Properties

Label 108.5.d.b.55.14
Level 108
Weight 5
Character 108.55
Analytic conductor 11.164
Analytic rank 0
Dimension 16
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 108.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.1639560131\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{32}\cdot 3^{24} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 55.14
Root \(1.12787 + 1.95353i\) of \(x^{16} + 38 x^{14} + 1016 x^{12} + 13512 x^{10} + 130640 x^{8} + 569472 x^{6} + 1783808 x^{4} + 352256 x^{2} + 65536\)
Character \(\chi\) \(=\) 108.55
Dual form 108.5.d.b.55.13

$q$-expansion

\(f(q)\) \(=\) \(q+(3.49052 + 1.95353i) q^{2} +(8.36746 + 13.6377i) q^{4} +47.1174 q^{5} -67.4003i q^{7} +(2.56528 + 63.9486i) q^{8} +O(q^{10})\) \(q+(3.49052 + 1.95353i) q^{2} +(8.36746 + 13.6377i) q^{4} +47.1174 q^{5} -67.4003i q^{7} +(2.56528 + 63.9486i) q^{8} +(164.464 + 92.0451i) q^{10} -69.3981i q^{11} +3.28838 q^{13} +(131.668 - 235.262i) q^{14} +(-115.971 + 228.225i) q^{16} -116.780 q^{17} +513.525i q^{19} +(394.253 + 642.571i) q^{20} +(135.571 - 242.236i) q^{22} -134.254i q^{23} +1595.05 q^{25} +(11.4782 + 6.42394i) q^{26} +(919.182 - 563.970i) q^{28} -772.602 q^{29} +1069.97i q^{31} +(-850.643 + 570.072i) q^{32} +(-407.623 - 228.133i) q^{34} -3175.73i q^{35} -1034.09 q^{37} +(-1003.19 + 1792.47i) q^{38} +(120.869 + 3013.09i) q^{40} -2272.62 q^{41} -2523.25i q^{43} +(946.428 - 580.686i) q^{44} +(262.270 - 468.618i) q^{46} +694.871i q^{47} -2141.80 q^{49} +(5567.55 + 3115.97i) q^{50} +(27.5154 + 44.8458i) q^{52} +1166.03 q^{53} -3269.86i q^{55} +(4310.15 - 172.901i) q^{56} +(-2696.78 - 1509.30i) q^{58} -5539.90i q^{59} -3204.11 q^{61} +(-2090.21 + 3734.75i) q^{62} +(-4082.84 + 328.092i) q^{64} +154.940 q^{65} +5366.14i q^{67} +(-977.152 - 1592.60i) q^{68} +(6203.87 - 11084.9i) q^{70} +166.225i q^{71} +5085.51 q^{73} +(-3609.51 - 2020.12i) q^{74} +(-7003.28 + 4296.90i) q^{76} -4677.46 q^{77} -724.474i q^{79} +(-5464.26 + 10753.4i) q^{80} +(-7932.63 - 4439.62i) q^{82} -8153.13i q^{83} -5502.37 q^{85} +(4929.24 - 8807.46i) q^{86} +(4437.91 - 178.026i) q^{88} +6963.40 q^{89} -221.638i q^{91} +(1830.92 - 1123.37i) q^{92} +(-1357.45 + 2425.46i) q^{94} +24196.0i q^{95} -278.895 q^{97} +(-7476.00 - 4184.07i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 28q^{4} + O(q^{10}) \) \( 16q + 28q^{4} + 176q^{10} + 176q^{13} + 88q^{16} + 384q^{22} + 2736q^{25} + 1812q^{28} + 1520q^{34} + 80q^{37} - 688q^{40} - 1824q^{46} - 7904q^{49} - 5236q^{52} - 11584q^{58} - 1648q^{61} + 5056q^{64} + 26688q^{70} + 80q^{73} - 8388q^{76} - 38464q^{82} - 16832q^{85} - 29520q^{88} - 4512q^{94} + 14864q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.49052 + 1.95353i 0.872630 + 0.488382i
\(3\) 0 0
\(4\) 8.36746 + 13.6377i 0.522967 + 0.852353i
\(5\) 47.1174 1.88470 0.942348 0.334634i \(-0.108613\pi\)
0.942348 + 0.334634i \(0.108613\pi\)
\(6\) 0 0
\(7\) 67.4003i 1.37552i −0.725940 0.687758i \(-0.758595\pi\)
0.725940 0.687758i \(-0.241405\pi\)
\(8\) 2.56528 + 63.9486i 0.0400825 + 0.999196i
\(9\) 0 0
\(10\) 164.464 + 92.0451i 1.64464 + 0.920451i
\(11\) 69.3981i 0.573538i −0.958000 0.286769i \(-0.907419\pi\)
0.958000 0.286769i \(-0.0925813\pi\)
\(12\) 0 0
\(13\) 3.28838 0.0194579 0.00972893 0.999953i \(-0.496903\pi\)
0.00972893 + 0.999953i \(0.496903\pi\)
\(14\) 131.668 235.262i 0.671777 1.20032i
\(15\) 0 0
\(16\) −115.971 + 228.225i −0.453012 + 0.891504i
\(17\) −116.780 −0.404083 −0.202041 0.979377i \(-0.564758\pi\)
−0.202041 + 0.979377i \(0.564758\pi\)
\(18\) 0 0
\(19\) 513.525i 1.42251i 0.702935 + 0.711254i \(0.251872\pi\)
−0.702935 + 0.711254i \(0.748128\pi\)
\(20\) 394.253 + 642.571i 0.985633 + 1.60643i
\(21\) 0 0
\(22\) 135.571 242.236i 0.280106 0.500487i
\(23\) 134.254i 0.253789i −0.991916 0.126895i \(-0.959499\pi\)
0.991916 0.126895i \(-0.0405010\pi\)
\(24\) 0 0
\(25\) 1595.05 2.55208
\(26\) 11.4782 + 6.42394i 0.0169795 + 0.00950287i
\(27\) 0 0
\(28\) 919.182 563.970i 1.17243 0.719349i
\(29\) −772.602 −0.918671 −0.459335 0.888263i \(-0.651912\pi\)
−0.459335 + 0.888263i \(0.651912\pi\)
\(30\) 0 0
\(31\) 1069.97i 1.11339i 0.830717 + 0.556695i \(0.187931\pi\)
−0.830717 + 0.556695i \(0.812069\pi\)
\(32\) −850.643 + 570.072i −0.830706 + 0.556711i
\(33\) 0 0
\(34\) −407.623 228.133i −0.352615 0.197347i
\(35\) 3175.73i 2.59243i
\(36\) 0 0
\(37\) −1034.09 −0.755362 −0.377681 0.925936i \(-0.623278\pi\)
−0.377681 + 0.925936i \(0.623278\pi\)
\(38\) −1003.19 + 1792.47i −0.694727 + 1.24132i
\(39\) 0 0
\(40\) 120.869 + 3013.09i 0.0755434 + 1.88318i
\(41\) −2272.62 −1.35195 −0.675973 0.736927i \(-0.736276\pi\)
−0.675973 + 0.736927i \(0.736276\pi\)
\(42\) 0 0
\(43\) 2523.25i 1.36466i −0.731046 0.682328i \(-0.760967\pi\)
0.731046 0.682328i \(-0.239033\pi\)
\(44\) 946.428 580.686i 0.488857 0.299941i
\(45\) 0 0
\(46\) 262.270 468.618i 0.123946 0.221464i
\(47\) 694.871i 0.314564i 0.987554 + 0.157282i \(0.0502731\pi\)
−0.987554 + 0.157282i \(0.949727\pi\)
\(48\) 0 0
\(49\) −2141.80 −0.892045
\(50\) 5567.55 + 3115.97i 2.22702 + 1.24639i
\(51\) 0 0
\(52\) 27.5154 + 44.8458i 0.0101758 + 0.0165850i
\(53\) 1166.03 0.415106 0.207553 0.978224i \(-0.433450\pi\)
0.207553 + 0.978224i \(0.433450\pi\)
\(54\) 0 0
\(55\) 3269.86i 1.08095i
\(56\) 4310.15 172.901i 1.37441 0.0551342i
\(57\) 0 0
\(58\) −2696.78 1509.30i −0.801660 0.448662i
\(59\) 5539.90i 1.59147i −0.605647 0.795733i \(-0.707086\pi\)
0.605647 0.795733i \(-0.292914\pi\)
\(60\) 0 0
\(61\) −3204.11 −0.861089 −0.430544 0.902569i \(-0.641678\pi\)
−0.430544 + 0.902569i \(0.641678\pi\)
\(62\) −2090.21 + 3734.75i −0.543760 + 0.971578i
\(63\) 0 0
\(64\) −4082.84 + 328.092i −0.996787 + 0.0801006i
\(65\) 154.940 0.0366722
\(66\) 0 0
\(67\) 5366.14i 1.19540i 0.801721 + 0.597699i \(0.203918\pi\)
−0.801721 + 0.597699i \(0.796082\pi\)
\(68\) −977.152 1592.60i −0.211322 0.344421i
\(69\) 0 0
\(70\) 6203.87 11084.9i 1.26610 2.26223i
\(71\) 166.225i 0.0329746i 0.999864 + 0.0164873i \(0.00524832\pi\)
−0.999864 + 0.0164873i \(0.994752\pi\)
\(72\) 0 0
\(73\) 5085.51 0.954309 0.477154 0.878819i \(-0.341668\pi\)
0.477154 + 0.878819i \(0.341668\pi\)
\(74\) −3609.51 2020.12i −0.659151 0.368905i
\(75\) 0 0
\(76\) −7003.28 + 4296.90i −1.21248 + 0.743924i
\(77\) −4677.46 −0.788911
\(78\) 0 0
\(79\) 724.474i 0.116083i −0.998314 0.0580415i \(-0.981514\pi\)
0.998314 0.0580415i \(-0.0184856\pi\)
\(80\) −5464.26 + 10753.4i −0.853790 + 1.68021i
\(81\) 0 0
\(82\) −7932.63 4439.62i −1.17975 0.660265i
\(83\) 8153.13i 1.18350i −0.806121 0.591750i \(-0.798437\pi\)
0.806121 0.591750i \(-0.201563\pi\)
\(84\) 0 0
\(85\) −5502.37 −0.761573
\(86\) 4929.24 8807.46i 0.666473 1.19084i
\(87\) 0 0
\(88\) 4437.91 178.026i 0.573077 0.0229889i
\(89\) 6963.40 0.879107 0.439553 0.898217i \(-0.355137\pi\)
0.439553 + 0.898217i \(0.355137\pi\)
\(90\) 0 0
\(91\) 221.638i 0.0267646i
\(92\) 1830.92 1123.37i 0.216318 0.132723i
\(93\) 0 0
\(94\) −1357.45 + 2425.46i −0.153627 + 0.274498i
\(95\) 24196.0i 2.68099i
\(96\) 0 0
\(97\) −278.895 −0.0296413 −0.0148207 0.999890i \(-0.504718\pi\)
−0.0148207 + 0.999890i \(0.504718\pi\)
\(98\) −7476.00 4184.07i −0.778426 0.435659i
\(99\) 0 0
\(100\) 13346.5 + 21752.7i 1.33465 + 2.17527i
\(101\) −9308.10 −0.912469 −0.456235 0.889860i \(-0.650802\pi\)
−0.456235 + 0.889860i \(0.650802\pi\)
\(102\) 0 0
\(103\) 3271.88i 0.308406i −0.988039 0.154203i \(-0.950719\pi\)
0.988039 0.154203i \(-0.0492810\pi\)
\(104\) 8.43562 + 210.287i 0.000779921 + 0.0194422i
\(105\) 0 0
\(106\) 4070.06 + 2277.88i 0.362234 + 0.202730i
\(107\) 1845.07i 0.161156i −0.996748 0.0805778i \(-0.974323\pi\)
0.996748 0.0805778i \(-0.0256765\pi\)
\(108\) 0 0
\(109\) 6021.20 0.506793 0.253396 0.967363i \(-0.418452\pi\)
0.253396 + 0.967363i \(0.418452\pi\)
\(110\) 6387.76 11413.5i 0.527914 0.943266i
\(111\) 0 0
\(112\) 15382.4 + 7816.49i 1.22628 + 0.623126i
\(113\) −8841.22 −0.692398 −0.346199 0.938161i \(-0.612528\pi\)
−0.346199 + 0.938161i \(0.612528\pi\)
\(114\) 0 0
\(115\) 6325.72i 0.478315i
\(116\) −6464.72 10536.5i −0.480434 0.783032i
\(117\) 0 0
\(118\) 10822.3 19337.1i 0.777243 1.38876i
\(119\) 7871.00i 0.555822i
\(120\) 0 0
\(121\) 9824.90 0.671054
\(122\) −11184.0 6259.32i −0.751412 0.420540i
\(123\) 0 0
\(124\) −14591.9 + 8952.92i −0.949002 + 0.582266i
\(125\) 45706.2 2.92520
\(126\) 0 0
\(127\) 9165.05i 0.568234i 0.958790 + 0.284117i \(0.0917004\pi\)
−0.958790 + 0.284117i \(0.908300\pi\)
\(128\) −14892.2 6830.72i −0.908946 0.416914i
\(129\) 0 0
\(130\) 540.821 + 302.679i 0.0320012 + 0.0179100i
\(131\) 16239.9i 0.946325i 0.880975 + 0.473162i \(0.156888\pi\)
−0.880975 + 0.473162i \(0.843112\pi\)
\(132\) 0 0
\(133\) 34611.7 1.95668
\(134\) −10482.9 + 18730.6i −0.583810 + 1.04314i
\(135\) 0 0
\(136\) −299.573 7467.91i −0.0161967 0.403758i
\(137\) 30410.5 1.62025 0.810125 0.586257i \(-0.199399\pi\)
0.810125 + 0.586257i \(0.199399\pi\)
\(138\) 0 0
\(139\) 32689.0i 1.69189i 0.533269 + 0.845946i \(0.320963\pi\)
−0.533269 + 0.845946i \(0.679037\pi\)
\(140\) 43309.5 26572.8i 2.20967 1.35575i
\(141\) 0 0
\(142\) −324.725 + 580.212i −0.0161042 + 0.0287747i
\(143\) 228.207i 0.0111598i
\(144\) 0 0
\(145\) −36403.0 −1.73141
\(146\) 17751.1 + 9934.68i 0.832759 + 0.466067i
\(147\) 0 0
\(148\) −8652.71 14102.6i −0.395029 0.643835i
\(149\) −13388.8 −0.603073 −0.301536 0.953455i \(-0.597499\pi\)
−0.301536 + 0.953455i \(0.597499\pi\)
\(150\) 0 0
\(151\) 9106.99i 0.399412i 0.979856 + 0.199706i \(0.0639987\pi\)
−0.979856 + 0.199706i \(0.936001\pi\)
\(152\) −32839.2 + 1317.34i −1.42136 + 0.0570177i
\(153\) 0 0
\(154\) −16326.8 9137.54i −0.688428 0.385290i
\(155\) 50414.1i 2.09840i
\(156\) 0 0
\(157\) 4555.18 0.184802 0.0924009 0.995722i \(-0.470546\pi\)
0.0924009 + 0.995722i \(0.470546\pi\)
\(158\) 1415.28 2528.79i 0.0566928 0.101298i
\(159\) 0 0
\(160\) −40080.1 + 26860.3i −1.56563 + 1.04923i
\(161\) −9048.79 −0.349091
\(162\) 0 0
\(163\) 466.424i 0.0175552i 0.999961 + 0.00877760i \(0.00279403\pi\)
−0.999961 + 0.00877760i \(0.997206\pi\)
\(164\) −19016.1 30993.2i −0.707022 1.15233i
\(165\) 0 0
\(166\) 15927.4 28458.7i 0.578000 1.03276i
\(167\) 30165.9i 1.08164i −0.841138 0.540821i \(-0.818114\pi\)
0.841138 0.540821i \(-0.181886\pi\)
\(168\) 0 0
\(169\) −28550.2 −0.999621
\(170\) −19206.1 10749.0i −0.664572 0.371938i
\(171\) 0 0
\(172\) 34411.2 21113.2i 1.16317 0.713670i
\(173\) −51017.1 −1.70460 −0.852302 0.523051i \(-0.824794\pi\)
−0.852302 + 0.523051i \(0.824794\pi\)
\(174\) 0 0
\(175\) 107507.i 3.51043i
\(176\) 15838.4 + 8048.18i 0.511312 + 0.259820i
\(177\) 0 0
\(178\) 24305.9 + 13603.2i 0.767135 + 0.429340i
\(179\) 26293.5i 0.820622i −0.911946 0.410311i \(-0.865420\pi\)
0.911946 0.410311i \(-0.134580\pi\)
\(180\) 0 0
\(181\) 3132.04 0.0956026 0.0478013 0.998857i \(-0.484779\pi\)
0.0478013 + 0.998857i \(0.484779\pi\)
\(182\) 432.975 773.631i 0.0130713 0.0233556i
\(183\) 0 0
\(184\) 8585.38 344.401i 0.253585 0.0101725i
\(185\) −48723.6 −1.42363
\(186\) 0 0
\(187\) 8104.31i 0.231757i
\(188\) −9476.41 + 5814.31i −0.268119 + 0.164506i
\(189\) 0 0
\(190\) −47267.5 + 84456.5i −1.30935 + 2.33952i
\(191\) 17160.1i 0.470384i −0.971949 0.235192i \(-0.924428\pi\)
0.971949 0.235192i \(-0.0755718\pi\)
\(192\) 0 0
\(193\) −16841.7 −0.452139 −0.226070 0.974111i \(-0.572588\pi\)
−0.226070 + 0.974111i \(0.572588\pi\)
\(194\) −973.490 544.829i −0.0258659 0.0144763i
\(195\) 0 0
\(196\) −17921.4 29209.1i −0.466510 0.760338i
\(197\) 67293.3 1.73396 0.866981 0.498342i \(-0.166058\pi\)
0.866981 + 0.498342i \(0.166058\pi\)
\(198\) 0 0
\(199\) 13276.3i 0.335253i −0.985851 0.167626i \(-0.946390\pi\)
0.985851 0.167626i \(-0.0536102\pi\)
\(200\) 4091.75 + 102001.i 0.102294 + 2.55003i
\(201\) 0 0
\(202\) −32490.1 18183.6i −0.796248 0.445633i
\(203\) 52073.6i 1.26365i
\(204\) 0 0
\(205\) −107080. −2.54801
\(206\) 6391.71 11420.6i 0.150620 0.269124i
\(207\) 0 0
\(208\) −381.357 + 750.491i −0.00881465 + 0.0173468i
\(209\) 35637.7 0.815863
\(210\) 0 0
\(211\) 17830.2i 0.400489i 0.979746 + 0.200245i \(0.0641737\pi\)
−0.979746 + 0.200245i \(0.935826\pi\)
\(212\) 9756.73 + 15901.9i 0.217086 + 0.353817i
\(213\) 0 0
\(214\) 3604.39 6440.26i 0.0787055 0.140629i
\(215\) 118889.i 2.57196i
\(216\) 0 0
\(217\) 72116.2 1.53149
\(218\) 21017.1 + 11762.6i 0.442242 + 0.247508i
\(219\) 0 0
\(220\) 44593.2 27360.4i 0.921347 0.565298i
\(221\) −384.017 −0.00786259
\(222\) 0 0
\(223\) 68248.8i 1.37241i 0.727406 + 0.686207i \(0.240726\pi\)
−0.727406 + 0.686207i \(0.759274\pi\)
\(224\) 38423.0 + 57333.6i 0.765765 + 1.14265i
\(225\) 0 0
\(226\) −30860.5 17271.6i −0.604207 0.338154i
\(227\) 56672.7i 1.09982i −0.835223 0.549911i \(-0.814662\pi\)
0.835223 0.549911i \(-0.185338\pi\)
\(228\) 0 0
\(229\) 65653.5 1.25195 0.625975 0.779843i \(-0.284701\pi\)
0.625975 + 0.779843i \(0.284701\pi\)
\(230\) 12357.5 22080.1i 0.233601 0.417392i
\(231\) 0 0
\(232\) −1981.94 49406.8i −0.0368226 0.917932i
\(233\) −55652.7 −1.02512 −0.512559 0.858652i \(-0.671303\pi\)
−0.512559 + 0.858652i \(0.671303\pi\)
\(234\) 0 0
\(235\) 32740.5i 0.592857i
\(236\) 75551.2 46354.9i 1.35649 0.832284i
\(237\) 0 0
\(238\) −15376.2 + 27473.9i −0.271454 + 0.485027i
\(239\) 13031.8i 0.228144i −0.993472 0.114072i \(-0.963611\pi\)
0.993472 0.114072i \(-0.0363895\pi\)
\(240\) 0 0
\(241\) 57972.1 0.998124 0.499062 0.866566i \(-0.333678\pi\)
0.499062 + 0.866566i \(0.333678\pi\)
\(242\) 34294.0 + 19193.2i 0.585582 + 0.327730i
\(243\) 0 0
\(244\) −26810.3 43696.5i −0.450321 0.733952i
\(245\) −100916. −1.68123
\(246\) 0 0
\(247\) 1688.67i 0.0276790i
\(248\) −68422.9 + 2744.77i −1.11250 + 0.0446275i
\(249\) 0 0
\(250\) 159538. + 89288.3i 2.55262 + 1.42861i
\(251\) 81292.8i 1.29034i 0.764038 + 0.645171i \(0.223214\pi\)
−0.764038 + 0.645171i \(0.776786\pi\)
\(252\) 0 0
\(253\) −9317.01 −0.145558
\(254\) −17904.2 + 31990.8i −0.277515 + 0.495858i
\(255\) 0 0
\(256\) −38637.4 52935.0i −0.589560 0.807724i
\(257\) 18818.7 0.284920 0.142460 0.989801i \(-0.454499\pi\)
0.142460 + 0.989801i \(0.454499\pi\)
\(258\) 0 0
\(259\) 69698.0i 1.03901i
\(260\) 1296.45 + 2113.02i 0.0191783 + 0.0312576i
\(261\) 0 0
\(262\) −31725.0 + 56685.6i −0.462168 + 0.825791i
\(263\) 96169.6i 1.39036i −0.718837 0.695179i \(-0.755325\pi\)
0.718837 0.695179i \(-0.244675\pi\)
\(264\) 0 0
\(265\) 54940.4 0.782348
\(266\) 120813. + 67615.0i 1.70746 + 0.955608i
\(267\) 0 0
\(268\) −73181.5 + 44901.0i −1.01890 + 0.625153i
\(269\) −20853.4 −0.288186 −0.144093 0.989564i \(-0.546026\pi\)
−0.144093 + 0.989564i \(0.546026\pi\)
\(270\) 0 0
\(271\) 101517.i 1.38230i −0.722712 0.691149i \(-0.757105\pi\)
0.722712 0.691149i \(-0.242895\pi\)
\(272\) 13543.1 26652.1i 0.183054 0.360242i
\(273\) 0 0
\(274\) 106148. + 59407.7i 1.41388 + 0.791301i
\(275\) 110693.i 1.46372i
\(276\) 0 0
\(277\) 53726.5 0.700212 0.350106 0.936710i \(-0.386146\pi\)
0.350106 + 0.936710i \(0.386146\pi\)
\(278\) −63858.9 + 114102.i −0.826289 + 1.47640i
\(279\) 0 0
\(280\) 203083. 8146.64i 2.59035 0.103911i
\(281\) 99500.6 1.26012 0.630061 0.776545i \(-0.283030\pi\)
0.630061 + 0.776545i \(0.283030\pi\)
\(282\) 0 0
\(283\) 69719.8i 0.870529i 0.900303 + 0.435265i \(0.143345\pi\)
−0.900303 + 0.435265i \(0.856655\pi\)
\(284\) −2266.92 + 1390.88i −0.0281060 + 0.0172446i
\(285\) 0 0
\(286\) 445.809 796.563i 0.00545026 0.00973840i
\(287\) 153175.i 1.85962i
\(288\) 0 0
\(289\) −69883.5 −0.836717
\(290\) −127065. 71114.2i −1.51088 0.845592i
\(291\) 0 0
\(292\) 42552.8 + 69354.4i 0.499072 + 0.813408i
\(293\) 12440.0 0.144905 0.0724526 0.997372i \(-0.476917\pi\)
0.0724526 + 0.997372i \(0.476917\pi\)
\(294\) 0 0
\(295\) 261025.i 2.99943i
\(296\) −2652.73 66128.6i −0.0302768 0.754755i
\(297\) 0 0
\(298\) −46733.9 26155.4i −0.526259 0.294530i
\(299\) 441.480i 0.00493819i
\(300\) 0 0
\(301\) −170068. −1.87711
\(302\) −17790.8 + 31788.1i −0.195065 + 0.348539i
\(303\) 0 0
\(304\) −117199. 59554.1i −1.26817 0.644413i
\(305\) −150969. −1.62289
\(306\) 0 0
\(307\) 151986.i 1.61260i 0.591504 + 0.806302i \(0.298534\pi\)
−0.591504 + 0.806302i \(0.701466\pi\)
\(308\) −39138.4 63789.5i −0.412574 0.672431i
\(309\) 0 0
\(310\) −98485.4 + 175972.i −1.02482 + 1.83113i
\(311\) 50086.5i 0.517845i −0.965898 0.258923i \(-0.916633\pi\)
0.965898 0.258923i \(-0.0833675\pi\)
\(312\) 0 0
\(313\) 61969.9 0.632546 0.316273 0.948668i \(-0.397568\pi\)
0.316273 + 0.948668i \(0.397568\pi\)
\(314\) 15900.0 + 8898.67i 0.161264 + 0.0902539i
\(315\) 0 0
\(316\) 9880.12 6062.01i 0.0989437 0.0607075i
\(317\) 80.9272 0.000805334 0.000402667 1.00000i \(-0.499872\pi\)
0.000402667 1.00000i \(0.499872\pi\)
\(318\) 0 0
\(319\) 53617.1i 0.526893i
\(320\) −192373. + 15458.9i −1.87864 + 0.150965i
\(321\) 0 0
\(322\) −31585.0 17677.1i −0.304627 0.170490i
\(323\) 59969.4i 0.574811i
\(324\) 0 0
\(325\) 5245.13 0.0496580
\(326\) −911.172 + 1628.06i −0.00857364 + 0.0153192i
\(327\) 0 0
\(328\) −5829.91 145331.i −0.0541894 1.35086i
\(329\) 46834.5 0.432687
\(330\) 0 0
\(331\) 31123.5i 0.284074i 0.989861 + 0.142037i \(0.0453652\pi\)
−0.989861 + 0.142037i \(0.954635\pi\)
\(332\) 111190. 68221.0i 1.00876 0.618931i
\(333\) 0 0
\(334\) 58929.9 105295.i 0.528254 0.943873i
\(335\) 252839.i 2.25296i
\(336\) 0 0
\(337\) 5863.61 0.0516304 0.0258152 0.999667i \(-0.491782\pi\)
0.0258152 + 0.999667i \(0.491782\pi\)
\(338\) −99655.0 55773.6i −0.872300 0.488197i
\(339\) 0 0
\(340\) −46040.9 75039.4i −0.398277 0.649129i
\(341\) 74253.8 0.638572
\(342\) 0 0
\(343\) 17470.1i 0.148493i
\(344\) 161358. 6472.85i 1.36356 0.0546989i
\(345\) 0 0
\(346\) −178076. 99663.2i −1.48749 0.832497i
\(347\) 138155.i 1.14738i 0.819073 + 0.573689i \(0.194488\pi\)
−0.819073 + 0.573689i \(0.805512\pi\)
\(348\) 0 0
\(349\) 180947. 1.48559 0.742797 0.669517i \(-0.233499\pi\)
0.742797 + 0.669517i \(0.233499\pi\)
\(350\) 210018. 375255.i 1.71443 3.06330i
\(351\) 0 0
\(352\) 39561.9 + 59033.1i 0.319295 + 0.476442i
\(353\) 98784.9 0.792759 0.396380 0.918087i \(-0.370266\pi\)
0.396380 + 0.918087i \(0.370266\pi\)
\(354\) 0 0
\(355\) 7832.10i 0.0621472i
\(356\) 58266.0 + 94964.5i 0.459743 + 0.749309i
\(357\) 0 0
\(358\) 51365.2 91778.2i 0.400777 0.716099i
\(359\) 151427.i 1.17493i 0.809248 + 0.587467i \(0.199875\pi\)
−0.809248 + 0.587467i \(0.800125\pi\)
\(360\) 0 0
\(361\) −133387. −1.02353
\(362\) 10932.4 + 6118.52i 0.0834257 + 0.0466906i
\(363\) 0 0
\(364\) 3022.62 1854.55i 0.0228129 0.0139970i
\(365\) 239616. 1.79858
\(366\) 0 0
\(367\) 101304.i 0.752132i −0.926593 0.376066i \(-0.877277\pi\)
0.926593 0.376066i \(-0.122723\pi\)
\(368\) 30640.2 + 15569.6i 0.226254 + 0.114970i
\(369\) 0 0
\(370\) −170071. 95182.9i −1.24230 0.695273i
\(371\) 78590.9i 0.570985i
\(372\) 0 0
\(373\) −181796. −1.30667 −0.653336 0.757068i \(-0.726631\pi\)
−0.653336 + 0.757068i \(0.726631\pi\)
\(374\) −15832.0 + 28288.3i −0.113186 + 0.202238i
\(375\) 0 0
\(376\) −44436.0 + 1782.54i −0.314311 + 0.0126085i
\(377\) −2540.61 −0.0178754
\(378\) 0 0
\(379\) 2324.09i 0.0161798i 0.999967 + 0.00808991i \(0.00257513\pi\)
−0.999967 + 0.00808991i \(0.997425\pi\)
\(380\) −329976. + 202459.i −2.28515 + 1.40207i
\(381\) 0 0
\(382\) 33522.7 59897.6i 0.229727 0.410471i
\(383\) 129732.i 0.884402i 0.896916 + 0.442201i \(0.145802\pi\)
−0.896916 + 0.442201i \(0.854198\pi\)
\(384\) 0 0
\(385\) −220390. −1.48686
\(386\) −58786.4 32900.8i −0.394550 0.220817i
\(387\) 0 0
\(388\) −2333.65 3803.48i −0.0155014 0.0252649i
\(389\) 53603.2 0.354235 0.177118 0.984190i \(-0.443323\pi\)
0.177118 + 0.984190i \(0.443323\pi\)
\(390\) 0 0
\(391\) 15678.2i 0.102552i
\(392\) −5494.32 136965.i −0.0357554 0.891329i
\(393\) 0 0
\(394\) 234889. + 131459.i 1.51311 + 0.846835i
\(395\) 34135.3i 0.218781i
\(396\) 0 0
\(397\) 156598. 0.993584 0.496792 0.867870i \(-0.334511\pi\)
0.496792 + 0.867870i \(0.334511\pi\)
\(398\) 25935.7 46341.3i 0.163731 0.292551i
\(399\) 0 0
\(400\) −184980. + 364030.i −1.15612 + 2.27519i
\(401\) 207347. 1.28946 0.644731 0.764410i \(-0.276969\pi\)
0.644731 + 0.764410i \(0.276969\pi\)
\(402\) 0 0
\(403\) 3518.46i 0.0216642i
\(404\) −77885.2 126941.i −0.477191 0.777746i
\(405\) 0 0
\(406\) −101727. + 181764.i −0.617142 + 1.10270i
\(407\) 71763.9i 0.433229i
\(408\) 0 0
\(409\) 35322.3 0.211156 0.105578 0.994411i \(-0.466331\pi\)
0.105578 + 0.994411i \(0.466331\pi\)
\(410\) −373765. 209184.i −2.22347 1.24440i
\(411\) 0 0
\(412\) 44620.8 27377.3i 0.262871 0.161286i
\(413\) −373391. −2.18909
\(414\) 0 0
\(415\) 384154.i 2.23054i
\(416\) −2797.24 + 1874.61i −0.0161638 + 0.0108324i
\(417\) 0 0
\(418\) 124394. + 69619.2i 0.711946 + 0.398452i
\(419\) 272874.i 1.55430i −0.629318 0.777148i \(-0.716666\pi\)
0.629318 0.777148i \(-0.283334\pi\)
\(420\) 0 0
\(421\) −223490. −1.26094 −0.630468 0.776215i \(-0.717137\pi\)
−0.630468 + 0.776215i \(0.717137\pi\)
\(422\) −34831.8 + 62236.6i −0.195592 + 0.349479i
\(423\) 0 0
\(424\) 2991.20 + 74566.1i 0.0166385 + 0.414772i
\(425\) −186270. −1.03125
\(426\) 0 0
\(427\) 215958.i 1.18444i
\(428\) 25162.4 15438.6i 0.137361 0.0842790i
\(429\) 0 0
\(430\) 232253. 414984.i 1.25610 2.24437i
\(431\) 158123.i 0.851216i 0.904908 + 0.425608i \(0.139940\pi\)
−0.904908 + 0.425608i \(0.860060\pi\)
\(432\) 0 0
\(433\) 135143. 0.720803 0.360401 0.932797i \(-0.382640\pi\)
0.360401 + 0.932797i \(0.382640\pi\)
\(434\) 251723. + 140881.i 1.33642 + 0.747950i
\(435\) 0 0
\(436\) 50382.2 + 82115.1i 0.265036 + 0.431966i
\(437\) 68943.0 0.361017
\(438\) 0 0
\(439\) 75873.6i 0.393697i −0.980434 0.196848i \(-0.936929\pi\)
0.980434 0.196848i \(-0.0630707\pi\)
\(440\) 209103. 8388.11i 1.08008 0.0433270i
\(441\) 0 0
\(442\) −1340.42 750.187i −0.00686113 0.00383994i
\(443\) 99747.7i 0.508271i 0.967169 + 0.254135i \(0.0817909\pi\)
−0.967169 + 0.254135i \(0.918209\pi\)
\(444\) 0 0
\(445\) 328097. 1.65685
\(446\) −133326. + 238224.i −0.670262 + 1.19761i
\(447\) 0 0
\(448\) 22113.5 + 275185.i 0.110180 + 1.37110i
\(449\) −156931. −0.778424 −0.389212 0.921148i \(-0.627253\pi\)
−0.389212 + 0.921148i \(0.627253\pi\)
\(450\) 0 0
\(451\) 157716.i 0.775392i
\(452\) −73978.6 120574.i −0.362101 0.590167i
\(453\) 0 0
\(454\) 110712. 197817.i 0.537133 0.959737i
\(455\) 10443.0i 0.0504432i
\(456\) 0 0
\(457\) 109830. 0.525882 0.262941 0.964812i \(-0.415308\pi\)
0.262941 + 0.964812i \(0.415308\pi\)
\(458\) 229165. + 128256.i 1.09249 + 0.611430i
\(459\) 0 0
\(460\) 86268.0 52930.2i 0.407694 0.250143i
\(461\) 172802. 0.813104 0.406552 0.913628i \(-0.366731\pi\)
0.406552 + 0.913628i \(0.366731\pi\)
\(462\) 0 0
\(463\) 159146.i 0.742395i −0.928554 0.371198i \(-0.878947\pi\)
0.928554 0.371198i \(-0.121053\pi\)
\(464\) 89599.5 176327.i 0.416169 0.818999i
\(465\) 0 0
\(466\) −194257. 108719.i −0.894549 0.500649i
\(467\) 153806.i 0.705246i 0.935765 + 0.352623i \(0.114710\pi\)
−0.935765 + 0.352623i \(0.885290\pi\)
\(468\) 0 0
\(469\) 361679. 1.64429
\(470\) −63959.5 + 114281.i −0.289540 + 0.517345i
\(471\) 0 0
\(472\) 354268. 14211.4i 1.59019 0.0637900i
\(473\) −175109. −0.782683
\(474\) 0 0
\(475\) 819098.i 3.63035i
\(476\) −107342. + 65860.3i −0.473757 + 0.290677i
\(477\) 0 0
\(478\) 25458.0 45487.8i 0.111421 0.199085i
\(479\) 246496.i 1.07433i −0.843477 0.537166i \(-0.819495\pi\)
0.843477 0.537166i \(-0.180505\pi\)
\(480\) 0 0
\(481\) −3400.48 −0.0146977
\(482\) 202353. + 113250.i 0.870993 + 0.487466i
\(483\) 0 0
\(484\) 82209.5 + 133989.i 0.350939 + 0.571975i
\(485\) −13140.8 −0.0558649
\(486\) 0 0
\(487\) 341810.i 1.44121i 0.693347 + 0.720603i \(0.256135\pi\)
−0.693347 + 0.720603i \(0.743865\pi\)
\(488\) −8219.45 204898.i −0.0345146 0.860397i
\(489\) 0 0
\(490\) −352250. 197142.i −1.46710 0.821084i
\(491\) 302270.i 1.25381i −0.779095 0.626906i \(-0.784321\pi\)
0.779095 0.626906i \(-0.215679\pi\)
\(492\) 0 0
\(493\) 90224.4 0.371219
\(494\) −3298.85 + 5894.32i −0.0135179 + 0.0241535i
\(495\) 0 0
\(496\) −244194. 124085.i −0.992592 0.504379i
\(497\) 11203.6 0.0453572
\(498\) 0 0
\(499\) 193507.i 0.777132i −0.921421 0.388566i \(-0.872971\pi\)
0.921421 0.388566i \(-0.127029\pi\)
\(500\) 382445. + 623325.i 1.52978 + 2.49330i
\(501\) 0 0
\(502\) −158808. + 283754.i −0.630179 + 1.12599i
\(503\) 452328.i 1.78779i −0.448273 0.893897i \(-0.647961\pi\)
0.448273 0.893897i \(-0.352039\pi\)
\(504\) 0 0
\(505\) −438573. −1.71973
\(506\) −32521.2 18201.0i −0.127018 0.0710878i
\(507\) 0 0
\(508\) −124990. + 76688.2i −0.484336 + 0.297167i
\(509\) −232364. −0.896876 −0.448438 0.893814i \(-0.648020\pi\)
−0.448438 + 0.893814i \(0.648020\pi\)
\(510\) 0 0
\(511\) 342765.i 1.31267i
\(512\) −31454.7 260250.i −0.119990 0.992775i
\(513\) 0 0
\(514\) 65687.0 + 36762.8i 0.248630 + 0.139150i
\(515\) 154163.i 0.581252i
\(516\) 0 0
\(517\) 48222.8 0.180414
\(518\) −136157. + 243282.i −0.507435 + 0.906673i
\(519\) 0 0
\(520\) 397.465 + 9908.18i 0.00146991 + 0.0366427i
\(521\) 425181. 1.56638 0.783192 0.621780i \(-0.213590\pi\)
0.783192 + 0.621780i \(0.213590\pi\)
\(522\) 0 0
\(523\) 91819.6i 0.335685i −0.985814 0.167842i \(-0.946320\pi\)
0.985814 0.167842i \(-0.0536800\pi\)
\(524\) −221474. + 135887.i −0.806603 + 0.494896i
\(525\) 0 0
\(526\) 187870. 335682.i 0.679025 1.21327i
\(527\) 124951.i 0.449902i
\(528\) 0 0
\(529\) 261817. 0.935591
\(530\) 191771. + 107328.i 0.682701 + 0.382085i
\(531\) 0 0
\(532\) 289613. + 472023.i 1.02328 + 1.66778i
\(533\) −7473.24 −0.0263060
\(534\) 0 0
\(535\) 86934.9i 0.303729i
\(536\) −343157. + 13765.7i −1.19444 + 0.0479146i
\(537\) 0 0
\(538\) −72789.3 40737.7i −0.251480 0.140745i
\(539\) 148637.i 0.511622i
\(540\) 0 0
\(541\) −419310. −1.43265 −0.716326 0.697766i \(-0.754178\pi\)
−0.716326 + 0.697766i \(0.754178\pi\)
\(542\) 198317. 354349.i 0.675090 1.20624i
\(543\) 0 0
\(544\) 99338.1 66572.9i 0.335674 0.224957i
\(545\) 283703. 0.955150
\(546\) 0 0
\(547\) 372884.i 1.24623i −0.782129 0.623116i \(-0.785866\pi\)
0.782129 0.623116i \(-0.214134\pi\)
\(548\) 254459. + 414727.i 0.847337 + 1.38103i
\(549\) 0 0
\(550\) 216243. 386378.i 0.714852 1.27728i
\(551\) 396751.i 1.30682i
\(552\) 0 0
\(553\) −48829.8 −0.159674
\(554\) 187534. + 104956.i 0.611026 + 0.341971i
\(555\) 0 0
\(556\) −445802. + 273524.i −1.44209 + 0.884803i
\(557\) −249244. −0.803369 −0.401685 0.915778i \(-0.631575\pi\)
−0.401685 + 0.915778i \(0.631575\pi\)
\(558\) 0 0
\(559\) 8297.40i 0.0265533i
\(560\) 724781. + 368293.i 2.31116 + 1.17440i
\(561\) 0 0
\(562\) 347309. + 194377.i 1.09962 + 0.615421i
\(563\) 469821.i 1.48223i 0.671377 + 0.741116i \(0.265703\pi\)
−0.671377 + 0.741116i \(0.734297\pi\)
\(564\) 0 0
\(565\) −416575. −1.30496
\(566\) −136200. + 243358.i −0.425151 + 0.759650i
\(567\) 0 0
\(568\) −10629.9 + 426.415i −0.0329482 + 0.00132171i
\(569\) −501734. −1.54971 −0.774853 0.632142i \(-0.782176\pi\)
−0.774853 + 0.632142i \(0.782176\pi\)
\(570\) 0 0
\(571\) 514877.i 1.57918i −0.613636 0.789589i \(-0.710294\pi\)
0.613636 0.789589i \(-0.289706\pi\)
\(572\) 3112.21 1909.52i 0.00951212 0.00583622i
\(573\) 0 0
\(574\) −299232. + 534661.i −0.908206 + 1.62276i
\(575\) 214143.i 0.647690i
\(576\) 0 0
\(577\) 55168.5 0.165707 0.0828533 0.996562i \(-0.473597\pi\)
0.0828533 + 0.996562i \(0.473597\pi\)
\(578\) −243930. 136519.i −0.730145 0.408637i
\(579\) 0 0
\(580\) −304601. 496451.i −0.905472 1.47578i
\(581\) −549524. −1.62792
\(582\) 0 0
\(583\) 80920.5i 0.238079i
\(584\) 13045.8 + 325211.i 0.0382511 + 0.953542i
\(585\) 0 0
\(586\) 43421.9 + 24301.8i 0.126449 + 0.0707690i
\(587\) 221207.i 0.641980i 0.947083 + 0.320990i \(0.104016\pi\)
−0.947083 + 0.320990i \(0.895984\pi\)
\(588\) 0 0
\(589\) −549456. −1.58381
\(590\) 509920. 911115.i 1.46487 2.61739i
\(591\) 0 0
\(592\) 119925. 236005.i 0.342188 0.673408i
\(593\) −167379. −0.475982 −0.237991 0.971267i \(-0.576489\pi\)
−0.237991 + 0.971267i \(0.576489\pi\)
\(594\) 0 0
\(595\) 370861.i 1.04756i
\(596\) −112030. 182592.i −0.315387 0.514031i
\(597\) 0 0
\(598\) 862.442 1540.99i 0.00241172 0.00430922i
\(599\) 285002.i 0.794319i −0.917750 0.397160i \(-0.869996\pi\)
0.917750 0.397160i \(-0.130004\pi\)
\(600\) 0 0
\(601\) 30586.9 0.0846810 0.0423405 0.999103i \(-0.486519\pi\)
0.0423405 + 0.999103i \(0.486519\pi\)
\(602\) −593625. 332232.i −1.63802 0.916745i
\(603\) 0 0
\(604\) −124198. + 76202.4i −0.340440 + 0.208879i
\(605\) 462924. 1.26473
\(606\) 0 0
\(607\) 165312.i 0.448670i −0.974512 0.224335i \(-0.927979\pi\)
0.974512 0.224335i \(-0.0720209\pi\)
\(608\) −292746. 436827.i −0.791925 1.18169i
\(609\) 0 0
\(610\) −526962. 294923.i −1.41618 0.792590i
\(611\) 2285.00i 0.00612074i
\(612\) 0 0
\(613\) −64752.4 −0.172320 −0.0861599 0.996281i \(-0.527460\pi\)
−0.0861599 + 0.996281i \(0.527460\pi\)
\(614\) −296909. + 530511.i −0.787566 + 1.40721i
\(615\) 0 0
\(616\) −11999.0 299117.i −0.0316216 0.788277i
\(617\) −321272. −0.843923 −0.421961 0.906614i \(-0.638658\pi\)
−0.421961 + 0.906614i \(0.638658\pi\)
\(618\) 0 0
\(619\) 409948.i 1.06991i 0.844880 + 0.534956i \(0.179672\pi\)
−0.844880 + 0.534956i \(0.820328\pi\)
\(620\) −687530. + 421838.i −1.78858 + 1.09739i
\(621\) 0 0
\(622\) 97845.4 174828.i 0.252906 0.451887i
\(623\) 469335.i 1.20923i
\(624\) 0 0
\(625\) 1.15665e6 2.96103
\(626\) 216307. + 121060.i 0.551979 + 0.308924i
\(627\) 0 0
\(628\) 38115.3 + 62122.0i 0.0966452 + 0.157516i
\(629\) 120761. 0.305229
\(630\) 0 0
\(631\) 453263.i 1.13839i −0.822202 0.569195i \(-0.807255\pi\)
0.822202 0.569195i \(-0.192745\pi\)
\(632\) 46329.1 1858.48i 0.115990 0.00465290i
\(633\) 0 0
\(634\) 282.478 + 158.093i 0.000702758 + 0.000393310i
\(635\) 431833.i 1.07095i
\(636\) 0 0
\(637\) −7043.05 −0.0173573
\(638\) −104743. + 187152.i −0.257325 + 0.459783i
\(639\) 0 0
\(640\) −701680. 321846.i −1.71309 0.785757i
\(641\) −764363. −1.86030 −0.930152 0.367175i \(-0.880325\pi\)
−0.930152 + 0.367175i \(0.880325\pi\)
\(642\) 0 0
\(643\) 674655.i 1.63177i 0.578211 + 0.815887i \(0.303751\pi\)
−0.578211 + 0.815887i \(0.696249\pi\)
\(644\) −75715.4 123404.i −0.182563 0.297549i
\(645\) 0 0
\(646\) 117152. 209324.i 0.280727 0.501597i
\(647\) 372446.i 0.889723i 0.895599 + 0.444861i \(0.146747\pi\)
−0.895599 + 0.444861i \(0.853253\pi\)
\(648\) 0 0
\(649\) −384458. −0.912767
\(650\) 18308.2 + 10246.5i 0.0433331 + 0.0242521i
\(651\) 0 0
\(652\) −6360.93 + 3902.79i −0.0149632 + 0.00918078i
\(653\) 620680. 1.45560 0.727799 0.685791i \(-0.240543\pi\)
0.727799 + 0.685791i \(0.240543\pi\)
\(654\) 0 0
\(655\) 765181.i 1.78353i
\(656\) 263558. 518669.i 0.612447 1.20527i
\(657\) 0 0
\(658\) 163477. + 91492.5i 0.377576 + 0.211317i
\(659\) 416907.i 0.959993i 0.877271 + 0.479996i \(0.159362\pi\)
−0.877271 + 0.479996i \(0.840638\pi\)
\(660\) 0 0
\(661\) −724690. −1.65863 −0.829315 0.558782i \(-0.811269\pi\)
−0.829315 + 0.558782i \(0.811269\pi\)
\(662\) −60800.5 + 108637.i −0.138737 + 0.247892i
\(663\) 0 0
\(664\) 521381. 20915.1i 1.18255 0.0474377i
\(665\) 1.63082e6 3.68775
\(666\) 0 0
\(667\) 103725.i 0.233149i
\(668\) 411392. 252412.i 0.921941 0.565662i
\(669\) 0 0
\(670\) −493927. + 882538.i −1.10030 + 1.96600i
\(671\) 222359.i 0.493867i
\(672\) 0 0
\(673\) −239394. −0.528546 −0.264273 0.964448i \(-0.585132\pi\)
−0.264273 + 0.964448i \(0.585132\pi\)
\(674\) 20467.0 + 11454.7i 0.0450542 + 0.0252153i
\(675\) 0 0
\(676\) −238893. 389357.i −0.522769 0.852031i
\(677\) 731049. 1.59503 0.797515 0.603299i \(-0.206147\pi\)
0.797515 + 0.603299i \(0.206147\pi\)
\(678\) 0 0
\(679\) 18797.6i 0.0407721i
\(680\) −14115.1 351868.i −0.0305258 0.760961i
\(681\) 0 0
\(682\) 259184. + 145057.i 0.557237 + 0.311867i
\(683\) 804575.i 1.72475i −0.506273 0.862373i \(-0.668977\pi\)
0.506273 0.862373i \(-0.331023\pi\)
\(684\) 0 0
\(685\) 1.43286e6 3.05368
\(686\) 34128.3 60979.7i 0.0725214 0.129580i
\(687\) 0 0
\(688\) 575869. + 292624.i 1.21660 + 0.618206i
\(689\) 3834.36 0.00807707
\(690\) 0 0
\(691\) 734097.i 1.53744i −0.639587 0.768719i \(-0.720895\pi\)
0.639587 0.768719i \(-0.279105\pi\)
\(692\) −426883. 695753.i −0.891450 1.45292i
\(693\) 0 0
\(694\) −269889. + 482232.i −0.560359 + 1.00124i
\(695\) 1.54022e6i 3.18870i
\(696\) 0 0
\(697\) 265396. 0.546298
\(698\) 631598. + 353484.i 1.29637 + 0.725537i
\(699\) 0 0
\(700\) 1.46614e6 899560.i 2.99212 1.83584i
\(701\) −158522. −0.322592 −0.161296 0.986906i \(-0.551567\pi\)
−0.161296 + 0.986906i \(0.551567\pi\)
\(702\) 0 0
\(703\) 531031.i 1.07451i
\(704\) 22769.0 + 283341.i 0.0459408 + 0.571695i
\(705\) 0 0
\(706\) 344811. + 192979.i 0.691785 + 0.387169i
\(707\) 627369.i 1.25512i
\(708\) 0 0
\(709\) 365334. 0.726770 0.363385 0.931639i \(-0.381621\pi\)
0.363385 + 0.931639i \(0.381621\pi\)
\(710\) −15300.2 + 27338.1i −0.0303516 + 0.0542315i
\(711\) 0 0
\(712\) 17863.1 + 445300.i 0.0352368 + 0.878400i
\(713\) 143648. 0.282566
\(714\) 0 0
\(715\) 10752.5i 0.0210329i
\(716\) 358582. 220010.i 0.699460 0.429158i
\(717\) 0 0
\(718\) −295816. + 528558.i −0.573817 + 1.02528i
\(719\) 801198.i 1.54982i −0.632070 0.774911i \(-0.717795\pi\)
0.632070 0.774911i \(-0.282205\pi\)
\(720\) 0 0
\(721\) −220526. −0.424218
\(722\) −465590. 260575.i −0.893160 0.499872i
\(723\) 0 0
\(724\) 26207.2 + 42713.6i 0.0499970 + 0.0814872i
\(725\) −1.23234e6 −2.34452
\(726\) 0 0
\(727\) 207794.i 0.393155i 0.980488 + 0.196577i \(0.0629827\pi\)
−0.980488 + 0.196577i \(0.937017\pi\)
\(728\) 14173.4 568.563i 0.0267431 0.00107279i
\(729\) 0 0
\(730\) 836385. + 468097.i 1.56950 + 0.878395i
\(731\) 294665.i 0.551434i
\(732\) 0 0
\(733\) 177976. 0.331248 0.165624 0.986189i \(-0.447036\pi\)
0.165624 + 0.986189i \(0.447036\pi\)
\(734\) 197900. 353603.i 0.367328 0.656333i
\(735\) 0 0
\(736\) 76534.7 + 114203.i 0.141287 + 0.210824i
\(737\) 372400. 0.685606
\(738\) 0 0
\(739\) 587913.i 1.07653i −0.842777 0.538263i \(-0.819081\pi\)
0.842777 0.538263i \(-0.180919\pi\)
\(740\) −407693. 664476.i −0.744509 1.21343i
\(741\) 0 0
\(742\) 153530. 274323.i 0.278859 0.498259i
\(743\) 675642.i 1.22388i 0.790904 + 0.611940i \(0.209611\pi\)
−0.790904 + 0.611940i \(0.790389\pi\)
\(744\) 0 0
\(745\) −630846. −1.13661
\(746\) −634562. 355143.i −1.14024 0.638155i
\(747\) 0 0
\(748\) −110524. + 67812.5i −0.197539 + 0.121201i
\(749\) −124358. −0.221672
\(750\) 0 0
\(751\) 267589.i 0.474447i 0.971455 + 0.237224i \(0.0762374\pi\)
−0.971455 + 0.237224i \(0.923763\pi\)
\(752\) −158587. 80584.9i −0.280435 0.142501i
\(753\) 0 0
\(754\) −8868.04 4963.15i −0.0155986 0.00873000i
\(755\) 429098.i 0.752770i
\(756\) 0 0
\(757\) 400491. 0.698878 0.349439 0.936959i \(-0.386372\pi\)
0.349439 + 0.936959i \(0.386372\pi\)
\(758\) −4540.17 + 8112.27i −0.00790193 + 0.0141190i
\(759\) 0 0
\(760\) −1.54730e6 + 62069.5i −2.67884 + 0.107461i
\(761\) −755370. −1.30434 −0.652170 0.758073i \(-0.726141\pi\)
−0.652170 + 0.758073i \(0.726141\pi\)
\(762\) 0 0
\(763\) 405831.i 0.697101i
\(764\) 234023. 143586.i 0.400933 0.245995i
\(765\) 0 0
\(766\) −253435. + 452832.i −0.431926 + 0.771756i
\(767\) 18217.3i 0.0309665i
\(768\) 0 0
\(769\) −482211. −0.815427 −0.407713 0.913110i \(-0.633674\pi\)
−0.407713 + 0.913110i \(0.633674\pi\)
\(770\) −769274. 430537.i −1.29748 0.726155i
\(771\) 0 0
\(772\) −140923. 229682.i −0.236454 0.385382i
\(773\) 1.06175e6 1.77691 0.888454 0.458965i \(-0.151780\pi\)
0.888454 + 0.458965i \(0.151780\pi\)
\(774\) 0 0
\(775\) 1.70665e6i 2.84146i
\(776\) −715.445 17835.0i −0.00118810 0.0296175i
\(777\) 0 0
\(778\) 187103. + 104715.i 0.309116 + 0.173002i
\(779\) 1.16705e6i 1.92315i
\(780\) 0 0
\(781\) 11535.7 0.0189122
\(782\) −30627.8 + 54725.2i −0.0500844 + 0.0894898i
\(783\) 0 0
\(784\) 248387. 488813.i 0.404107 0.795262i
\(785\) 214628. 0.348295
\(786\) 0 0
\(787\) 313747.i 0.506559i 0.967393 + 0.253280i \(0.0815093\pi\)
−0.967393 + 0.253280i \(0.918491\pi\)