Properties

Label 108.4.l
Level 108
Weight 4
Character orbit l
Rep. character \(\chi_{108}(11,\cdot)\)
Character field \(\Q(\zeta_{18})\)
Dimension 312
Newform subspaces 1
Sturm bound 72
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 108.l (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 108 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(72\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(108, [\chi])\).

Total New Old
Modular forms 336 336 0
Cusp forms 312 312 0
Eisenstein series 24 24 0

Trace form

\( 312q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 9q^{8} - 12q^{9} + O(q^{10}) \) \( 312q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 9q^{8} - 12q^{9} - 3q^{10} - 123q^{12} - 12q^{13} + 69q^{14} - 6q^{16} - 18q^{17} + 351q^{18} + 225q^{20} - 12q^{21} - 6q^{22} - 300q^{24} - 12q^{25} - 12q^{28} - 96q^{29} - 207q^{30} - 696q^{32} + 858q^{33} - 30q^{34} - 1056q^{36} - 6q^{37} - 900q^{38} - 381q^{40} + 138q^{41} + 2574q^{42} + 2655q^{44} - 672q^{45} - 3q^{46} - 435q^{48} - 12q^{49} - 2829q^{50} + 1371q^{52} - 4458q^{54} - 2925q^{56} + 660q^{57} + 885q^{58} + 966q^{60} - 12q^{61} + 1872q^{62} - 3q^{64} - 708q^{65} + 3093q^{66} + 2211q^{68} - 1572q^{69} - 1011q^{70} - 4524q^{72} - 6q^{73} - 5883q^{74} - 198q^{76} - 996q^{77} - 2976q^{78} + 444q^{81} - 12q^{82} + 6324q^{84} - 762q^{85} + 8322q^{86} + 1530q^{88} + 4212q^{89} - 1104q^{90} - 3255q^{92} + 7404q^{93} + 2019q^{94} + 582q^{96} - 66q^{97} + 2898q^{98} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(108, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
108.4.l.a \(312\) \(6.372\) None \(-6\) \(0\) \(-12\) \(0\)

Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database