Properties

Label 108.5.d.a.55.14
Level 108
Weight 5
Character 108.55
Analytic conductor 11.164
Analytic rank 0
Dimension 16
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 108.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(11.1639560131\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{32}\cdot 3^{26} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 55.14
Root \(0.252484 - 1.95155i\) of \(x^{16} - 2 x^{15} + 6 x^{14} - 22 x^{13} + 19 x^{12} + 18 x^{11} + 1423 x^{10} + 660 x^{9} - 7353 x^{8} - 22934 x^{7} - 36353 x^{6} - 16248 x^{5} + 360646 x^{4} + 1077384 x^{3} + 2005641 x^{2} + 2990790 x + 2924100\)
Character \(\chi\) \(=\) 108.55
Dual form 108.5.d.a.55.13

$q$-expansion

\(f(q)\) \(=\) \(q+(3.36416 + 2.16389i) q^{2} +(6.63513 + 14.5594i) q^{4} -43.0579 q^{5} +14.1139i q^{7} +(-9.18328 + 63.3377i) q^{8} +O(q^{10})\) \(q+(3.36416 + 2.16389i) q^{2} +(6.63513 + 14.5594i) q^{4} -43.0579 q^{5} +14.1139i q^{7} +(-9.18328 + 63.3377i) q^{8} +(-144.853 - 93.1726i) q^{10} -209.481i q^{11} -195.703 q^{13} +(-30.5409 + 47.4813i) q^{14} +(-167.950 + 193.207i) q^{16} -303.688 q^{17} +274.792i q^{19} +(-285.694 - 626.895i) q^{20} +(453.296 - 704.729i) q^{22} +466.347i q^{23} +1228.98 q^{25} +(-658.376 - 423.480i) q^{26} +(-205.489 + 93.6473i) q^{28} -439.835 q^{29} +1220.96i q^{31} +(-983.089 + 286.551i) q^{32} +(-1021.65 - 657.148i) q^{34} -607.713i q^{35} +624.147 q^{37} +(-594.620 + 924.443i) q^{38} +(395.412 - 2727.19i) q^{40} -203.592 q^{41} +419.418i q^{43} +(3049.92 - 1389.94i) q^{44} +(-1009.12 + 1568.86i) q^{46} -1995.53i q^{47} +2201.80 q^{49} +(4134.48 + 2659.38i) q^{50} +(-1298.51 - 2849.31i) q^{52} -206.451 q^{53} +9019.82i q^{55} +(-893.940 - 129.612i) q^{56} +(-1479.67 - 951.756i) q^{58} +2321.87i q^{59} -1392.10 q^{61} +(-2642.02 + 4107.49i) q^{62} +(-3927.33 - 1163.30i) q^{64} +8426.55 q^{65} -7348.27i q^{67} +(-2015.01 - 4421.50i) q^{68} +(1315.03 - 2044.44i) q^{70} +8546.65i q^{71} -3245.43 q^{73} +(2099.73 + 1350.59i) q^{74} +(-4000.79 + 1823.28i) q^{76} +2956.59 q^{77} +6157.41i q^{79} +(7231.57 - 8319.06i) q^{80} +(-684.915 - 440.551i) q^{82} -213.990i q^{83} +13076.2 q^{85} +(-907.576 + 1410.99i) q^{86} +(13268.1 + 1923.73i) q^{88} -8439.35 q^{89} -2762.12i q^{91} +(-6789.71 + 3094.27i) q^{92} +(4318.11 - 6713.28i) q^{94} -11831.9i q^{95} -1022.49 q^{97} +(7407.20 + 4764.46i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 14q^{4} + O(q^{10}) \) \( 16q - 14q^{4} - 202q^{10} - 352q^{13} - 206q^{16} + 738q^{22} + 1632q^{25} + 342q^{28} - 2536q^{34} + 3200q^{37} - 2854q^{40} + 36q^{46} - 896q^{49} + 2288q^{52} + 2492q^{58} - 2752q^{61} + 682q^{64} - 14166q^{70} + 8240q^{73} - 33084q^{76} + 68q^{82} + 8800q^{85} + 48294q^{88} + 52596q^{94} - 6928q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.36416 + 2.16389i 0.841040 + 0.540973i
\(3\) 0 0
\(4\) 6.63513 + 14.5594i 0.414696 + 0.909960i
\(5\) −43.0579 −1.72231 −0.861157 0.508339i \(-0.830260\pi\)
−0.861157 + 0.508339i \(0.830260\pi\)
\(6\) 0 0
\(7\) 14.1139i 0.288038i 0.989575 + 0.144019i \(0.0460027\pi\)
−0.989575 + 0.144019i \(0.953997\pi\)
\(8\) −9.18328 + 63.3377i −0.143489 + 0.989652i
\(9\) 0 0
\(10\) −144.853 93.1726i −1.44853 0.931726i
\(11\) 209.481i 1.73125i −0.500691 0.865626i \(-0.666921\pi\)
0.500691 0.865626i \(-0.333079\pi\)
\(12\) 0 0
\(13\) −195.703 −1.15801 −0.579003 0.815326i \(-0.696558\pi\)
−0.579003 + 0.815326i \(0.696558\pi\)
\(14\) −30.5409 + 47.4813i −0.155821 + 0.242252i
\(15\) 0 0
\(16\) −167.950 + 193.207i −0.656055 + 0.754713i
\(17\) −303.688 −1.05082 −0.525412 0.850848i \(-0.676089\pi\)
−0.525412 + 0.850848i \(0.676089\pi\)
\(18\) 0 0
\(19\) 274.792i 0.761196i 0.924741 + 0.380598i \(0.124282\pi\)
−0.924741 + 0.380598i \(0.875718\pi\)
\(20\) −285.694 626.895i −0.714236 1.56724i
\(21\) 0 0
\(22\) 453.296 704.729i 0.936561 1.45605i
\(23\) 466.347i 0.881563i 0.897614 + 0.440782i \(0.145299\pi\)
−0.897614 + 0.440782i \(0.854701\pi\)
\(24\) 0 0
\(25\) 1228.98 1.96637
\(26\) −658.376 423.480i −0.973928 0.626450i
\(27\) 0 0
\(28\) −205.489 + 93.6473i −0.262103 + 0.119448i
\(29\) −439.835 −0.522990 −0.261495 0.965205i \(-0.584216\pi\)
−0.261495 + 0.965205i \(0.584216\pi\)
\(30\) 0 0
\(31\) 1220.96i 1.27051i 0.772304 + 0.635253i \(0.219104\pi\)
−0.772304 + 0.635253i \(0.780896\pi\)
\(32\) −983.089 + 286.551i −0.960048 + 0.279835i
\(33\) 0 0
\(34\) −1021.65 657.148i −0.883784 0.568467i
\(35\) 607.713i 0.496092i
\(36\) 0 0
\(37\) 624.147 0.455914 0.227957 0.973671i \(-0.426795\pi\)
0.227957 + 0.973671i \(0.426795\pi\)
\(38\) −594.620 + 924.443i −0.411787 + 0.640196i
\(39\) 0 0
\(40\) 395.412 2727.19i 0.247133 1.70449i
\(41\) −203.592 −0.121114 −0.0605568 0.998165i \(-0.519288\pi\)
−0.0605568 + 0.998165i \(0.519288\pi\)
\(42\) 0 0
\(43\) 419.418i 0.226835i 0.993547 + 0.113418i \(0.0361798\pi\)
−0.993547 + 0.113418i \(0.963820\pi\)
\(44\) 3049.92 1389.94i 1.57537 0.717943i
\(45\) 0 0
\(46\) −1009.12 + 1568.86i −0.476902 + 0.741430i
\(47\) 1995.53i 0.903364i −0.892179 0.451682i \(-0.850824\pi\)
0.892179 0.451682i \(-0.149176\pi\)
\(48\) 0 0
\(49\) 2201.80 0.917034
\(50\) 4134.48 + 2659.38i 1.65379 + 1.06375i
\(51\) 0 0
\(52\) −1298.51 2849.31i −0.480220 1.05374i
\(53\) −206.451 −0.0734962 −0.0367481 0.999325i \(-0.511700\pi\)
−0.0367481 + 0.999325i \(0.511700\pi\)
\(54\) 0 0
\(55\) 9019.82i 2.98176i
\(56\) −893.940 129.612i −0.285057 0.0413302i
\(57\) 0 0
\(58\) −1479.67 951.756i −0.439856 0.282924i
\(59\) 2321.87i 0.667011i 0.942748 + 0.333505i \(0.108232\pi\)
−0.942748 + 0.333505i \(0.891768\pi\)
\(60\) 0 0
\(61\) −1392.10 −0.374120 −0.187060 0.982349i \(-0.559896\pi\)
−0.187060 + 0.982349i \(0.559896\pi\)
\(62\) −2642.02 + 4107.49i −0.687310 + 1.06855i
\(63\) 0 0
\(64\) −3927.33 1163.30i −0.958822 0.284008i
\(65\) 8426.55 1.99445
\(66\) 0 0
\(67\) 7348.27i 1.63695i −0.574542 0.818475i \(-0.694820\pi\)
0.574542 0.818475i \(-0.305180\pi\)
\(68\) −2015.01 4421.50i −0.435772 0.956207i
\(69\) 0 0
\(70\) 1315.03 2044.44i 0.268373 0.417233i
\(71\) 8546.65i 1.69543i 0.530453 + 0.847714i \(0.322022\pi\)
−0.530453 + 0.847714i \(0.677978\pi\)
\(72\) 0 0
\(73\) −3245.43 −0.609012 −0.304506 0.952510i \(-0.598491\pi\)
−0.304506 + 0.952510i \(0.598491\pi\)
\(74\) 2099.73 + 1350.59i 0.383442 + 0.246638i
\(75\) 0 0
\(76\) −4000.79 + 1823.28i −0.692658 + 0.315665i
\(77\) 2956.59 0.498667
\(78\) 0 0
\(79\) 6157.41i 0.986606i 0.869858 + 0.493303i \(0.164211\pi\)
−0.869858 + 0.493303i \(0.835789\pi\)
\(80\) 7231.57 8319.06i 1.12993 1.29985i
\(81\) 0 0
\(82\) −684.915 440.551i −0.101861 0.0655192i
\(83\) 213.990i 0.0310626i −0.999879 0.0155313i \(-0.995056\pi\)
0.999879 0.0155313i \(-0.00494397\pi\)
\(84\) 0 0
\(85\) 13076.2 1.80985
\(86\) −907.576 + 1410.99i −0.122712 + 0.190777i
\(87\) 0 0
\(88\) 13268.1 + 1923.73i 1.71334 + 0.248415i
\(89\) −8439.35 −1.06544 −0.532720 0.846292i \(-0.678830\pi\)
−0.532720 + 0.846292i \(0.678830\pi\)
\(90\) 0 0
\(91\) 2762.12i 0.333550i
\(92\) −6789.71 + 3094.27i −0.802187 + 0.365580i
\(93\) 0 0
\(94\) 4318.11 6713.28i 0.488696 0.759765i
\(95\) 11831.9i 1.31102i
\(96\) 0 0
\(97\) −1022.49 −0.108672 −0.0543358 0.998523i \(-0.517304\pi\)
−0.0543358 + 0.998523i \(0.517304\pi\)
\(98\) 7407.20 + 4764.46i 0.771262 + 0.496091i
\(99\) 0 0
\(100\) 8154.44 + 17893.2i 0.815444 + 1.78932i
\(101\) 2374.52 0.232773 0.116387 0.993204i \(-0.462869\pi\)
0.116387 + 0.993204i \(0.462869\pi\)
\(102\) 0 0
\(103\) 8481.02i 0.799418i −0.916642 0.399709i \(-0.869111\pi\)
0.916642 0.399709i \(-0.130889\pi\)
\(104\) 1797.19 12395.4i 0.166161 1.14602i
\(105\) 0 0
\(106\) −694.533 446.738i −0.0618132 0.0397595i
\(107\) 9579.93i 0.836748i −0.908275 0.418374i \(-0.862600\pi\)
0.908275 0.418374i \(-0.137400\pi\)
\(108\) 0 0
\(109\) −11549.9 −0.972130 −0.486065 0.873923i \(-0.661568\pi\)
−0.486065 + 0.873923i \(0.661568\pi\)
\(110\) −19517.9 + 30344.1i −1.61305 + 2.50778i
\(111\) 0 0
\(112\) −2726.89 2370.43i −0.217386 0.188969i
\(113\) −21853.8 −1.71147 −0.855735 0.517414i \(-0.826895\pi\)
−0.855735 + 0.517414i \(0.826895\pi\)
\(114\) 0 0
\(115\) 20079.9i 1.51833i
\(116\) −2918.36 6403.71i −0.216882 0.475900i
\(117\) 0 0
\(118\) −5024.27 + 7811.12i −0.360835 + 0.560983i
\(119\) 4286.21i 0.302677i
\(120\) 0 0
\(121\) −29241.5 −1.99723
\(122\) −4683.25 3012.36i −0.314650 0.202389i
\(123\) 0 0
\(124\) −17776.4 + 8101.21i −1.15611 + 0.526874i
\(125\) −26006.0 −1.66439
\(126\) 0 0
\(127\) 7358.63i 0.456236i −0.973634 0.228118i \(-0.926743\pi\)
0.973634 0.228118i \(-0.0732572\pi\)
\(128\) −10694.9 12411.8i −0.652767 0.757559i
\(129\) 0 0
\(130\) 28348.2 + 18234.2i 1.67741 + 1.07894i
\(131\) 8567.97i 0.499270i 0.968340 + 0.249635i \(0.0803106\pi\)
−0.968340 + 0.249635i \(0.919689\pi\)
\(132\) 0 0
\(133\) −3878.37 −0.219253
\(134\) 15900.9 24720.7i 0.885546 1.37674i
\(135\) 0 0
\(136\) 2788.85 19234.9i 0.150781 1.03995i
\(137\) 33585.2 1.78940 0.894699 0.446669i \(-0.147390\pi\)
0.894699 + 0.446669i \(0.147390\pi\)
\(138\) 0 0
\(139\) 8638.51i 0.447104i 0.974692 + 0.223552i \(0.0717653\pi\)
−0.974692 + 0.223552i \(0.928235\pi\)
\(140\) 8847.91 4032.25i 0.451424 0.205727i
\(141\) 0 0
\(142\) −18494.1 + 28752.3i −0.917182 + 1.42592i
\(143\) 40996.1i 2.00480i
\(144\) 0 0
\(145\) 18938.3 0.900754
\(146\) −10918.1 7022.75i −0.512203 0.329459i
\(147\) 0 0
\(148\) 4141.29 + 9087.18i 0.189066 + 0.414864i
\(149\) 24096.5 1.08538 0.542689 0.839934i \(-0.317406\pi\)
0.542689 + 0.839934i \(0.317406\pi\)
\(150\) 0 0
\(151\) 26512.7i 1.16279i −0.813623 0.581393i \(-0.802508\pi\)
0.813623 0.581393i \(-0.197492\pi\)
\(152\) −17404.7 2523.49i −0.753319 0.109223i
\(153\) 0 0
\(154\) 9946.45 + 6397.75i 0.419398 + 0.269765i
\(155\) 52571.8i 2.18821i
\(156\) 0 0
\(157\) −33191.1 −1.34655 −0.673274 0.739393i \(-0.735113\pi\)
−0.673274 + 0.739393i \(0.735113\pi\)
\(158\) −13324.0 + 20714.5i −0.533727 + 0.829775i
\(159\) 0 0
\(160\) 42329.7 12338.3i 1.65350 0.481964i
\(161\) −6581.96 −0.253924
\(162\) 0 0
\(163\) 22135.9i 0.833146i −0.909102 0.416573i \(-0.863231\pi\)
0.909102 0.416573i \(-0.136769\pi\)
\(164\) −1350.86 2964.17i −0.0502252 0.110208i
\(165\) 0 0
\(166\) 463.052 719.897i 0.0168040 0.0261249i
\(167\) 31233.9i 1.11993i 0.828515 + 0.559967i \(0.189186\pi\)
−0.828515 + 0.559967i \(0.810814\pi\)
\(168\) 0 0
\(169\) 9738.62 0.340976
\(170\) 43990.3 + 28295.4i 1.52215 + 0.979080i
\(171\) 0 0
\(172\) −6106.46 + 2782.89i −0.206411 + 0.0940675i
\(173\) 19702.2 0.658298 0.329149 0.944278i \(-0.393238\pi\)
0.329149 + 0.944278i \(0.393238\pi\)
\(174\) 0 0
\(175\) 17345.6i 0.566388i
\(176\) 40473.2 + 35182.4i 1.30660 + 1.13580i
\(177\) 0 0
\(178\) −28391.3 18261.9i −0.896077 0.576375i
\(179\) 931.868i 0.0290836i −0.999894 0.0145418i \(-0.995371\pi\)
0.999894 0.0145418i \(-0.00462896\pi\)
\(180\) 0 0
\(181\) 8201.99 0.250358 0.125179 0.992134i \(-0.460049\pi\)
0.125179 + 0.992134i \(0.460049\pi\)
\(182\) 5976.94 9292.23i 0.180441 0.280529i
\(183\) 0 0
\(184\) −29537.3 4282.59i −0.872441 0.126494i
\(185\) −26874.4 −0.785228
\(186\) 0 0
\(187\) 63617.0i 1.81924i
\(188\) 29053.6 13240.6i 0.822025 0.374621i
\(189\) 0 0
\(190\) 25603.1 39804.5i 0.709226 1.10262i
\(191\) 3283.65i 0.0900099i −0.998987 0.0450049i \(-0.985670\pi\)
0.998987 0.0450049i \(-0.0143304\pi\)
\(192\) 0 0
\(193\) 70666.2 1.89713 0.948565 0.316583i \(-0.102536\pi\)
0.948565 + 0.316583i \(0.102536\pi\)
\(194\) −3439.82 2212.56i −0.0913971 0.0587884i
\(195\) 0 0
\(196\) 14609.2 + 32056.8i 0.380290 + 0.834464i
\(197\) −14865.2 −0.383034 −0.191517 0.981489i \(-0.561341\pi\)
−0.191517 + 0.981489i \(0.561341\pi\)
\(198\) 0 0
\(199\) 63878.1i 1.61304i −0.591205 0.806521i \(-0.701348\pi\)
0.591205 0.806521i \(-0.298652\pi\)
\(200\) −11286.1 + 77840.7i −0.282151 + 1.94602i
\(201\) 0 0
\(202\) 7988.26 + 5138.21i 0.195771 + 0.125924i
\(203\) 6207.77i 0.150641i
\(204\) 0 0
\(205\) 8766.23 0.208596
\(206\) 18352.0 28531.5i 0.432464 0.672342i
\(207\) 0 0
\(208\) 32868.3 37811.1i 0.759715 0.873962i
\(209\) 57563.8 1.31782
\(210\) 0 0
\(211\) 66608.9i 1.49612i 0.663629 + 0.748062i \(0.269015\pi\)
−0.663629 + 0.748062i \(0.730985\pi\)
\(212\) −1369.83 3005.79i −0.0304786 0.0668786i
\(213\) 0 0
\(214\) 20729.9 32228.4i 0.452658 0.703738i
\(215\) 18059.2i 0.390681i
\(216\) 0 0
\(217\) −17232.4 −0.365954
\(218\) −38855.6 24992.7i −0.817600 0.525896i
\(219\) 0 0
\(220\) −131323. + 59847.7i −2.71328 + 1.23652i
\(221\) 59432.6 1.21686
\(222\) 0 0
\(223\) 48074.2i 0.966723i 0.875421 + 0.483361i \(0.160584\pi\)
−0.875421 + 0.483361i \(0.839416\pi\)
\(224\) −4044.35 13875.2i −0.0806032 0.276530i
\(225\) 0 0
\(226\) −73519.5 47289.2i −1.43941 0.925860i
\(227\) 18940.2i 0.367564i 0.982967 + 0.183782i \(0.0588341\pi\)
−0.982967 + 0.183782i \(0.941166\pi\)
\(228\) 0 0
\(229\) 349.738 0.00666917 0.00333458 0.999994i \(-0.498939\pi\)
0.00333458 + 0.999994i \(0.498939\pi\)
\(230\) 43450.8 67552.0i 0.821375 1.27697i
\(231\) 0 0
\(232\) 4039.13 27858.1i 0.0750432 0.517578i
\(233\) 7529.14 0.138686 0.0693432 0.997593i \(-0.477910\pi\)
0.0693432 + 0.997593i \(0.477910\pi\)
\(234\) 0 0
\(235\) 85923.3i 1.55588i
\(236\) −33804.9 + 15405.9i −0.606953 + 0.276607i
\(237\) 0 0
\(238\) 9274.91 14419.5i 0.163740 0.254564i
\(239\) 53394.8i 0.934766i 0.884055 + 0.467383i \(0.154803\pi\)
−0.884055 + 0.467383i \(0.845197\pi\)
\(240\) 0 0
\(241\) −88157.7 −1.51784 −0.758920 0.651184i \(-0.774273\pi\)
−0.758920 + 0.651184i \(0.774273\pi\)
\(242\) −98373.0 63275.5i −1.67975 1.08045i
\(243\) 0 0
\(244\) −9236.76 20268.1i −0.155146 0.340434i
\(245\) −94804.7 −1.57942
\(246\) 0 0
\(247\) 53777.5i 0.881469i
\(248\) −77332.6 11212.4i −1.25736 0.182303i
\(249\) 0 0
\(250\) −87488.4 56274.3i −1.39982 0.900389i
\(251\) 23284.3i 0.369587i 0.982777 + 0.184793i \(0.0591616\pi\)
−0.982777 + 0.184793i \(0.940838\pi\)
\(252\) 0 0
\(253\) 97691.0 1.52621
\(254\) 15923.3 24755.6i 0.246811 0.383712i
\(255\) 0 0
\(256\) −9121.53 64898.1i −0.139183 0.990267i
\(257\) −118409. −1.79274 −0.896369 0.443308i \(-0.853805\pi\)
−0.896369 + 0.443308i \(0.853805\pi\)
\(258\) 0 0
\(259\) 8809.12i 0.131321i
\(260\) 55911.2 + 122685.i 0.827089 + 1.81487i
\(261\) 0 0
\(262\) −18540.2 + 28824.0i −0.270092 + 0.419906i
\(263\) 44424.6i 0.642262i 0.947035 + 0.321131i \(0.104063\pi\)
−0.947035 + 0.321131i \(0.895937\pi\)
\(264\) 0 0
\(265\) 8889.33 0.126584
\(266\) −13047.5 8392.39i −0.184401 0.118610i
\(267\) 0 0
\(268\) 106986. 48756.7i 1.48956 0.678836i
\(269\) −55818.5 −0.771390 −0.385695 0.922626i \(-0.626038\pi\)
−0.385695 + 0.922626i \(0.626038\pi\)
\(270\) 0 0
\(271\) 98301.7i 1.33851i 0.743032 + 0.669256i \(0.233387\pi\)
−0.743032 + 0.669256i \(0.766613\pi\)
\(272\) 51004.4 58674.5i 0.689398 0.793070i
\(273\) 0 0
\(274\) 112986. + 72674.8i 1.50496 + 0.968017i
\(275\) 257448.i 3.40428i
\(276\) 0 0
\(277\) 111306. 1.45063 0.725317 0.688415i \(-0.241693\pi\)
0.725317 + 0.688415i \(0.241693\pi\)
\(278\) −18692.8 + 29061.3i −0.241872 + 0.376033i
\(279\) 0 0
\(280\) 38491.2 + 5580.80i 0.490959 + 0.0711836i
\(281\) 24996.7 0.316571 0.158285 0.987393i \(-0.449403\pi\)
0.158285 + 0.987393i \(0.449403\pi\)
\(282\) 0 0
\(283\) 30559.7i 0.381571i 0.981632 + 0.190786i \(0.0611035\pi\)
−0.981632 + 0.190786i \(0.938896\pi\)
\(284\) −124434. + 56708.2i −1.54277 + 0.703087i
\(285\) 0 0
\(286\) −88711.3 + 137917.i −1.08454 + 1.68612i
\(287\) 2873.47i 0.0348853i
\(288\) 0 0
\(289\) 8705.37 0.104230
\(290\) 63711.6 + 40980.6i 0.757570 + 0.487284i
\(291\) 0 0
\(292\) −21533.8 47251.3i −0.252555 0.554177i
\(293\) 49225.1 0.573392 0.286696 0.958022i \(-0.407443\pi\)
0.286696 + 0.958022i \(0.407443\pi\)
\(294\) 0 0
\(295\) 99974.5i 1.14880i
\(296\) −5731.71 + 39532.0i −0.0654186 + 0.451197i
\(297\) 0 0
\(298\) 81064.4 + 52142.2i 0.912846 + 0.587160i
\(299\) 91265.4i 1.02085i
\(300\) 0 0
\(301\) −5919.61 −0.0653372
\(302\) 57370.7 89192.9i 0.629037 0.977950i
\(303\) 0 0
\(304\) −53091.5 46151.3i −0.574484 0.499386i
\(305\) 59940.8 0.644352
\(306\) 0 0
\(307\) 143871.i 1.52650i −0.646105 0.763249i \(-0.723603\pi\)
0.646105 0.763249i \(-0.276397\pi\)
\(308\) 19617.4 + 43046.1i 0.206795 + 0.453767i
\(309\) 0 0
\(310\) 113760. 176860.i 1.18376 1.84037i
\(311\) 144670.i 1.49575i 0.663842 + 0.747873i \(0.268925\pi\)
−0.663842 + 0.747873i \(0.731075\pi\)
\(312\) 0 0
\(313\) 80345.4 0.820111 0.410055 0.912061i \(-0.365509\pi\)
0.410055 + 0.912061i \(0.365509\pi\)
\(314\) −111660. 71821.9i −1.13250 0.728447i
\(315\) 0 0
\(316\) −89647.9 + 40855.2i −0.897772 + 0.409141i
\(317\) −144593. −1.43889 −0.719445 0.694549i \(-0.755604\pi\)
−0.719445 + 0.694549i \(0.755604\pi\)
\(318\) 0 0
\(319\) 92137.2i 0.905428i
\(320\) 169103. + 50089.0i 1.65139 + 0.489151i
\(321\) 0 0
\(322\) −22142.8 14242.7i −0.213560 0.137366i
\(323\) 83450.9i 0.799882i
\(324\) 0 0
\(325\) −240515. −2.27706
\(326\) 47899.6 74468.5i 0.450710 0.700709i
\(327\) 0 0
\(328\) 1869.64 12895.0i 0.0173784 0.119860i
\(329\) 28164.7 0.260203
\(330\) 0 0
\(331\) 89506.7i 0.816957i −0.912768 0.408479i \(-0.866059\pi\)
0.912768 0.408479i \(-0.133941\pi\)
\(332\) 3115.56 1419.85i 0.0282657 0.0128815i
\(333\) 0 0
\(334\) −67586.8 + 105076.i −0.605855 + 0.941910i
\(335\) 316401.i 2.81934i
\(336\) 0 0
\(337\) −134427. −1.18366 −0.591830 0.806062i \(-0.701595\pi\)
−0.591830 + 0.806062i \(0.701595\pi\)
\(338\) 32762.3 + 21073.3i 0.286775 + 0.184459i
\(339\) 0 0
\(340\) 86762.0 + 190380.i 0.750536 + 1.64689i
\(341\) 255768. 2.19957
\(342\) 0 0
\(343\) 64963.3i 0.552179i
\(344\) −26565.0 3851.63i −0.224488 0.0325483i
\(345\) 0 0
\(346\) 66281.3 + 42633.4i 0.553654 + 0.356121i
\(347\) 73087.9i 0.606997i 0.952832 + 0.303499i \(0.0981547\pi\)
−0.952832 + 0.303499i \(0.901845\pi\)
\(348\) 0 0
\(349\) −54237.0 −0.445292 −0.222646 0.974899i \(-0.571469\pi\)
−0.222646 + 0.974899i \(0.571469\pi\)
\(350\) −37534.1 + 58353.5i −0.306401 + 0.476355i
\(351\) 0 0
\(352\) 60027.2 + 205939.i 0.484465 + 1.66208i
\(353\) 29031.6 0.232982 0.116491 0.993192i \(-0.462835\pi\)
0.116491 + 0.993192i \(0.462835\pi\)
\(354\) 0 0
\(355\) 368001.i 2.92006i
\(356\) −55996.2 122872.i −0.441833 0.969508i
\(357\) 0 0
\(358\) 2016.46 3134.95i 0.0157335 0.0244605i
\(359\) 9197.54i 0.0713646i 0.999363 + 0.0356823i \(0.0113604\pi\)
−0.999363 + 0.0356823i \(0.988640\pi\)
\(360\) 0 0
\(361\) 54810.5 0.420581
\(362\) 27592.8 + 17748.2i 0.210561 + 0.135437i
\(363\) 0 0
\(364\) 40214.8 18327.1i 0.303517 0.138322i
\(365\) 139741. 1.04891
\(366\) 0 0
\(367\) 96131.3i 0.713728i 0.934156 + 0.356864i \(0.116154\pi\)
−0.934156 + 0.356864i \(0.883846\pi\)
\(368\) −90101.3 78323.0i −0.665327 0.578354i
\(369\) 0 0
\(370\) −90409.8 58153.4i −0.660408 0.424787i
\(371\) 2913.82i 0.0211697i
\(372\) 0 0
\(373\) −27728.8 −0.199303 −0.0996513 0.995022i \(-0.531773\pi\)
−0.0996513 + 0.995022i \(0.531773\pi\)
\(374\) −137660. + 214018.i −0.984160 + 1.53005i
\(375\) 0 0
\(376\) 126392. + 18325.5i 0.894016 + 0.129623i
\(377\) 86076.9 0.605626
\(378\) 0 0
\(379\) 101903.i 0.709432i 0.934974 + 0.354716i \(0.115422\pi\)
−0.934974 + 0.354716i \(0.884578\pi\)
\(380\) 172266. 78506.5i 1.19297 0.543674i
\(381\) 0 0
\(382\) 7105.47 11046.7i 0.0486930 0.0757019i
\(383\) 6261.76i 0.0426873i −0.999772 0.0213437i \(-0.993206\pi\)
0.999772 0.0213437i \(-0.00679442\pi\)
\(384\) 0 0
\(385\) −127305. −0.858860
\(386\) 237732. + 152914.i 1.59556 + 1.02630i
\(387\) 0 0
\(388\) −6784.36 14886.8i −0.0450656 0.0988867i
\(389\) −147789. −0.976658 −0.488329 0.872660i \(-0.662393\pi\)
−0.488329 + 0.872660i \(0.662393\pi\)
\(390\) 0 0
\(391\) 141624.i 0.926367i
\(392\) −20219.7 + 139457.i −0.131584 + 0.907545i
\(393\) 0 0
\(394\) −50008.8 32166.6i −0.322147 0.207211i
\(395\) 265125.i 1.69924i
\(396\) 0 0
\(397\) −142937. −0.906912 −0.453456 0.891279i \(-0.649809\pi\)
−0.453456 + 0.891279i \(0.649809\pi\)
\(398\) 138225. 214896.i 0.872613 1.35663i
\(399\) 0 0
\(400\) −206407. + 237447.i −1.29004 + 1.48404i
\(401\) 18071.6 0.112385 0.0561923 0.998420i \(-0.482104\pi\)
0.0561923 + 0.998420i \(0.482104\pi\)
\(402\) 0 0
\(403\) 238945.i 1.47125i
\(404\) 15755.2 + 34571.5i 0.0965300 + 0.211814i
\(405\) 0 0
\(406\) 13433.0 20883.9i 0.0814928 0.126695i
\(407\) 130747.i 0.789303i
\(408\) 0 0
\(409\) 166751. 0.996831 0.498416 0.866938i \(-0.333915\pi\)
0.498416 + 0.866938i \(0.333915\pi\)
\(410\) 29491.0 + 18969.2i 0.175437 + 0.112845i
\(411\) 0 0
\(412\) 123478. 56272.7i 0.727438 0.331515i
\(413\) −32770.5 −0.192125
\(414\) 0 0
\(415\) 9213.96i 0.0534996i
\(416\) 192393. 56078.9i 1.11174 0.324051i
\(417\) 0 0
\(418\) 193654. + 124562.i 1.10834 + 0.712906i
\(419\) 24068.3i 0.137094i 0.997648 + 0.0685469i \(0.0218363\pi\)
−0.997648 + 0.0685469i \(0.978164\pi\)
\(420\) 0 0
\(421\) −113463. −0.640162 −0.320081 0.947390i \(-0.603710\pi\)
−0.320081 + 0.947390i \(0.603710\pi\)
\(422\) −144135. + 224083.i −0.809363 + 1.25830i
\(423\) 0 0
\(424\) 1895.90 13076.1i 0.0105459 0.0727357i
\(425\) −373226. −2.06630
\(426\) 0 0
\(427\) 19647.9i 0.107761i
\(428\) 139478. 63564.1i 0.761407 0.346996i
\(429\) 0 0
\(430\) 39078.3 60754.2i 0.211348 0.328579i
\(431\) 154439.i 0.831388i 0.909505 + 0.415694i \(0.136461\pi\)
−0.909505 + 0.415694i \(0.863539\pi\)
\(432\) 0 0
\(433\) 124462. 0.663836 0.331918 0.943308i \(-0.392304\pi\)
0.331918 + 0.943308i \(0.392304\pi\)
\(434\) −57972.6 37289.1i −0.307782 0.197972i
\(435\) 0 0
\(436\) −76634.9 168159.i −0.403138 0.884600i
\(437\) −128148. −0.671042
\(438\) 0 0
\(439\) 100585.i 0.521921i 0.965349 + 0.260960i \(0.0840392\pi\)
−0.965349 + 0.260960i \(0.915961\pi\)
\(440\) −571295. 82831.5i −2.95090 0.427849i
\(441\) 0 0
\(442\) 199941. + 128606.i 1.02343 + 0.658288i
\(443\) 195614.i 0.996764i −0.866957 0.498382i \(-0.833928\pi\)
0.866957 0.498382i \(-0.166072\pi\)
\(444\) 0 0
\(445\) 363380. 1.83502
\(446\) −104027. + 161729.i −0.522971 + 0.813052i
\(447\) 0 0
\(448\) 16418.6 55429.9i 0.0818051 0.276177i
\(449\) −47139.5 −0.233826 −0.116913 0.993142i \(-0.537300\pi\)
−0.116913 + 0.993142i \(0.537300\pi\)
\(450\) 0 0
\(451\) 42648.7i 0.209678i
\(452\) −145003. 318177.i −0.709739 1.55737i
\(453\) 0 0
\(454\) −40984.6 + 63717.9i −0.198842 + 0.309136i
\(455\) 118931.i 0.574477i
\(456\) 0 0
\(457\) −44420.0 −0.212690 −0.106345 0.994329i \(-0.533915\pi\)
−0.106345 + 0.994329i \(0.533915\pi\)
\(458\) 1176.57 + 756.796i 0.00560904 + 0.00360784i
\(459\) 0 0
\(460\) 292350. 133233.i 1.38162 0.629644i
\(461\) 189396. 0.891187 0.445594 0.895235i \(-0.352993\pi\)
0.445594 + 0.895235i \(0.352993\pi\)
\(462\) 0 0
\(463\) 146188.i 0.681944i 0.940073 + 0.340972i \(0.110756\pi\)
−0.940073 + 0.340972i \(0.889244\pi\)
\(464\) 73870.3 84979.0i 0.343110 0.394708i
\(465\) 0 0
\(466\) 25329.2 + 16292.3i 0.116641 + 0.0750256i
\(467\) 145806.i 0.668563i −0.942473 0.334281i \(-0.891506\pi\)
0.942473 0.334281i \(-0.108494\pi\)
\(468\) 0 0
\(469\) 103712. 0.471504
\(470\) −185929. + 289059.i −0.841687 + 1.30855i
\(471\) 0 0
\(472\) −147062. 21322.3i −0.660109 0.0957086i
\(473\) 87860.3 0.392709
\(474\) 0 0
\(475\) 337713.i 1.49679i
\(476\) 62404.5 28439.6i 0.275424 0.125519i
\(477\) 0 0
\(478\) −115541. + 179629.i −0.505684 + 0.786175i
\(479\) 366733.i 1.59838i 0.601081 + 0.799188i \(0.294737\pi\)
−0.601081 + 0.799188i \(0.705263\pi\)
\(480\) 0 0
\(481\) −122147. −0.527951
\(482\) −296576. 190764.i −1.27656 0.821111i
\(483\) 0 0
\(484\) −194021. 425737.i −0.828244 1.81740i
\(485\) 44026.2 0.187166
\(486\) 0 0
\(487\) 202033.i 0.851851i −0.904758 0.425926i \(-0.859949\pi\)
0.904758 0.425926i \(-0.140051\pi\)
\(488\) 12784.0 88172.4i 0.0536820 0.370248i
\(489\) 0 0
\(490\) −318938. 205147.i −1.32836 0.854425i
\(491\) 229449.i 0.951750i −0.879513 0.475875i \(-0.842131\pi\)
0.879513 0.475875i \(-0.157869\pi\)
\(492\) 0 0
\(493\) 133573. 0.549570
\(494\) 116369. 180916.i 0.476851 0.741350i
\(495\) 0 0
\(496\) −235897. 205060.i −0.958868 0.833523i
\(497\) −120626. −0.488348
\(498\) 0 0
\(499\) 353378.i 1.41918i 0.704613 + 0.709592i \(0.251121\pi\)
−0.704613 + 0.709592i \(0.748879\pi\)
\(500\) −172553. 378631.i −0.690214 1.51453i
\(501\) 0 0
\(502\) −50384.8 + 78332.2i −0.199937 + 0.310837i
\(503\) 173765.i 0.686793i 0.939190 + 0.343397i \(0.111578\pi\)
−0.939190 + 0.343397i \(0.888422\pi\)
\(504\) 0 0
\(505\) −102242. −0.400908
\(506\) 328648. + 211393.i 1.28360 + 0.825638i
\(507\) 0 0
\(508\) 107137. 48825.4i 0.415156 0.189199i
\(509\) −427247. −1.64909 −0.824543 0.565800i \(-0.808568\pi\)
−0.824543 + 0.565800i \(0.808568\pi\)
\(510\) 0 0
\(511\) 45805.5i 0.175419i
\(512\) 109746. 238066.i 0.418649 0.908148i
\(513\) 0 0
\(514\) −398345. 256224.i −1.50776 0.969824i
\(515\) 365175.i 1.37685i
\(516\) 0 0
\(517\) −418027. −1.56395
\(518\) −19062.0 + 29635.3i −0.0710410 + 0.110446i
\(519\) 0 0
\(520\) −77383.3 + 533718.i −0.286181 + 1.97381i
\(521\) 238355. 0.878111 0.439056 0.898460i \(-0.355313\pi\)
0.439056 + 0.898460i \(0.355313\pi\)
\(522\) 0 0
\(523\) 65331.4i 0.238846i −0.992843 0.119423i \(-0.961895\pi\)
0.992843 0.119423i \(-0.0381045\pi\)
\(524\) −124744. + 56849.6i −0.454315 + 0.207045i
\(525\) 0 0
\(526\) −96130.1 + 149451.i −0.347446 + 0.540168i
\(527\) 370790.i 1.33508i
\(528\) 0 0
\(529\) 62361.6 0.222847
\(530\) 29905.1 + 19235.6i 0.106462 + 0.0684783i
\(531\) 0 0
\(532\) −25733.5 56466.6i −0.0909234 0.199512i
\(533\) 39843.5 0.140250
\(534\) 0 0
\(535\) 412491.i 1.44114i
\(536\) 465423. + 67481.2i 1.62001 + 0.234884i
\(537\) 0 0
\(538\) −187782. 120785.i −0.648769 0.417301i
\(539\) 461236.i 1.58762i
\(540\) 0 0
\(541\) 343182. 1.17255 0.586273 0.810113i \(-0.300595\pi\)
0.586273 + 0.810113i \(0.300595\pi\)
\(542\) −212714. + 330703.i −0.724100 + 1.12574i
\(543\) 0 0
\(544\) 298552. 87022.2i 1.00884 0.294057i
\(545\) 497313. 1.67431
\(546\) 0 0
\(547\) 135514.i 0.452908i 0.974022 + 0.226454i \(0.0727133\pi\)
−0.974022 + 0.226454i \(0.927287\pi\)
\(548\) 222842. + 488979.i 0.742056 + 1.62828i
\(549\) 0 0
\(550\) 557091. 866097.i 1.84162 2.86313i
\(551\) 120863.i 0.398098i
\(552\) 0 0
\(553\) −86904.8 −0.284180
\(554\) 374450. + 240854.i 1.22004 + 0.784755i
\(555\) 0 0
\(556\) −125771. + 57317.6i −0.406847 + 0.185412i
\(557\) −64031.9 −0.206389 −0.103194 0.994661i \(-0.532906\pi\)
−0.103194 + 0.994661i \(0.532906\pi\)
\(558\) 0 0
\(559\) 82081.3i 0.262676i
\(560\) 117414. + 102065.i 0.374407 + 0.325464i
\(561\) 0 0
\(562\) 84093.0 + 54090.3i 0.266248 + 0.171256i
\(563\) 53438.7i 0.168593i −0.996441 0.0842964i \(-0.973136\pi\)
0.996441 0.0842964i \(-0.0268643\pi\)
\(564\) 0 0
\(565\) 940976. 2.94769
\(566\) −66127.9 + 102808.i −0.206420 + 0.320917i
\(567\) 0 0
\(568\) −541326. 78486.3i −1.67788 0.243275i
\(569\) −225959. −0.697919 −0.348960 0.937138i \(-0.613465\pi\)
−0.348960 + 0.937138i \(0.613465\pi\)
\(570\) 0 0
\(571\) 472292.i 1.44857i 0.689502 + 0.724284i \(0.257829\pi\)
−0.689502 + 0.724284i \(0.742171\pi\)
\(572\) −596878. + 272015.i −1.82429 + 0.831381i
\(573\) 0 0
\(574\) 6217.88 9666.80i 0.0188720 0.0293399i
\(575\) 573130.i 1.73348i
\(576\) 0 0
\(577\) 376338. 1.13038 0.565192 0.824959i \(-0.308802\pi\)
0.565192 + 0.824959i \(0.308802\pi\)
\(578\) 29286.2 + 18837.5i 0.0876613 + 0.0563855i
\(579\) 0 0
\(580\) 125658. + 275730.i 0.373539 + 0.819650i
\(581\) 3020.23 0.00894722
\(582\) 0 0
\(583\) 43247.6i 0.127240i
\(584\) 29803.6 205558.i 0.0873864 0.602710i
\(585\) 0 0
\(586\) 165601. + 106518.i 0.482245 + 0.310190i
\(587\) 282756.i 0.820608i −0.911949 0.410304i \(-0.865423\pi\)
0.911949 0.410304i \(-0.134577\pi\)
\(588\) 0 0
\(589\) −335509. −0.967104
\(590\) 216334. 336330.i 0.621472 0.966189i
\(591\) 0 0
\(592\) −104826. + 120589.i −0.299105 + 0.344085i
\(593\) −439919. −1.25102 −0.625508 0.780217i \(-0.715108\pi\)
−0.625508 + 0.780217i \(0.715108\pi\)
\(594\) 0 0
\(595\) 184555.i 0.521305i
\(596\) 159883. + 350829.i 0.450101 + 0.987651i
\(597\) 0 0
\(598\) 197489. 307031.i 0.552255 0.858579i
\(599\) 384400.i 1.07135i 0.844425 + 0.535673i \(0.179942\pi\)
−0.844425 + 0.535673i \(0.820058\pi\)
\(600\) 0 0
\(601\) −495470. −1.37173 −0.685864 0.727730i \(-0.740576\pi\)
−0.685864 + 0.727730i \(0.740576\pi\)
\(602\) −19914.5 12809.4i −0.0549512 0.0353457i
\(603\) 0 0
\(604\) 386008. 175915.i 1.05809 0.482203i
\(605\) 1.25908e6 3.43986
\(606\) 0 0
\(607\) 630975.i 1.71252i −0.516549 0.856258i \(-0.672784\pi\)
0.516549 0.856258i \(-0.327216\pi\)
\(608\) −78741.9 270145.i −0.213009 0.730784i
\(609\) 0 0
\(610\) 201651. + 129706.i 0.541926 + 0.348577i
\(611\) 390531.i 1.04610i
\(612\) 0 0
\(613\) −256888. −0.683634 −0.341817 0.939767i \(-0.611042\pi\)
−0.341817 + 0.939767i \(0.611042\pi\)
\(614\) 311321. 484004.i 0.825794 1.28384i
\(615\) 0 0
\(616\) −27151.2 + 187264.i −0.0715530 + 0.493506i
\(617\) 115496. 0.303387 0.151694 0.988428i \(-0.451527\pi\)
0.151694 + 0.988428i \(0.451527\pi\)
\(618\) 0 0
\(619\) 229059.i 0.597814i −0.954282 0.298907i \(-0.903378\pi\)
0.954282 0.298907i \(-0.0966221\pi\)
\(620\) 765412. 348821.i 1.99119 0.907442i
\(621\) 0 0
\(622\) −313051. + 486693.i −0.809159 + 1.25798i
\(623\) 119112.i 0.306887i
\(624\) 0 0
\(625\) 351652. 0.900230
\(626\) 270295. + 173859.i 0.689746 + 0.443658i
\(627\) 0 0
\(628\) −220227. 483241.i −0.558408 1.22531i
\(629\) −189546. −0.479085
\(630\) 0 0
\(631\) 481121.i 1.20836i −0.796849 0.604178i \(-0.793501\pi\)
0.796849 0.604178i \(-0.206499\pi\)
\(632\) −389996. 56545.2i −0.976396 0.141567i
\(633\) 0 0
\(634\) −486433. 312883.i −1.21016 0.778402i
\(635\) 316847.i 0.785781i
\(636\) 0 0
\(637\) −430898. −1.06193
\(638\) −199375. + 309964.i −0.489812 + 0.761501i
\(639\) 0 0
\(640\) 460501. + 534428.i 1.12427 + 1.30475i
\(641\) 476453. 1.15959 0.579794 0.814763i \(-0.303133\pi\)
0.579794 + 0.814763i \(0.303133\pi\)
\(642\) 0 0
\(643\) 416293.i 1.00688i 0.864030 + 0.503440i \(0.167932\pi\)
−0.864030 + 0.503440i \(0.832068\pi\)
\(644\) −43672.1 95829.1i −0.105301 0.231061i
\(645\) 0 0
\(646\) 180579. 280742.i 0.432715 0.672733i
\(647\) 18567.6i 0.0443554i 0.999754 + 0.0221777i \(0.00705996\pi\)
−0.999754 + 0.0221777i \(0.992940\pi\)
\(648\) 0 0
\(649\) 486388. 1.15476
\(650\) −809130. 520448.i −1.91510 1.23183i
\(651\) 0 0
\(652\) 322284. 146874.i 0.758130 0.345502i
\(653\) −462788. −1.08531 −0.542657 0.839954i \(-0.682582\pi\)
−0.542657 + 0.839954i \(0.682582\pi\)
\(654\) 0 0
\(655\) 368918.i 0.859899i
\(656\) 34193.3 39335.3i 0.0794571 0.0914059i
\(657\) 0 0
\(658\) 94750.4 + 60945.3i 0.218841 + 0.140763i
\(659\) 602985.i 1.38847i −0.719749 0.694234i \(-0.755743\pi\)
0.719749 0.694234i \(-0.244257\pi\)
\(660\) 0 0
\(661\) 412862. 0.944935 0.472468 0.881348i \(-0.343363\pi\)
0.472468 + 0.881348i \(0.343363\pi\)
\(662\) 193683. 301115.i 0.441952 0.687094i
\(663\) 0 0
\(664\) 13553.7 + 1965.13i 0.0307412 + 0.00445713i
\(665\) 166994. 0.377623
\(666\) 0 0
\(667\) 205116.i 0.461049i
\(668\) −454745. + 207241.i −1.01910 + 0.464432i
\(669\) 0 0
\(670\) −684657. + 1.06442e6i −1.52519 + 2.37118i
\(671\) 291619.i 0.647696i
\(672\) 0 0
\(673\) −372998. −0.823525 −0.411763 0.911291i \(-0.635087\pi\)
−0.411763 + 0.911291i \(0.635087\pi\)
\(674\) −452234. 290886.i −0.995506 0.640329i
\(675\) 0 0
\(676\) 64617.0 + 141788.i 0.141401 + 0.310275i
\(677\) −359783. −0.784989 −0.392494 0.919754i \(-0.628388\pi\)
−0.392494 + 0.919754i \(0.628388\pi\)
\(678\) 0 0
\(679\) 14431.3i 0.0313015i
\(680\) −120082. + 828214.i −0.259693 + 1.79112i
\(681\) 0 0
\(682\) 860444. + 553454.i 1.84992 + 1.18991i
\(683\) 107389.i 0.230206i 0.993354 + 0.115103i \(0.0367199\pi\)
−0.993354 + 0.115103i \(0.963280\pi\)
\(684\) 0 0
\(685\) −1.44611e6 −3.08191
\(686\) −140574. + 218547.i −0.298714 + 0.464404i
\(687\) 0 0
\(688\) −81034.3 70441.3i −0.171195 0.148816i
\(689\) 40403.0 0.0851090
\(690\) 0 0
\(691\) 617454.i 1.29315i 0.762851 + 0.646574i \(0.223799\pi\)
−0.762851 + 0.646574i \(0.776201\pi\)
\(692\) 130727. + 286851.i 0.272993 + 0.599025i
\(693\) 0 0
\(694\) −158154. + 245879.i −0.328369 + 0.510509i
\(695\) 371956.i 0.770054i
\(696\) 0 0
\(697\) 61828.4 0.127269
\(698\) −182462. 117363.i −0.374508 0.240891i
\(699\) 0 0
\(700\) −252542. + 115091.i −0.515391 + 0.234879i
\(701\) −486515. −0.990057 −0.495028 0.868877i \(-0.664842\pi\)
−0.495028 + 0.868877i \(0.664842\pi\)
\(702\) 0 0
\(703\) 171510.i 0.347040i
\(704\) −243689. + 822704.i −0.491689 + 1.65996i
\(705\) 0 0
\(706\) 97667.0 + 62821.3i 0.195947 + 0.126037i
\(707\) 33513.6i 0.0670475i
\(708\) 0 0
\(709\) −144205. −0.286872 −0.143436 0.989660i \(-0.545815\pi\)
−0.143436 + 0.989660i \(0.545815\pi\)
\(710\) 796314. 1.23801e6i 1.57967 2.45589i
\(711\) 0 0
\(712\) 77500.9 534529.i 0.152879 1.05441i
\(713\) −569390. −1.12003
\(714\) 0 0
\(715\) 1.76521e6i 3.45289i
\(716\) 13567.4 6183.06i 0.0264649 0.0120608i
\(717\) 0 0
\(718\) −19902.5 + 30942.0i −0.0386063 + 0.0600204i
\(719\) 978439.i 1.89268i −0.323179 0.946338i \(-0.604752\pi\)
0.323179 0.946338i \(-0.395248\pi\)
\(720\) 0 0
\(721\) 119700. 0.230263
\(722\) 184391. + 118604.i 0.353725 + 0.227523i
\(723\) 0 0
\(724\) 54421.3 + 119416.i 0.103822 + 0.227816i
\(725\) −540548. −1.02839
\(726\) 0 0
\(727\) 650971.i 1.23166i −0.787877 0.615832i \(-0.788820\pi\)
0.787877 0.615832i \(-0.211180\pi\)
\(728\) 174947. + 25365.4i 0.330098 + 0.0478606i
\(729\) 0 0
\(730\) 470111. + 302385.i 0.882175 + 0.567432i
\(731\) 127372.i 0.238364i
\(732\) 0 0
\(733\) −502166. −0.934629 −0.467315 0.884091i \(-0.654778\pi\)
−0.467315 + 0.884091i \(0.654778\pi\)
\(734\) −208018. + 323401.i −0.386108 + 0.600274i
\(735\) 0 0
\(736\) −133632. 458461.i −0.246692 0.846343i
\(737\) −1.53933e6 −2.83397
\(738\) 0 0
\(739\) 143898.i 0.263491i 0.991284 + 0.131745i \(0.0420581\pi\)
−0.991284 + 0.131745i \(0.957942\pi\)
\(740\) −178315. 391274.i −0.325631 0.714526i
\(741\) 0 0
\(742\) 6305.20 9802.55i 0.0114522 0.0178046i
\(743\) 639135.i 1.15775i −0.815416 0.578876i \(-0.803492\pi\)
0.815416 0.578876i \(-0.196508\pi\)
\(744\) 0 0
\(745\) −1.03754e6 −1.86936
\(746\) −93284.0 60002.1i −0.167621 0.107817i
\(747\) 0 0
\(748\) −926223. + 422107.i −1.65544 + 0.754431i
\(749\) 135210. 0.241015
\(750\) 0 0
\(751\) 494004.i 0.875892i −0.899001 0.437946i \(-0.855706\pi\)
0.899001 0.437946i \(-0.144294\pi\)
\(752\) 385549. + 335150.i 0.681780 + 0.592656i
\(753\) 0 0
\(754\) 289577. + 186261.i 0.509355 + 0.327627i
\(755\) 1.14158e6i 2.00268i
\(756\) 0 0
\(757\) −207090. −0.361382 −0.180691 0.983540i \(-0.557833\pi\)
−0.180691 + 0.983540i \(0.557833\pi\)
\(758\) −220508. + 342819.i −0.383784 + 0.596660i
\(759\) 0 0
\(760\) 749408. + 108656.i 1.29745 + 0.188116i
\(761\) 584487. 1.00927 0.504633 0.863334i \(-0.331628\pi\)
0.504633 + 0.863334i \(0.331628\pi\)
\(762\) 0 0
\(763\) 163013.i 0.280011i
\(764\) 47807.9 21787.4i 0.0819054 0.0373267i
\(765\) 0 0
\(766\) 13549.8 21065.6i 0.0230927 0.0359017i
\(767\) 454396.i 0.772402i
\(768\) 0 0
\(769\) 521698. 0.882200 0.441100 0.897458i \(-0.354588\pi\)
0.441100 + 0.897458i \(0.354588\pi\)
\(770\) −428273. 275474.i −0.722336 0.464621i
\(771\) 0 0
\(772\) 468879. + 1.02885e6i 0.786731 + 1.72631i
\(773\) 810366. 1.35620 0.678098 0.734971i \(-0.262804\pi\)
0.678098 + 0.734971i \(0.262804\pi\)
\(774\) 0 0
\(775\) 1.50053e6i 2.49828i
\(776\) 9389.81 64762.2i 0.0155931 0.107547i
\(777\) 0 0
\(778\) −497185. 319799.i −0.821408 0.528346i
\(779\) 55945.3i 0.0921911i
\(780\) 0 0
\(781\) 1.79037e6 2.93521
\(782\) 306459. 476445.i 0.501140 0.779111i
\(783\) 0 0
\(784\) −369792. + 425402.i −0.601625 + 0.692098i
\(785\) 1.42914e6 2.31918
\(786\) 0 0
\(787\) 380693.i 0.614646i −0.951605 0.307323i \(-0.900567\pi\)
0.951605 0.307323i