Properties

Label 108.4.h.a
Level 108
Weight 4
Character orbit 108.h
Analytic conductor 6.372
Analytic rank 0
Dimension 8
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) = \( 4 \)
Character orbit: \([\chi]\) = 108.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.37220628062\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.553553856144.1
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{7} q^{2} + ( 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + \beta_{6} ) q^{4} + ( -10 + \beta_{1} + \beta_{3} - 5 \beta_{4} + \beta_{6} ) q^{5} + ( -3 \beta_{1} - 5 \beta_{3} - 7 \beta_{5} + 3 \beta_{6} - 2 \beta_{7} ) q^{7} + ( -10 - 6 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} - 20 \beta_{4} - 2 \beta_{5} + 5 \beta_{6} + 3 \beta_{7} ) q^{8} +O(q^{10})\) \( q + \beta_{7} q^{2} + ( 2 \beta_{2} - 2 \beta_{3} - 2 \beta_{4} + \beta_{6} ) q^{4} + ( -10 + \beta_{1} + \beta_{3} - 5 \beta_{4} + \beta_{6} ) q^{5} + ( -3 \beta_{1} - 5 \beta_{3} - 7 \beta_{5} + 3 \beta_{6} - 2 \beta_{7} ) q^{7} + ( -10 - 6 \beta_{1} + 2 \beta_{2} - 2 \beta_{3} - 20 \beta_{4} - 2 \beta_{5} + 5 \beta_{6} + 3 \beta_{7} ) q^{8} + ( -10 + 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} - 2 \beta_{5} + 4 \beta_{6} - 6 \beta_{7} ) q^{10} + ( -\beta_{1} + 2 \beta_{2} - 10 \beta_{3} + \beta_{5} + \beta_{6} - 9 \beta_{7} ) q^{11} + ( -\beta_{1} + \beta_{3} - 55 \beta_{4} - \beta_{6} - 2 \beta_{7} ) q^{13} + ( 4 - 8 \beta_{1} - 10 \beta_{2} - 18 \beta_{3} + 2 \beta_{4} - 20 \beta_{5} + 2 \beta_{6} - 10 \beta_{7} ) q^{14} + ( 26 - 2 \beta_{1} - 8 \beta_{3} + 26 \beta_{4} - 14 \beta_{5} + 24 \beta_{6} + 5 \beta_{7} ) q^{16} + ( -30 - 13 \beta_{1} - 60 \beta_{4} - 13 \beta_{6} - 13 \beta_{7} ) q^{17} + ( 5 \beta_{1} + 30 \beta_{2} + 40 \beta_{3} + 30 \beta_{5} - 5 \beta_{6} + 35 \beta_{7} ) q^{19} + ( -20 + 12 \beta_{1} - 24 \beta_{2} + 16 \beta_{3} + 20 \beta_{4} - 12 \beta_{5} - 12 \beta_{6} - 18 \beta_{7} ) q^{20} + ( -4 \beta_{1} - 16 \beta_{2} + 20 \beta_{3} - 60 \beta_{4} - 7 \beta_{6} + 2 \beta_{7} ) q^{22} + ( 21 \beta_{1} + 5 \beta_{2} + 26 \beta_{3} + 10 \beta_{5} - 21 \beta_{6} + 5 \beta_{7} ) q^{23} + ( -30 - 22 \beta_{1} - 11 \beta_{3} - 30 \beta_{4} - 22 \beta_{6} - 11 \beta_{7} ) q^{25} + ( 10 - 2 \beta_{1} - 2 \beta_{2} + 2 \beta_{3} + 20 \beta_{4} + 2 \beta_{5} + 54 \beta_{6} + 56 \beta_{7} ) q^{26} + ( 60 + 4 \beta_{1} - 44 \beta_{2} - 36 \beta_{3} - 44 \beta_{5} - 14 \beta_{6} - 30 \beta_{7} ) q^{28} + ( 53 + 23 \beta_{3} - 53 \beta_{4} - 23 \beta_{7} ) q^{29} + ( -7 \beta_{1} + 43 \beta_{2} - 36 \beta_{3} + 7 \beta_{6} - 29 \beta_{7} ) q^{31} + ( -60 + 20 \beta_{1} - 38 \beta_{2} - 18 \beta_{3} - 30 \beta_{4} - 76 \beta_{5} - 31 \beta_{6} - 38 \beta_{7} ) q^{32} + ( 130 - 26 \beta_{1} + 130 \beta_{4} + 26 \beta_{5} + 60 \beta_{6} + 43 \beta_{7} ) q^{34} + ( 70 \beta_{1} - 55 \beta_{2} + 55 \beta_{3} + 55 \beta_{5} - 70 \beta_{6} - 15 \beta_{7} ) q^{35} + ( -160 - 2 \beta_{1} - 4 \beta_{3} - 2 \beta_{6} + 2 \beta_{7} ) q^{37} + ( -90 - 70 \beta_{1} + 140 \beta_{2} - 20 \beta_{3} + 90 \beta_{4} + 70 \beta_{5} + 70 \beta_{6} + 65 \beta_{7} ) q^{38} + ( 48 \beta_{1} - 60 \beta_{2} + 12 \beta_{3} + 140 \beta_{4} - 62 \beta_{6} - 64 \beta_{7} ) q^{40} + ( 162 - 50 \beta_{1} - 50 \beta_{3} + 81 \beta_{4} - 50 \beta_{6} ) q^{41} + ( 51 \beta_{1} + 52 \beta_{3} + 53 \beta_{5} - 51 \beta_{6} + \beta_{7} ) q^{43} + ( 110 + 50 \beta_{1} - 14 \beta_{2} + 14 \beta_{3} + 220 \beta_{4} + 14 \beta_{5} + 37 \beta_{6} + 51 \beta_{7} ) q^{44} + ( -126 - 42 \beta_{1} + 62 \beta_{2} - 22 \beta_{3} + 62 \beta_{5} + 26 \beta_{6} + 36 \beta_{7} ) q^{46} + ( -87 \beta_{1} + 174 \beta_{2} - 77 \beta_{3} + 87 \beta_{5} + 87 \beta_{6} + 10 \beta_{7} ) q^{47} + ( 37 \beta_{1} - 37 \beta_{3} + 94 \beta_{4} + 37 \beta_{6} + 74 \beta_{7} ) q^{49} + ( 220 - 44 \beta_{1} + 22 \beta_{2} - 22 \beta_{3} + 110 \beta_{4} + 44 \beta_{5} + 41 \beta_{6} + 22 \beta_{7} ) q^{50} + ( -80 + 120 \beta_{1} + 8 \beta_{3} - 80 \beta_{4} - 104 \beta_{5} - 24 \beta_{6} - 64 \beta_{7} ) q^{52} + ( 10 + 74 \beta_{1} + 20 \beta_{4} + 74 \beta_{6} + 74 \beta_{7} ) q^{53} + ( 26 \beta_{1} + 17 \beta_{2} + 69 \beta_{3} + 17 \beta_{5} - 26 \beta_{6} + 43 \beta_{7} ) q^{55} + ( 84 + 60 \beta_{1} - 120 \beta_{2} - 56 \beta_{3} - 84 \beta_{4} - 60 \beta_{5} - 60 \beta_{6} - 14 \beta_{7} ) q^{56} + ( -46 \beta_{2} + 46 \beta_{3} + 230 \beta_{4} + 30 \beta_{6} + 106 \beta_{7} ) q^{58} + ( 70 \beta_{1} + 3 \beta_{2} + 73 \beta_{3} + 6 \beta_{5} - 70 \beta_{6} + 3 \beta_{7} ) q^{59} + ( -41 - 142 \beta_{1} - 71 \beta_{3} - 41 \beta_{4} - 142 \beta_{6} - 71 \beta_{7} ) q^{61} + ( -130 - 158 \beta_{1} + 14 \beta_{2} - 14 \beta_{3} - 260 \beta_{4} - 14 \beta_{5} + 50 \beta_{6} + 36 \beta_{7} ) q^{62} + ( -98 - 62 \beta_{1} - 90 \beta_{2} - 214 \beta_{3} - 90 \beta_{5} + 23 \beta_{6} - 113 \beta_{7} ) q^{64} + ( -255 + 37 \beta_{3} + 255 \beta_{4} - 37 \beta_{7} ) q^{65} + ( 76 \beta_{1} - 101 \beta_{2} + 25 \beta_{3} - 76 \beta_{6} - 51 \beta_{7} ) q^{67} + ( 140 + 172 \beta_{1} - 34 \beta_{2} + 138 \beta_{3} + 70 \beta_{4} - 68 \beta_{5} - 173 \beta_{6} - 34 \beta_{7} ) q^{68} + ( -90 + 190 \beta_{1} + 220 \beta_{3} - 90 \beta_{4} + 250 \beta_{5} - 110 \beta_{6} + 70 \beta_{7} ) q^{70} + ( -106 \beta_{1} + 26 \beta_{2} - 26 \beta_{3} - 26 \beta_{5} + 106 \beta_{6} + 80 \beta_{7} ) q^{71} + ( 620 + 85 \beta_{1} + 170 \beta_{3} + 85 \beta_{6} - 85 \beta_{7} ) q^{73} + ( 20 - 4 \beta_{1} + 8 \beta_{2} - 8 \beta_{3} - 20 \beta_{4} + 4 \beta_{5} + 4 \beta_{6} - 158 \beta_{7} ) q^{74} + ( -280 \beta_{1} + 270 \beta_{2} + 10 \beta_{3} - 150 \beta_{4} + 115 \beta_{6} - 40 \beta_{7} ) q^{76} + ( -10 + 45 \beta_{1} + 45 \beta_{3} - 5 \beta_{4} + 45 \beta_{6} ) q^{77} + ( -341 \beta_{1} - 207 \beta_{3} - 73 \beta_{5} + 341 \beta_{6} + 134 \beta_{7} ) q^{79} + ( -20 + 116 \beta_{1} - 124 \beta_{2} + 124 \beta_{3} - 40 \beta_{4} + 124 \beta_{5} - 262 \beta_{6} - 138 \beta_{7} ) q^{80} + ( 500 - 100 \beta_{1} + 100 \beta_{2} - 100 \beta_{3} + 100 \beta_{5} - 31 \beta_{6} + 131 \beta_{7} ) q^{82} + ( 161 \beta_{1} - 322 \beta_{2} + 131 \beta_{3} - 161 \beta_{5} - 161 \beta_{6} - 30 \beta_{7} ) q^{83} + ( 48 \beta_{1} - 48 \beta_{3} + 190 \beta_{4} + 48 \beta_{6} + 96 \beta_{7} ) q^{85} + ( -200 + 4 \beta_{1} + 104 \beta_{2} + 108 \beta_{3} - 100 \beta_{4} + 208 \beta_{5} - \beta_{6} + 104 \beta_{7} ) q^{86} + ( -390 + 158 \beta_{1} + 56 \beta_{3} - 390 \beta_{4} - 46 \beta_{5} - 248 \beta_{6} - 147 \beta_{7} ) q^{88} + ( -102 - 46 \beta_{1} - 204 \beta_{4} - 46 \beta_{6} - 46 \beta_{7} ) q^{89} + ( 100 \beta_{1} - 325 \beta_{2} - 125 \beta_{3} - 325 \beta_{5} - 100 \beta_{6} - 225 \beta_{7} ) q^{91} + ( 160 - 72 \beta_{1} + 144 \beta_{2} + 104 \beta_{3} - 160 \beta_{4} + 72 \beta_{5} + 72 \beta_{6} - 28 \beta_{7} ) q^{92} + ( -348 \beta_{1} + 194 \beta_{2} + 154 \beta_{3} - 462 \beta_{4} + 184 \beta_{6} + 174 \beta_{7} ) q^{94} + ( -200 \beta_{1} - 290 \beta_{2} - 490 \beta_{3} - 580 \beta_{5} + 200 \beta_{6} - 290 \beta_{7} ) q^{95} + ( -5 + 184 \beta_{1} + 92 \beta_{3} - 5 \beta_{4} + 184 \beta_{6} + 92 \beta_{7} ) q^{97} + ( -370 + 74 \beta_{1} + 74 \beta_{2} - 74 \beta_{3} - 740 \beta_{4} - 74 \beta_{5} - 57 \beta_{6} - 131 \beta_{7} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 3q^{2} + 11q^{4} - 66q^{5} + O(q^{10}) \) \( 8q + 3q^{2} + 11q^{4} - 66q^{5} - 116q^{10} + 214q^{13} + 42q^{14} + 71q^{16} - 306q^{20} + 207q^{22} - 54q^{25} + 540q^{28} + 498q^{29} - 327q^{32} + 469q^{34} - 1256q^{37} - 1035q^{38} - 602q^{40} + 1272q^{41} - 912q^{46} - 154q^{49} + 1329q^{50} - 464q^{52} + 1314q^{56} - 830q^{58} + 262q^{61} - 550q^{64} - 3282q^{65} + 843q^{68} - 480q^{70} + 3940q^{73} - 222q^{74} + 105q^{76} - 330q^{77} + 4786q^{82} - 472q^{85} - 1209q^{86} - 1425q^{88} + 1308q^{92} + 1356q^{94} - 572q^{97} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{8} + 11 x^{6} + 96 x^{4} + 704 x^{2} + 4096\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\((\)\( \nu^{6} - 5 \nu^{5} - \nu^{4} - 15 \nu^{3} + 28 \nu^{2} - 40 \nu + 128 \)\()/320\)
\(\beta_{3}\)\(=\)\((\)\( -\nu^{6} - 19 \nu^{4} - 88 \nu^{2} - 160 \nu - 768 \)\()/320\)
\(\beta_{4}\)\(=\)\((\)\( -3 \nu^{7} - 17 \nu^{5} + 16 \nu^{3} - 704 \nu - 2560 \)\()/5120\)
\(\beta_{5}\)\(=\)\((\)\( -5 \nu^{7} + 8 \nu^{6} + 25 \nu^{5} + 152 \nu^{4} - 240 \nu^{3} + 1984 \nu^{2} - 320 \nu + 8704 \)\()/5120\)
\(\beta_{6}\)\(=\)\((\)\( 5 \nu^{7} - 24 \nu^{6} + 55 \nu^{5} - 136 \nu^{4} + 480 \nu^{3} + 128 \nu^{2} + 3520 \nu - 5632 \)\()/5120\)
\(\beta_{7}\)\(=\)\((\)\( 5 \nu^{7} + 24 \nu^{6} + 55 \nu^{5} + 136 \nu^{4} + 480 \nu^{3} - 128 \nu^{2} + 3520 \nu + 5632 \)\()/5120\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(2 \beta_{6} + 2 \beta_{5} + 2 \beta_{2} - \beta_{1} - 2\)
\(\nu^{3}\)\(=\)\(4 \beta_{7} + 6 \beta_{6} - 2 \beta_{5} + 20 \beta_{4} - 2 \beta_{3} + 2 \beta_{2} - 5 \beta_{1} + 10\)
\(\nu^{4}\)\(=\)\(-8 \beta_{7} - 6 \beta_{6} - 14 \beta_{5} - 24 \beta_{3} - 14 \beta_{2} - 5 \beta_{1} - 26\)
\(\nu^{5}\)\(=\)\(20 \beta_{7} - 18 \beta_{6} + 38 \beta_{5} - 60 \beta_{4} + 38 \beta_{3} - 38 \beta_{2} + 7 \beta_{1} - 30\)
\(\nu^{6}\)\(=\)\(152 \beta_{7} - 62 \beta_{6} + 90 \beta_{5} + 136 \beta_{3} + 90 \beta_{2} + 23 \beta_{1} - 98\)
\(\nu^{7}\)\(=\)\(-92 \beta_{7} + 134 \beta_{6} - 226 \beta_{5} - 1260 \beta_{4} - 226 \beta_{3} + 226 \beta_{2} - 301 \beta_{1} - 630\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(-\beta_{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
35.1
2.14417 1.84460i
−2.14417 1.84460i
0.807795 + 2.71062i
−0.807795 + 2.71062i
2.14417 + 1.84460i
−2.14417 + 1.84460i
0.807795 2.71062i
−0.807795 2.71062i
−2.66955 + 0.934608i 0 6.25302 4.98997i −4.30507 + 2.48553i 0 3.07102 + 1.77306i −12.0291 + 19.1651i 0 9.16960 10.6588i
35.2 −0.525382 2.77920i 0 −7.44795 + 2.92028i −4.30507 + 2.48553i 0 −3.07102 1.77306i 12.0291 + 19.1651i 0 9.16960 + 10.6588i
35.3 1.94357 + 2.05488i 0 −0.445079 + 7.98761i −12.1949 + 7.04075i 0 −21.1499 12.2109i −17.2786 + 14.6099i 0 −38.1696 11.3750i
35.4 2.75136 + 0.655739i 0 7.14001 + 3.60836i −12.1949 + 7.04075i 0 21.1499 + 12.2109i 17.2786 + 14.6099i 0 −38.1696 + 11.3750i
71.1 −2.66955 0.934608i 0 6.25302 + 4.98997i −4.30507 2.48553i 0 3.07102 1.77306i −12.0291 19.1651i 0 9.16960 + 10.6588i
71.2 −0.525382 + 2.77920i 0 −7.44795 2.92028i −4.30507 2.48553i 0 −3.07102 + 1.77306i 12.0291 19.1651i 0 9.16960 10.6588i
71.3 1.94357 2.05488i 0 −0.445079 7.98761i −12.1949 7.04075i 0 −21.1499 + 12.2109i −17.2786 14.6099i 0 −38.1696 + 11.3750i
71.4 2.75136 0.655739i 0 7.14001 3.60836i −12.1949 7.04075i 0 21.1499 12.2109i 17.2786 14.6099i 0 −38.1696 11.3750i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 71.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
9.d odd 6 1 inner
36.h even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 108.4.h.a 8
3.b odd 2 1 36.4.h.a 8
4.b odd 2 1 inner 108.4.h.a 8
9.c even 3 1 36.4.h.a 8
9.c even 3 1 324.4.b.b 8
9.d odd 6 1 inner 108.4.h.a 8
9.d odd 6 1 324.4.b.b 8
12.b even 2 1 36.4.h.a 8
36.f odd 6 1 36.4.h.a 8
36.f odd 6 1 324.4.b.b 8
36.h even 6 1 inner 108.4.h.a 8
36.h even 6 1 324.4.b.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
36.4.h.a 8 3.b odd 2 1
36.4.h.a 8 9.c even 3 1
36.4.h.a 8 12.b even 2 1
36.4.h.a 8 36.f odd 6 1
108.4.h.a 8 1.a even 1 1 trivial
108.4.h.a 8 4.b odd 2 1 inner
108.4.h.a 8 9.d odd 6 1 inner
108.4.h.a 8 36.h even 6 1 inner
324.4.b.b 8 9.c even 3 1
324.4.b.b 8 9.d odd 6 1
324.4.b.b 8 36.f odd 6 1
324.4.b.b 8 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 33 T_{5}^{3} + 433 T_{5}^{2} + 2310 T_{5} + 4900 \) acting on \(S_{4}^{\mathrm{new}}(108, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 - 3 T - T^{2} + 12 T^{3} - 24 T^{4} + 96 T^{5} - 64 T^{6} - 1536 T^{7} + 4096 T^{8} \)
$3$ 1
$5$ \( ( 1 + 33 T + 683 T^{2} + 10560 T^{3} + 132150 T^{4} + 1320000 T^{5} + 10671875 T^{6} + 64453125 T^{7} + 244140625 T^{8} )^{2} \)
$7$ \( 1 + 763 T^{2} + 286549 T^{4} + 46025686 T^{6} + 5058296518 T^{8} + 5414875932214 T^{10} + 3966207006159349 T^{12} + 1242479575205672587 T^{14} + \)\(19\!\cdots\!01\)\( T^{16} \)
$11$ \( 1 - 3248 T^{2} + 5235775 T^{4} - 5750931536 T^{6} + 6408197652976 T^{8} - 10188126022847696 T^{10} + 16432104834126393775 T^{12} - \)\(18\!\cdots\!88\)\( T^{14} + \)\(98\!\cdots\!41\)\( T^{16} \)
$13$ \( ( 1 - 107 T + 4255 T^{2} - 299600 T^{3} + 21773374 T^{4} - 658221200 T^{5} + 20538072295 T^{6} - 1134681432911 T^{7} + 23298085122481 T^{8} )^{2} \)
$17$ \( ( 1 - 9325 T^{2} + 46774812 T^{4} - 225082830925 T^{6} + 582622237229761 T^{8} )^{2} \)
$19$ \( ( 1 + 239 T^{2} + 51737136 T^{4} + 11243965559 T^{6} + 2213314919066161 T^{8} )^{2} \)
$23$ \( 1 - 37877 T^{2} + 781967941 T^{4} - 13507976408570 T^{6} + 191719381723246342 T^{8} - \)\(19\!\cdots\!30\)\( T^{10} + \)\(17\!\cdots\!61\)\( T^{12} - \)\(12\!\cdots\!13\)\( T^{14} + \)\(48\!\cdots\!41\)\( T^{16} \)
$29$ \( ( 1 - 249 T + 63635 T^{2} - 10699032 T^{3} + 1755473166 T^{4} - 260938691448 T^{5} + 37851582031835 T^{6} - 3612279347991381 T^{7} + 353814783205469041 T^{8} )^{2} \)
$31$ \( 1 + 72991 T^{2} + 2479562881 T^{4} + 78327798131458 T^{6} + 2595801970489726078 T^{8} + \)\(69\!\cdots\!98\)\( T^{10} + \)\(19\!\cdots\!41\)\( T^{12} + \)\(51\!\cdots\!31\)\( T^{14} + \)\(62\!\cdots\!21\)\( T^{16} \)
$37$ \( ( 1 + 314 T + 125706 T^{2} + 15905042 T^{3} + 2565726409 T^{4} )^{4} \)
$41$ \( ( 1 - 636 T + 254507 T^{2} - 76113300 T^{3} + 18864757656 T^{4} - 5245804749300 T^{5} + 1208934780064187 T^{6} - 208214910274559196 T^{7} + 22563490300366186081 T^{8} )^{2} \)
$43$ \( 1 + 261520 T^{2} + 39141940543 T^{4} + 4343335603853680 T^{6} + \)\(38\!\cdots\!48\)\( T^{8} + \)\(27\!\cdots\!20\)\( T^{10} + \)\(15\!\cdots\!43\)\( T^{12} + \)\(66\!\cdots\!80\)\( T^{14} + \)\(15\!\cdots\!01\)\( T^{16} \)
$47$ \( 1 - 58493 T^{2} - 17900011739 T^{4} + 13862131479910 T^{6} + \)\(30\!\cdots\!82\)\( T^{8} + \)\(14\!\cdots\!90\)\( T^{10} - \)\(20\!\cdots\!99\)\( T^{12} - \)\(73\!\cdots\!77\)\( T^{14} + \)\(13\!\cdots\!81\)\( T^{16} \)
$53$ \( ( 1 - 363880 T^{2} + 76436876862 T^{4} - 8065167727620520 T^{6} + \)\(49\!\cdots\!41\)\( T^{8} )^{2} \)
$59$ \( 1 - 717032 T^{2} + 302479462375 T^{4} - 91274129085638744 T^{6} + \)\(21\!\cdots\!36\)\( T^{8} - \)\(38\!\cdots\!04\)\( T^{10} + \)\(53\!\cdots\!75\)\( T^{12} - \)\(53\!\cdots\!72\)\( T^{14} + \)\(31\!\cdots\!61\)\( T^{16} \)
$61$ \( ( 1 - 131 T - 127289 T^{2} + 40546072 T^{3} - 34549792802 T^{4} + 9203187968632 T^{5} - 6557976932037329 T^{6} - 1531933138161272471 T^{7} + \)\(26\!\cdots\!21\)\( T^{8} )^{2} \)
$67$ \( 1 + 1070656 T^{2} + 683126750095 T^{4} + 302204171872082368 T^{6} + \)\(10\!\cdots\!36\)\( T^{8} + \)\(27\!\cdots\!92\)\( T^{10} + \)\(55\!\cdots\!95\)\( T^{12} + \)\(79\!\cdots\!04\)\( T^{14} + \)\(66\!\cdots\!21\)\( T^{16} \)
$71$ \( ( 1 + 1260428 T^{2} + 653321166774 T^{4} + 161461184661978188 T^{6} + \)\(16\!\cdots\!41\)\( T^{8} )^{2} \)
$73$ \( ( 1 - 985 T + 570834 T^{2} - 383181745 T^{3} + 151334226289 T^{4} )^{4} \)
$79$ \( 1 + 259483 T^{2} - 289013191643 T^{4} - 33688753687579130 T^{6} + \)\(51\!\cdots\!14\)\( T^{8} - \)\(81\!\cdots\!30\)\( T^{10} - \)\(17\!\cdots\!63\)\( T^{12} + \)\(37\!\cdots\!63\)\( T^{14} + \)\(34\!\cdots\!81\)\( T^{16} \)
$83$ \( 1 - 1120157 T^{2} + 290685528061 T^{4} - 347456380544486450 T^{6} + \)\(41\!\cdots\!02\)\( T^{8} - \)\(11\!\cdots\!50\)\( T^{10} + \)\(31\!\cdots\!21\)\( T^{12} - \)\(39\!\cdots\!13\)\( T^{14} + \)\(11\!\cdots\!21\)\( T^{16} \)
$89$ \( ( 1 - 2694616 T^{2} + 2805913145742 T^{4} - 1339173738324165976 T^{6} + \)\(24\!\cdots\!21\)\( T^{8} )^{2} \)
$97$ \( ( 1 + 286 T - 1237115 T^{2} - 144840410 T^{3} + 831901220284 T^{4} - 132191931515930 T^{5} - 1030482161877739835 T^{6} + \)\(21\!\cdots\!62\)\( T^{7} + \)\(69\!\cdots\!41\)\( T^{8} )^{2} \)
show more
show less