.316273i \(-0.102432\pi\)
\(72\) 0 0
\(73\) −4267.98 −0.800896 −0.400448 0.916319i \(-0.631146\pi\)
−0.400448 + 0.916319i \(0.631146\pi\)
\(74\) 5591.47 + 541.239i 1.02109 + 0.0988383i
\(75\) 0 0
\(76\) −935.737 + 4788.20i −0.162004 + 0.828983i
\(77\) −8812.00 −1.48625
\(78\) 0 0
\(79\) 7530.43i 1.20661i −0.797512 0.603303i \(-0.793851\pi\)
0.797512 0.603303i \(-0.206149\pi\)
\(80\) −5409.57 2198.29i −0.845246 0.343483i
\(81\) 0 0
\(82\) −1446.89 140.055i −0.215182 0.0208290i
\(83\) 586.258i 0.0851006i 0.999094 + 0.0425503i \(0.0135483\pi\)
−0.999094 + 0.0425503i \(0.986452\pi\)
\(84\) 0 0
\(85\) −6658.11 −0.921537
\(86\) 24.9368 257.619i 0.00337167 0.0348323i
\(87\) 0 0
\(88\) −1960.44 + 6581.81i −0.253156 + 0.849924i
\(89\) 5789.27 0.730876 0.365438 0.930836i \(-0.380919\pi\)
0.365438 + 0.930836i \(0.380919\pi\)
\(90\) 0 0
\(91\) 4691.96i 0.566593i
\(92\) 3016.01 15433.1i 0.356334 1.82338i
\(93\) 0 0
\(94\) 1347.18 13917.6i 0.152465 1.57510i
\(95\) 6955.09i 0.770647i
\(96\) 0 0
\(97\) 10837.8 1.15185 0.575927 0.817501i \(-0.304641\pi\)
0.575927 + 0.817501i \(0.304641\pi\)
\(98\) −17290.3 1673.65i −1.80032 0.174266i
\(99\) 0 0
\(100\) −1644.68 321.411i −0.164468 0.0321411i
\(101\) 11502.9 1.12763 0.563813 0.825903i \(-0.309334\pi\)
0.563813 + 0.825903i \(0.309334\pi\)
\(102\) 0 0
\(103\) 13839.0i 1.30446i 0.758020 + 0.652231i \(0.226167\pi\)
−0.758020 + 0.652231i \(0.773833\pi\)
\(104\) 3504.49 + 1043.84i 0.324010 + 0.0965086i
\(105\) 0 0
\(106\) 13014.6 + 1259.78i 1.15830 + 0.112120i
\(107\) 14731.9i 1.28674i 0.765555 + 0.643371i \(0.222465\pi\)
−0.765555 + 0.643371i \(0.777535\pi\)
\(108\) 0 0
\(109\) 3545.18 0.298391 0.149195 0.988808i \(-0.452332\pi\)
0.149195 + 0.988808i \(0.452332\pi\)
\(110\) 943.262 9744.73i 0.0779556 0.805350i
\(111\) 0 0
\(112\) −7914.53 + 19476.1i −0.630941 + 1.55263i
\(113\) −12472.0 −0.976742 −0.488371 0.872636i \(-0.662409\pi\)
−0.488371 + 0.872636i \(0.662409\pi\)
\(114\) 0 0
\(115\) 22417.3i 1.69507i
\(116\) −16487.8 3222.13i −1.22531 0.239456i
\(117\) 0 0
\(118\) −334.312 + 3453.73i −0.0240098 + 0.248042i
\(119\) 23971.2i 1.69276i
\(120\) 0 0
\(121\) 3126.46 0.213541
\(122\) 24027.4 + 2325.79i 1.61431 + 0.156261i
\(123\) 0 0
\(124\) −2402.96 + 12296.1i −0.156280 + 0.799691i
\(125\) 16644.8 1.06527
\(126\) 0 0
\(127\) 1002.07i 0.0621284i −0.999517 0.0310642i \(-0.990110\pi\)
0.999517 0.0310642i \(-0.00988964\pi\)
\(128\) 12786.2 + 10244.4i 0.780410 + 0.625269i
\(129\) 0 0
\(130\) −5188.59 502.241i −0.307017 0.0297184i
\(131\) 33549.8i 1.95500i 0.210933 + 0.977501i \(0.432350\pi\)
−0.210933 + 0.977501i \(0.567650\pi\)
\(132\) 0 0
\(133\) −25040.5 −1.41560
\(134\) 1318.62 13622.5i 0.0734361 0.758659i
\(135\) 0 0
\(136\) 17904.5 + 5332.97i 0.968018 + 0.288331i
\(137\) −19700.7 −1.04964 −0.524821 0.851213i \(-0.675868\pi\)
−0.524821 + 0.851213i \(0.675868\pi\)
\(138\) 0 0
\(139\) 12634.4i 0.653922i −0.945038 0.326961i \(-0.893975\pi\)
0.945038 0.326961i \(-0.106025\pi\)
\(140\) 5748.11 29413.3i 0.293271 1.50068i
\(141\) 0 0
\(142\) 1228.87 12695.3i 0.0609439 0.629604i
\(143\) 6130.93i 0.299816i
\(144\) 0 0
\(145\) 23949.2 1.13908
\(146\) −16992.5 1644.82i −0.797171 0.0771639i
\(147\) 0 0
\(148\) 22053.2 + 4309.76i 1.00681 + 0.196757i
\(149\) −24054.7 −1.08350 −0.541749 0.840541i \(-0.682238\pi\)
−0.541749 + 0.840541i \(0.682238\pi\)
\(150\) 0 0
\(151\) 29000.6i 1.27190i −0.771730 0.635951i \(-0.780608\pi\)
0.771730 0.635951i \(-0.219392\pi\)
\(152\) −5570.85 + 18703.1i −0.241121 + 0.809518i
\(153\) 0 0
\(154\) −35084.0 3396.04i −1.47934 0.143196i
\(155\) 17860.6i 0.743417i
\(156\) 0 0
\(157\) 11143.2 0.452074 0.226037 0.974119i \(-0.427423\pi\)
0.226037 + 0.974119i \(0.427423\pi\)
\(158\) 2902.13 29981.6i 0.116253 1.20099i
\(159\) 0 0
\(160\) −20690.4 10837.0i −0.808220 0.423322i
\(161\) 80709.0 3.11365
\(162\) 0 0
\(163\) 3212.14i 0.120898i 0.998171 + 0.0604490i \(0.0192533\pi\)
−0.998171 + 0.0604490i \(0.980747\pi\)
\(164\) −5706.65 1115.22i −0.212175 0.0414643i
\(165\) 0 0
\(166\) −225.937 + 2334.12i −0.00819918 + 0.0847047i
\(167\) 22589.6i 0.809983i 0.914320 + 0.404992i \(0.132726\pi\)
−0.914320 + 0.404992i \(0.867274\pi\)
\(168\) 0 0
\(169\) −25296.6 −0.885704
\(170\) −26508.5 2565.95i −0.917250 0.0887872i
\(171\) 0 0
\(172\) 198.567 1016.07i 0.00671196 0.0343454i
\(173\) −20741.2 −0.693013 −0.346506 0.938048i \(-0.612632\pi\)
−0.346506 + 0.938048i \(0.612632\pi\)
\(174\) 0 0
\(175\) 8601.02i 0.280850i
\(176\) −10341.8 + 25449.2i −0.333866 + 0.821579i
\(177\) 0 0
\(178\) 23049.3 + 2231.11i 0.727476 + 0.0704176i
\(179\) 37551.2i 1.17197i −0.810321 0.585986i \(-0.800707\pi\)
0.810321 0.585986i \(-0.199293\pi\)
\(180\) 0 0
\(181\) −38019.3 −1.16050 −0.580252 0.814437i \(-0.697046\pi\)
−0.580252 + 0.814437i \(0.697046\pi\)
\(182\) −1808.22 + 18680.5i −0.0545895 + 0.563957i
\(183\) 0 0
\(184\) 17955.6 60282.7i 0.530353 1.78056i
\(185\) −32033.4 −0.935964
\(186\) 0 0
\(187\) 31322.9i 0.895734i
\(188\) 10727.3 54892.1i 0.303512 1.55308i
\(189\) 0 0
\(190\) 2680.41 27690.9i 0.0742495 0.767062i
\(191\) 7313.44i 0.200473i −0.994964 0.100236i \(-0.968040\pi\)
0.994964 0.100236i \(-0.0319599\pi\)
\(192\) 0 0
\(193\) 60987.7 1.63730 0.818649 0.574294i \(-0.194724\pi\)
0.818649 + 0.574294i \(0.194724\pi\)
\(194\) 43149.5 + 4176.75i 1.14650 + 0.110978i
\(195\) 0 0
\(196\) −68194.3 13326.9i −1.77515 0.346910i
\(197\) −13891.0 −0.357934 −0.178967 0.983855i \(-0.557275\pi\)
−0.178967 + 0.983855i \(0.557275\pi\)
\(198\) 0 0
\(199\) 43065.2i 1.08748i −0.839255 0.543738i \(-0.817008\pi\)
0.839255 0.543738i \(-0.182992\pi\)
\(200\) −6424.23 1913.50i −0.160606 0.0478375i
\(201\) 0 0
\(202\) 45797.6 + 4433.08i 1.12238 + 0.108643i
\(203\) 86224.6i 2.09237i
\(204\) 0 0
\(205\) 8289.17 0.197244
\(206\) −5333.39 + 55098.6i −0.125681 + 1.29839i
\(207\) 0 0
\(208\) 13550.5 + 5506.51i 0.313204 + 0.127277i
\(209\) −32720.1 −0.749070
\(210\) 0 0
\(211\) 23061.3i 0.517987i −0.965879 0.258993i \(-0.916609\pi\)
0.965879 0.258993i \(-0.0833908\pi\)
\(212\) 51330.9 + 10031.4i 1.14211 + 0.223197i
\(213\) 0 0
\(214\) −5677.49 + 58653.5i −0.123973 + 1.28076i
\(215\) 1475.89i 0.0319285i
\(216\) 0 0
\(217\) −64303.6 −1.36558
\(218\) 14114.8 + 1366.27i 0.297003 + 0.0287490i
\(219\) 0 0
\(220\) 7510.99 38434.1i 0.155186 0.794092i
\(221\) 16677.9 0.341474
\(222\) 0 0
\(223\) 59739.3i 1.20130i −0.799514 0.600648i \(-0.794909\pi\)
0.799514 0.600648i \(-0.205091\pi\)
\(224\) −39016.7 + 74491.9i −0.777597 + 1.48461i
\(225\) 0 0
\(226\) −49656.0 4806.56i −0.972198 0.0941060i
\(227\) 33998.0i 0.659784i 0.944019 + 0.329892i \(0.107012\pi\)
−0.944019 + 0.329892i \(0.892988\pi\)
\(228\) 0 0
\(229\) 14052.1 0.267959 0.133980 0.990984i \(-0.457224\pi\)
0.133980 + 0.990984i \(0.457224\pi\)
\(230\) −8639.33 + 89251.9i −0.163314 + 1.68718i
\(231\) 0 0
\(232\) −64402.4 19182.7i −1.19654 0.356397i
\(233\) 9622.25 0.177241 0.0886206 0.996065i \(-0.471754\pi\)
0.0886206 + 0.996065i \(0.471754\pi\)
\(234\) 0 0
\(235\) 79733.4i 1.44379i
\(236\) −2662.05 + 13621.8i −0.0477961 + 0.244575i
\(237\) 0 0
\(238\) −9238.21 + 95438.9i −0.163092 + 1.68489i
\(239\) 28426.1i 0.497647i −0.968549 0.248824i \(-0.919956\pi\)
0.968549 0.248824i \(-0.0800439\pi\)
\(240\) 0 0
\(241\) −9489.78 −0.163389 −0.0816943 0.996657i \(-0.526033\pi\)
−0.0816943 + 0.996657i \(0.526033\pi\)
\(242\) 12447.6 + 1204.90i 0.212548 + 0.0205740i
\(243\) 0 0
\(244\) 94766.3 + 18519.7i 1.59175 + 0.311068i
\(245\) 99055.4 1.65024
\(246\) 0 0
\(247\) 17421.8i 0.285562i
\(248\) −14305.9 + 48029.3i −0.232601 + 0.780914i
\(249\) 0 0
\(250\) 66269.3 + 6414.68i 1.06031 + 0.102635i
\(251\) 29529.8i 0.468720i −0.972150 0.234360i \(-0.924701\pi\)
0.972150 0.234360i \(-0.0752994\pi\)
\(252\) 0 0
\(253\) 105462. 1.64761
\(254\) 386.185 3989.63i 0.00598588 0.0618394i
\(255\) 0 0
\(256\) 46958.9 + 45714.6i 0.716536 + 0.697550i
\(257\) −14174.7 −0.214609 −0.107304 0.994226i \(-0.534222\pi\)
−0.107304 + 0.994226i \(0.534222\pi\)
\(258\) 0 0
\(259\) 115330.i 1.71927i
\(260\) −20464.2 3999.23i −0.302726 0.0591603i
\(261\) 0 0
\(262\) −12929.7 + 133575.i −0.188358 + 1.94591i
\(263\) 106157.i 1.53475i −0.641197 0.767377i \(-0.721562\pi\)
0.641197 0.767377i \(-0.278438\pi\)
\(264\) 0 0
\(265\) −74560.5 −1.06174
\(266\) −99695.9 9650.29i −1.40901 0.136388i
\(267\) 0 0
\(268\) 10499.9 53728.3i 0.146189 0.748055i
\(269\) −57391.1 −0.793122 −0.396561 0.918008i \(-0.629796\pi\)
−0.396561 + 0.918008i \(0.629796\pi\)
\(270\) 0 0
\(271\) 22027.2i 0.299930i −0.988691 0.149965i \(-0.952084\pi\)
0.988691 0.149965i \(-0.0479161\pi\)
\(272\) 69229.4 + 28132.8i 0.935735 + 0.380255i
\(273\) 0 0
\(274\) −78436.3 7592.41i −1.04476 0.101130i
\(275\) 11238.9i 0.148613i
\(276\) 0 0
\(277\) 30261.0 0.394388 0.197194 0.980364i \(-0.436817\pi\)
0.197194 + 0.980364i \(0.436817\pi\)
\(278\) 4869.15 50302.6i 0.0630034 0.650880i
\(279\) 0 0
\(280\) 34221.0 114891.i 0.436492 1.46544i
\(281\) −30448.5 −0.385615 −0.192807 0.981237i \(-0.561759\pi\)
−0.192807 + 0.981237i \(0.561759\pi\)
\(282\) 0 0
\(283\) 102769.i 1.28318i 0.767046 + 0.641592i \(0.221726\pi\)
−0.767046 + 0.641592i \(0.778274\pi\)
\(284\) 9785.25 50071.5i 0.121321 0.620803i
\(285\) 0 0
\(286\) −2362.78 + 24409.6i −0.0288863 + 0.298421i
\(287\) 29843.6i 0.362316i
\(288\) 0 0
\(289\) 1686.57 0.0201934
\(290\) 95351.3 + 9229.73i 1.13378 + 0.109747i
\(291\) 0 0
\(292\) −67019.8 13097.4i −0.786027 0.153610i
\(293\) −40053.4 −0.466557 −0.233278 0.972410i \(-0.574945\pi\)
−0.233278 + 0.972410i \(0.574945\pi\)
\(294\) 0 0
\(295\) 19786.4i 0.227364i
\(296\) 86141.7 + 25657.9i 0.983173 + 0.292845i
\(297\) 0 0
\(298\) −95771.3 9270.39i −1.07846 0.104392i
\(299\) 56153.1i 0.628104i
\(300\) 0 0
\(301\) 5313.68 0.0586492
\(302\) 11176.5 115463.i 0.122544 1.26598i
\(303\) 0 0
\(304\) −29387.7 + 72317.4i −0.317993 + 0.782520i
\(305\) −137653. −1.47974
\(306\) 0 0
\(307\) 17196.5i 0.182458i 0.995830 + 0.0912291i \(0.0290796\pi\)
−0.995830 + 0.0912291i \(0.970920\pi\)
\(308\) −138374. 27041.9i −1.45866 0.285060i
\(309\) 0 0
\(310\) 6883.25 71110.0i 0.0716259 0.739958i
\(311\) 135448.i 1.40039i 0.713949 + 0.700197i \(0.246905\pi\)
−0.713949 + 0.700197i \(0.753095\pi\)
\(312\) 0 0
\(313\) −29263.8 −0.298705 −0.149352 0.988784i \(-0.547719\pi\)
−0.149352 + 0.988784i \(0.547719\pi\)
\(314\) 44365.3 + 4294.44i 0.449971 + 0.0435559i
\(315\) 0 0
\(316\) 23109.0 118250.i 0.231424 1.18420i
\(317\) 58389.3 0.581051 0.290526 0.956867i \(-0.406170\pi\)
0.290526 + 0.956867i \(0.406170\pi\)
\(318\) 0 0
\(319\) 112669.i 1.10719i
\(320\) −78200.3 51120.3i −0.763674 0.499222i
\(321\) 0 0
\(322\) 321334. + 31104.2i 3.09917 + 0.299991i
\(323\) 89008.3i 0.853150i
\(324\) 0 0
\(325\) −5984.14 −0.0566546
\(326\) −1237.92 + 12788.8i −0.0116481 + 0.120336i
\(327\) 0 0
\(328\) −22290.6 6639.41i −0.207193 0.0617137i
\(329\) 287065. 2.65209
\(330\) 0 0
\(331\) 92155.6i 0.841135i −0.907261 0.420568i \(-0.861831\pi\)
0.907261 0.420568i \(-0.138169\pi\)
\(332\) −1799.08 + 9205.98i −0.0163221 + 0.0835207i
\(333\) 0 0
\(334\) −8705.76 + 89938.1i −0.0780393 + 0.806215i
\(335\) 78042.8i 0.695414i
\(336\) 0 0
\(337\) −44787.4 −0.394363 −0.197182 0.980367i \(-0.563179\pi\)
−0.197182 + 0.980367i \(0.563179\pi\)
\(338\) −100716. 9748.98i −0.881583 0.0853348i
\(339\) 0 0
\(340\) −104552. 20432.1i −0.904428 0.176748i
\(341\) −84024.8 −0.722602
\(342\) 0 0
\(343\) 159459.i 1.35538i
\(344\) 1182.15 3968.86i 0.00998980 0.0335389i
\(345\) 0 0
\(346\) −82578.8 7993.39i −0.689789 0.0667696i
\(347\) 105966.i 0.880049i 0.897986 + 0.440024i \(0.145030\pi\)
−0.897986 + 0.440024i \(0.854970\pi\)
\(348\) 0 0
\(349\) 66799.1 0.548428 0.274214 0.961669i \(-0.411582\pi\)
0.274214 + 0.961669i \(0.411582\pi\)
\(350\) 3314.73 34244.0i 0.0270590 0.279543i
\(351\) 0 0
\(352\) −50982.7 + 97337.8i −0.411469 + 0.785590i
\(353\) 37451.3 0.300551 0.150275 0.988644i \(-0.451984\pi\)
0.150275 + 0.988644i \(0.451984\pi\)
\(354\) 0 0
\(355\) 72731.2i 0.577118i
\(356\) 90908.6 + 17765.8i 0.717307 + 0.140180i
\(357\) 0 0
\(358\) 14471.7 149506.i 0.112916 1.16652i
\(359\) 117783.i 0.913893i 0.889494 + 0.456947i \(0.151057\pi\)
−0.889494 + 0.456947i \(0.848943\pi\)
\(360\) 0 0
\(361\) 37342.4 0.286542
\(362\) −151370. 14652.2i −1.15511 0.111811i
\(363\) 0 0
\(364\) −14398.5 + 73677.6i −0.108671 + 0.556074i
\(365\) 97349.5 0.730715
\(366\) 0 0
\(367\) 119975.i 0.890753i −0.895343 0.445376i \(-0.853070\pi\)
0.895343 0.445376i \(-0.146930\pi\)
\(368\) 94720.6 233089.i 0.699438 1.72118i
\(369\) 0 0
\(370\) −127537. 12345.3i −0.931610 0.0901772i
\(371\) 268441.i 1.95030i
\(372\) 0 0
\(373\) −261060. −1.87638 −0.938192 0.346114i \(-0.887501\pi\)
−0.938192 + 0.346114i \(0.887501\pi\)
\(374\) −12071.5 + 124709.i −0.0863012 + 0.891567i
\(375\) 0 0
\(376\) 63864.4 214413.i 0.451734 1.51661i
\(377\) −59990.6 −0.422085
\(378\) 0 0
\(379\) 138313.i 0.962907i 0.876472 + 0.481454i \(0.159891\pi\)
−0.876472 + 0.481454i \(0.840109\pi\)
\(380\) 21343.5 109216.i 0.147808 0.756340i
\(381\) 0 0
\(382\) 2818.51 29117.7i 0.0193149 0.199540i
\(383\) 182153.i 1.24176i −0.783905 0.620880i \(-0.786775\pi\)
0.783905 0.620880i \(-0.213225\pi\)
\(384\) 0 0
\(385\) 200995. 1.35602
\(386\) 242816. + 23503.9i 1.62968 + 0.157748i
\(387\) 0 0
\(388\) 170185. + 33258.6i 1.13047 + 0.220922i
\(389\) −143024. −0.945171 −0.472586 0.881285i \(-0.656679\pi\)
−0.472586 + 0.881285i \(0.656679\pi\)
\(390\) 0 0
\(391\) 286886.i 1.87653i
\(392\) −266372. 79340.8i −1.73347 0.516326i
\(393\) 0 0
\(394\) −55305.7 5353.43i −0.356268 0.0344858i
\(395\) 171764.i 1.10087i
\(396\) 0 0
\(397\) −55426.8 −0.351673 −0.175837 0.984419i \(-0.556263\pi\)
−0.175837 + 0.984419i \(0.556263\pi\)
\(398\) 16596.8 171459.i 0.104775 1.08242i
\(399\) 0 0
\(400\) −24839.9 10094.2i −0.155250 0.0630889i
\(401\) −70455.5 −0.438154 −0.219077 0.975708i \(-0.570305\pi\)
−0.219077 + 0.975708i \(0.570305\pi\)
\(402\) 0 0
\(403\) 44739.1i 0.275472i
\(404\) 180630. + 35299.6i 1.10669 + 0.216275i
\(405\) 0 0
\(406\) 33229.9 343294.i 0.201594 2.08264i
\(407\) 150700.i 0.909758i
\(408\) 0 0
\(409\) 157877. 0.943785 0.471892 0.881656i \(-0.343571\pi\)
0.471892 + 0.881656i \(0.343571\pi\)
\(410\) 33002.4 + 3194.54i 0.196326 + 0.0190038i
\(411\) 0 0
\(412\) −42468.6 + 217314.i −0.250192 + 1.28024i
\(413\) −71237.0 −0.417643
\(414\) 0 0
\(415\) 13372.1i 0.0776434i
\(416\) 51827.6 + 27145.8i 0.299484 + 0.156861i
\(417\) 0 0
\(418\) −130272. 12609.9i −0.745585 0.0721705i
\(419\) 22310.6i 0.127082i 0.997979 + 0.0635409i \(0.0202393\pi\)
−0.997979 + 0.0635409i \(0.979761\pi\)
\(420\) 0 0
\(421\) −106342. −0.599985 −0.299992 0.953942i \(-0.596984\pi\)
−0.299992 + 0.953942i \(0.596984\pi\)
\(422\) 8887.53 91816.0i 0.0499064 0.515577i
\(423\) 0 0
\(424\) 200502. + 59721.0i 1.11529 + 0.332197i
\(425\) −30573.0 −0.169262
\(426\) 0 0
\(427\) 495592.i 2.71812i
\(428\) −45208.6 + 231334.i −0.246793 + 1.26285i
\(429\) 0 0
\(430\) −568.791 + 5876.12i −0.00307621 + 0.0317800i
\(431\) 270251.i 1.45483i −0.686197 0.727416i \(-0.740721\pi\)
0.686197 0.727416i \(-0.259279\pi\)
\(432\) 0 0
\(433\) −115964. −0.618513 −0.309256 0.950979i \(-0.600080\pi\)
−0.309256 + 0.950979i \(0.600080\pi\)
\(434\) −256018. 24781.8i −1.35922 0.131569i
\(435\) 0 0
\(436\) 55669.8 + 10879.3i 0.292851 + 0.0572306i
\(437\) 299683. 1.56928
\(438\) 0 0
\(439\) 285409.i 1.48095i 0.672087 + 0.740473i \(0.265398\pi\)
−0.672087 + 0.740473i \(0.734602\pi\)
\(440\) 44716.2 150126.i 0.230972 0.775446i
\(441\) 0 0
\(442\) 66401.3 + 6427.46i 0.339885 + 0.0328999i
\(443\) 269606.i 1.37380i −0.726753 0.686899i \(-0.758972\pi\)
0.726753 0.686899i \(-0.241028\pi\)
\(444\) 0 0
\(445\) −132049. −0.666830
\(446\) 23022.8 237845.i 0.115741 1.19571i
\(447\) 0 0
\(448\) −184049. + 281545.i −0.917017 + 1.40279i
\(449\) 12218.4 0.0606070 0.0303035 0.999541i \(-0.490353\pi\)
0.0303035 + 0.999541i \(0.490353\pi\)
\(450\) 0 0
\(451\) 38996.3i 0.191721i
\(452\) −195848. 38273.6i −0.958608 0.187336i
\(453\) 0 0
\(454\) −13102.4 + 135359.i −0.0635681 + 0.656715i
\(455\) 107020.i 0.516943i
\(456\) 0 0
\(457\) 296484. 1.41961 0.709805 0.704398i \(-0.248783\pi\)
0.709805 + 0.704398i \(0.248783\pi\)
\(458\) 55946.8 + 5415.49i 0.266713 + 0.0258171i
\(459\) 0 0
\(460\) −68793.1 + 352017.i −0.325109 + 1.66360i
\(461\) 38233.3 0.179904 0.0899519 0.995946i \(-0.471329\pi\)
0.0899519 + 0.995946i \(0.471329\pi\)
\(462\) 0 0
\(463\) 210426.i 0.981607i −0.871270 0.490804i \(-0.836703\pi\)
0.871270 0.490804i \(-0.163297\pi\)
\(464\) −249018. 101194.i −1.15663 0.470022i
\(465\) 0 0
\(466\) 38309.9 + 3708.29i 0.176417 + 0.0170766i
\(467\) 58599.8i 0.268697i −0.990934 0.134348i \(-0.957106\pi\)
0.990934 0.134348i \(-0.0428941\pi\)
\(468\) 0 0
\(469\) 280978. 1.27740
\(470\) −30728.2 + 317450.i −0.139105 + 1.43707i
\(471\) 0 0
\(472\) −15848.4 + 53207.9i −0.0711378 + 0.238832i
\(473\) 6943.32 0.0310345
\(474\) 0 0
\(475\) 31936.7i 0.141548i
\(476\) −73561.9 + 376419.i −0.324668 + 1.66134i
\(477\) 0 0
\(478\) 10955.1 113175.i 0.0479467 0.495332i
\(479\) 123721.i 0.539227i −0.962969 0.269614i \(-0.913104\pi\)
0.962969 0.269614i \(-0.0868960\pi\)
\(480\) 0 0
\(481\) 80240.6 0.346820
\(482\) −37782.5 3657.24i −0.162629 0.0157420i
\(483\) 0 0
\(484\) 49094.6 + 9594.33i 0.209577 + 0.0409566i
\(485\) −247202. −1.05092
\(486\) 0 0
\(487\) 39541.5i 0.166723i 0.996519 + 0.0833614i \(0.0265656\pi\)
−0.996519 + 0.0833614i \(0.973434\pi\)
\(488\) 370164. + 110256.i 1.55437 + 0.462981i
\(489\) 0 0
\(490\) 394378. + 38174.7i 1.64256 + 0.158995i
\(491\) 97311.7i 0.403647i 0.979422 + 0.201824i \(0.0646868\pi\)
−0.979422 + 0.201824i \(0.935313\pi\)
\(492\) 0 0
\(493\) −306492. −1.26103
\(494\) −6714.16 + 69363.2i −0.0275130 + 0.284233i
\(495\) 0 0
\(496\) −75467.2 + 185710.i −0.306757 + 0.754870i
\(497\) 261855. 1.06010
\(498\) 0 0
\(499\) 217620.i 0.873974i 0.899468 + 0.436987i \(0.143954\pi\)
−0.899468 + 0.436987i \(0.856046\pi\)
\(500\) 261372. + 51078.7i 1.04549 + 0.204315i
\(501\) 0 0
\(502\) 11380.4 117570.i 0.0451597 0.466539i
\(503\) 190305.i 0.752169i 0.926585 + 0.376084i \(0.122730\pi\)
−0.926585 + 0.376084i \(0.877270\pi\)
\(504\) 0 0
\(505\) −262373. −1.02881
\(506\) 419884. + 40643.6i 1.63994 + 0.158742i
\(507\) 0 0
\(508\) 3075.11 15735.4i 0.0119161 0.0609750i
\(509\) −100460. −0.387755 −0.193878 0.981026i \(-0.562106\pi\)
−0.193878 + 0.981026i \(0.562106\pi\)
\(510\) 0 0
\(511\) 350488.i 1.34224i
\(512\) 169344. + 200105.i 0.645996 + 0.763341i
\(513\) 0 0
\(514\) −56435.1 5462.75i −0.213611 0.0206769i
\(515\) 315658.i 1.19015i
\(516\) 0 0
\(517\) 375104. 1.40337
\(518\) −44446.7 + 459174.i −0.165646 + 1.71127i
\(519\) 0 0
\(520\) −79934.9 23809.2i −0.295617 0.0880517i
\(521\) −417246. −1.53715 −0.768575 0.639759i \(-0.779034\pi\)
−0.768575 + 0.639759i \(0.779034\pi\)
\(522\) 0 0
\(523\) 246542.i 0.901339i 0.892691 + 0.450669i \(0.148815\pi\)
−0.892691 + 0.450669i \(0.851185\pi\)
\(524\) −102956. + 526831.i −0.374964 + 1.91871i
\(525\) 0 0
\(526\) 40911.7 422654.i 0.147869 1.52761i
\(527\) 228572.i 0.823004i
\(528\) 0 0
\(529\) −686081. −2.45168
\(530\) −296855. 28734.7i −1.05680 0.102295i
\(531\) 0 0
\(532\) −393209. 76843.1i −1.38931 0.271507i
\(533\) −20763.6 −0.0730883
\(534\) 0 0
\(535\) 336024.i 1.17399i
\(536\) 62510.3 209867.i 0.217581 0.730490i
\(537\) 0 0
\(538\) −228496. 22117.8i −0.789432 0.0764148i
\(539\) 466004.i 1.60403i
\(540\) 0 0
\(541\) 65384.7 0.223399 0.111700 0.993742i \(-0.464371\pi\)
0.111700 + 0.993742i \(0.464371\pi\)
\(542\) 8489.00 87698.8i 0.0288973 0.298535i
\(543\) 0 0
\(544\) 264787. + 138688.i 0.894745 + 0.468641i
\(545\) −80863.1 −0.272243
\(546\) 0 0
\(547\) 238533.i 0.797213i 0.917122 + 0.398607i \(0.130506\pi\)
−0.917122 + 0.398607i \(0.869494\pi\)
\(548\) −309360. 60456.7i −1.03016 0.201318i
\(549\) 0 0
\(550\) 4331.32 44746.3i 0.0143184 0.147922i
\(551\) 320163.i 1.05455i
\(552\) 0 0
\(553\) 618402. 2.02218
\(554\) 120481. + 11662.2i 0.392554 + 0.0379981i
\(555\) 0 0
\(556\) 38772.0 198398.i 0.125421 0.641782i
\(557\) 412118. 1.32835 0.664173 0.747579i \(-0.268784\pi\)
0.664173 + 0.747579i \(0.268784\pi\)
\(558\) 0 0
\(559\) 3696.98i 0.0118310i
\(560\) 180525. 444237.i 0.575653 1.41657i
\(561\) 0 0
\(562\) −121227. 11734.5i −0.383821 0.0371528i
\(563\) 451490.i 1.42440i −0.701978 0.712199i \(-0.747699\pi\)
0.701978 0.712199i \(-0.252301\pi\)
\(564\) 0 0
\(565\) 284478. 0.891151
\(566\) −39605.8 + 409163.i −0.123631 + 1.27721i
\(567\) 0 0
\(568\) 58255.8 195583.i 0.180569 0.606226i
\(569\) 125491. 0.387603 0.193801 0.981041i \(-0.437918\pi\)
0.193801 + 0.981041i \(0.437918\pi\)
\(570\) 0 0
\(571\) 295508.i 0.906352i −0.891421 0.453176i \(-0.850291\pi\)
0.891421 0.453176i \(-0.149709\pi\)
\(572\) −18814.3 + 96273.7i −0.0575038 + 0.294249i
\(573\) 0 0
\(574\) 11501.3 118819.i 0.0349080 0.360630i
\(575\) 102937.i 0.311339i
\(576\) 0 0
\(577\) −169123. −0.507986 −0.253993 0.967206i \(-0.581744\pi\)
−0.253993 + 0.967206i \(0.581744\pi\)
\(578\) 6714.89 + 649.983i 0.0200994 + 0.00194557i
\(579\) 0 0
\(580\) 376074. + 73494.4i 1.11794 + 0.218473i
\(581\) −48143.8 −0.142622
\(582\) 0 0
\(583\) 350769.i 1.03201i
\(584\) −261785. 77974.4i −0.767571 0.228626i
\(585\) 0 0
\(586\) −159468. 15436.1i −0.464386 0.0449513i
\(587\) 287012.i 0.832959i 0.909145 + 0.416480i \(0.136736\pi\)
−0.909145 + 0.416480i \(0.863264\pi\)
\(588\) 0 0
\(589\) −238768. −0.688248
\(590\) 7625.41 78777.2i 0.0219058 0.226306i
\(591\) 0 0
\(592\) 333075. + 135352.i 0.950384 + 0.386208i
\(593\) 275747. 0.784155 0.392078 0.919932i \(-0.371756\pi\)
0.392078 + 0.919932i \(0.371756\pi\)
\(594\) 0 0
\(595\) 546767.i 1.54443i
\(596\) −377730. 73818.1i −1.06338 0.207812i
\(597\) 0 0
\(598\) 21640.7 223567.i 0.0605158 0.625182i
\(599\) 498296.i 1.38878i −0.719598 0.694391i \(-0.755674\pi\)
0.719598 0.694391i \(-0.244326\pi\)
\(600\) 0 0
\(601\) −382620. −1.05930 −0.529650 0.848216i \(-0.677677\pi\)
−0.529650 + 0.848216i \(0.677677\pi\)
\(602\) 21155.8 + 2047.82i 0.0583764 + 0.00565067i
\(603\) 0 0
\(604\) 88995.9 455395.i 0.243947 1.24829i
\(605\) −71312.2 −0.194829
\(606\) 0 0
\(607\) 11197.4i 0.0303907i 0.999885 + 0.0151954i \(0.00483702\pi\)
−0.999885 + 0.0151954i \(0.995163\pi\)
\(608\) −144874. + 276598.i −0.391907 + 0.748242i
\(609\) 0 0
\(610\) −548049. 53049.6i −1.47285 0.142568i
\(611\) 199725.i 0.534994i
\(612\) 0 0
\(613\) 289927. 0.771558 0.385779 0.922591i \(-0.373933\pi\)
0.385779 + 0.922591i \(0.373933\pi\)
\(614\) −6627.32 + 68466.0i −0.0175793 + 0.181609i
\(615\) 0 0
\(616\) −540501. 160992.i −1.42441 0.424271i
\(617\) −477462. −1.25420 −0.627102 0.778937i \(-0.715759\pi\)
−0.627102 + 0.778937i \(0.715759\pi\)
\(618\) 0 0
\(619\) 254686.i 0.664698i −0.943156 0.332349i \(-0.892159\pi\)
0.943156 0.332349i \(-0.107841\pi\)
\(620\) 54809.8 280464.i 0.142585 0.729615i
\(621\) 0 0
\(622\) −52199.8 + 539270.i −0.134924 + 1.39388i
\(623\) 475417.i 1.22489i
\(624\) 0 0
\(625\) −314195. −0.804339
\(626\) −116511. 11277.9i −0.297315 0.0287793i
\(627\) 0 0
\(628\) 174981. + 34195.7i 0.443681 + 0.0867065i
\(629\) 409949. 1.03617
\(630\) 0 0
\(631\) 522734.i 1.31287i −0.754383 0.656435i \(-0.772064\pi\)
0.754383 0.656435i \(-0.227936\pi\)
\(632\) 137578. 461893.i 0.344441 1.15640i
\(633\) 0 0
\(634\) 232471. + 22502.5i 0.578348 + 0.0559825i
\(635\) 22856.5i 0.0566842i
\(636\) 0 0
\(637\) −248124. −0.611492
\(638\) 43421.1 448578.i 0.106674 1.10204i
\(639\) 0 0
\(640\) −291645. 233667.i −0.712023 0.570477i
\(641\) −399966. −0.973434 −0.486717 0.873560i \(-0.661806\pi\)
−0.486717 + 0.873560i \(0.661806\pi\)
\(642\) 0 0
\(643\) 95576.4i 0.231169i −0.993298 0.115584i \(-0.963126\pi\)
0.993298 0.115584i \(-0.0368740\pi\)
\(644\) 1.26737e6 + 247676.i 3.05585 + 0.597190i
\(645\) 0 0
\(646\) −34302.7 + 354377.i −0.0821983 + 0.849181i
\(647\) 310762.i 0.742367i 0.928560 + 0.371184i \(0.121048\pi\)
−0.928560 + 0.371184i \(0.878952\pi\)
\(648\) 0 0
\(649\) −93084.5 −0.220998
\(650\) −23825.2 2306.21i −0.0563910 0.00545849i
\(651\) 0 0
\(652\) −9857.28 + 50440.1i −0.0231879 + 0.118654i
\(653\) −648837. −1.52163 −0.760815 0.648969i \(-0.775201\pi\)
−0.760815 + 0.648969i \(0.775201\pi\)
\(654\) 0 0
\(655\) 765246.i 1.78369i
\(656\) −86188.8 35024.6i −0.200283 0.0813890i
\(657\) 0 0
\(658\) 1.14292e6 + 110631.i 2.63975 + 0.255520i
\(659\) 149570.i 0.344408i 0.985061 + 0.172204i \(0.0550889\pi\)
−0.985061 + 0.172204i \(0.944911\pi\)
\(660\) 0 0
\(661\) 170849. 0.391029 0.195515 0.980701i \(-0.437362\pi\)
0.195515 + 0.980701i \(0.437362\pi\)
\(662\) 35515.6 366907.i 0.0810407 0.837222i
\(663\) 0 0
\(664\) −10710.7 + 35959.3i −0.0242931 + 0.0815596i
\(665\) 571155. 1.29155
\(666\) 0 0
\(667\) 1.03193e6i 2.31953i
\(668\) −69322.0 + 354724.i −0.155353 + 0.794945i
\(669\) 0 0
\(670\) −30076.7 + 310719.i −0.0670010 + 0.692179i
\(671\) 647584.i 1.43830i
\(672\) 0 0
\(673\) 782980. 1.72870 0.864351 0.502888i \(-0.167729\pi\)
0.864351 + 0.502888i \(0.167729\pi\)
\(674\) −178316. 17260.5i −0.392528 0.0379956i
\(675\) 0 0
\(676\) −397231. 77629.0i −0.869260 0.169876i
\(677\) −458234. −0.999792 −0.499896 0.866085i \(-0.666628\pi\)
−0.499896 + 0.866085i \(0.666628\pi\)
\(678\) 0 0
\(679\) 890005.i 1.93042i
\(680\) −408388. 121641.i −0.883192 0.263065i
\(681\) 0 0
\(682\) −334536. 32382.1i −0.719240 0.0696204i
\(683\) 444767.i 0.953434i 0.879057 + 0.476717i \(0.158173\pi\)
−0.879057 + 0.476717i \(0.841827\pi\)
\(684\) 0 0
\(685\) 449360. 0.957663
\(686\) 61453.4 634868.i 0.130586 1.34907i
\(687\) 0 0
\(688\) 6236.16 15346.0i 0.0131747 0.0324204i
\(689\) 186767. 0.393425
\(690\) 0 0
\(691\) 373248.i 0.781702i 0.920454 + 0.390851i \(0.127819\pi\)
−0.920454 + 0.390851i \(0.872181\pi\)
\(692\) −325698. 63649.6i −0.680147 0.132918i
\(693\) 0 0
\(694\) −40837.9 + 421891.i −0.0847899 + 0.875955i
\(695\) 288182.i 0.596620i
\(696\) 0 0
\(697\) −106081. −0.218360
\(698\) 265953. + 25743.5i 0.545877 + 0.0528393i
\(699\) 0 0
\(700\) 26394.4 135061.i 0.0538662 0.275636i
\(701\) 699890. 1.42427 0.712137 0.702041i \(-0.247727\pi\)
0.712137 + 0.702041i \(0.247727\pi\)
\(702\) 0 0
\(703\) 428235.i 0.866507i
\(704\) −240495. + 367892.i −0.485244 + 0.742292i
\(705\) 0 0
\(706\) 149108. + 14433.3i 0.299153 + 0.0289571i
\(707\) 944624.i 1.88982i
\(708\) 0 0
\(709\) 305897. 0.608531 0.304265 0.952587i \(-0.401589\pi\)
0.304265 + 0.952587i \(0.401589\pi\)
\(710\) −28029.7 + 289571.i −0.0556035 + 0.574433i
\(711\) 0 0
\(712\) 355096. + 105768.i 0.700464 + 0.208638i
\(713\) 769583. 1.51383
\(714\) 0 0
\(715\) 139842.i 0.273543i
\(716\) 115235. 589664.i 0.224781 1.15021i
\(717\) 0 0
\(718\) −45392.3 + 468942.i −0.0880507 + 0.909641i
\(719\) 265534.i 0.513644i −0.966459 0.256822i \(-0.917325\pi\)
0.966459 0.256822i \(-0.0826755\pi\)
\(720\) 0 0
\(721\) −1.13647e6 −2.18618
\(722\) 148675. + 14391.3i 0.285209 + 0.0276074i
\(723\) 0 0
\(724\) −597015. 116672.i −1.13896 0.222582i
\(725\) 109971. 0.209220
\(726\) 0 0
\(727\) 901047.i 1.70482i 0.522874 + 0.852410i \(0.324860\pi\)
−0.522874 + 0.852410i \(0.675140\pi\)
\(728\) −85720.4 + 287790.i −0.161741 + 0.543017i
\(729\) 0 0
\(730\) 387586. + 37517.3i 0.727315 + 0.0704021i
\(731\) 18887.9i 0.0353466i
\(732\) 0 0
\(733\) −887881. −1.65252 −0.826261 0.563288i \(-0.809536\pi\)
−0.826261 + 0.563288i \(0.809536\pi\)
\(734\) 46236.7 477666.i 0.0858212 0.886609i
\(735\) 0 0
\(736\) 466950. 891516.i 0.862014 1.64579i
\(737\) 367151. 0.675943
\(738\) 0 0
\(739\) 401381.i 0.734966i −0.930030 0.367483i \(-0.880220\pi\)
0.930030 0.367483i \(-0.119780\pi\)
\(740\) −503019. 98302.6i −0.918588 0.179515i
\(741\) 0 0
\(742\) −103454. + 1.06877e6i −0.187905 + 1.94122i
\(743\) 314050.i 0.568880i 0.958694 + 0.284440i \(0.0918077\pi\)
−0.958694 + 0.284440i \(0.908192\pi\)
\(744\) 0 0
\(745\) 548671. 0.988552
\(746\) −1.03938e6 100609.i −1.86766 0.180784i
\(747\) 0 0
\(748\) −96122.5 + 491863.i −0.171799 + 0.879105i
\(749\) −1.20979e6 −2.15648
\(750\) 0 0
\(751\) 331743.i 0.588195i 0.955775 + 0.294098i \(0.0950191\pi\)
−0.955775 + 0.294098i \(0.904981\pi\)
\(752\) 336901. 829049.i 0.595754 1.46604i
\(753\) 0 0
\(754\) −238846. 23119.6i −0.420122 0.0406666i
\(755\) 661483.i 1.16045i
\(756\) 0 0
\(757\) 300610. 0.524581 0.262290 0.964989i \(-0.415522\pi\)
0.262290 + 0.964989i \(0.415522\pi\)
\(758\) −53304.1 + 550678.i −0.0927731 + 0.958428i
\(759\) 0 0
\(760\) 127067. 426604.i 0.219991 0.738581i
\(761\) −78374.5 −0.135334 −0.0676668 0.997708i \(-0.521555\pi\)
−0.0676668 + 0.997708i \(0.521555\pi\)
\(762\) 0 0
\(763\) 291132.i 0.500081i
\(764\) 22443.2 114843.i 0.0384501 0.196751i
\(765\) 0 0
\(766\) 70199.3 725221.i 0.119640 1.23598i
\(767\) 49562.9i 0.0842493i
\(768\) 0 0
\(769\) 987499. 1.66988 0.834938 0.550345i \(-0.185504\pi\)
0.834938 + 0.550345i \(0.185504\pi\)
\(770\) 800242. + 77461.1i 1.34971 + 0.130648i
\(771\) 0 0
\(772\) 957687. + 187156.i 1.60690 + 0.314029i
\(773\) 622600. 1.04196 0.520979 0.853569i \(-0.325567\pi\)
0.520979 + 0.853569i \(0.325567\pi\)
\(774\) 0 0
\(775\) 82013.1i 0.136546i
\(776\) 664757. + 198003.i 1.10393 + 0.328812i
\(777\) 0 0
\(778\) −569436. 55119.8i −0.940774 0.0910643i
\(779\) 110813.i 0.182606i
\(780\) 0 0
\(781\) 342163. 0.560958
\(782\) 110562. 1.14221e6i 0.180798 1.86780i
\(783\) 0 0
\(784\) −1.02995e6 418543.i −1.67566 0.680939i
\(785\) −254168. −0.412459
\(786\) 0 0
\(787\) 1.09638e6i 1.77016i −0.465437 0.885081i \(-0.654103\pi\)
0.465437 0.885081i \(-0.345897\pi\)