Properties

Label 108.4.e.a.73.2
Level $108$
Weight $4$
Character 108.73
Analytic conductor $6.372$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [108,4,Mod(37,108)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(108, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("108.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 108.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37220628062\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.6831243.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 13x^{4} + 49x^{2} + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{5} \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 73.2
Root \(-2.63162i\) of defining polynomial
Character \(\chi\) \(=\) 108.73
Dual form 108.4.e.a.37.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.44901 - 4.24182i) q^{5} +(5.32725 - 9.22708i) q^{7} +O(q^{10})\) \(q+(-2.44901 - 4.24182i) q^{5} +(5.32725 - 9.22708i) q^{7} +(17.7268 - 30.7038i) q^{11} +(-36.3501 - 62.9603i) q^{13} +127.417 q^{17} -46.3913 q^{19} +(-65.5739 - 113.577i) q^{23} +(50.5047 - 87.4766i) q^{25} +(-68.7549 + 119.087i) q^{29} +(53.0640 + 91.9096i) q^{31} -52.1861 q^{35} +137.401 q^{37} +(-35.8986 - 62.1782i) q^{41} +(-188.459 + 326.421i) q^{43} +(-306.813 + 531.416i) q^{47} +(114.741 + 198.737i) q^{49} +431.757 q^{53} -173.653 q^{55} +(-142.878 - 247.471i) q^{59} +(21.9682 - 38.0500i) q^{61} +(-178.044 + 308.381i) q^{65} +(22.6052 + 39.1533i) q^{67} -357.328 q^{71} +530.718 q^{73} +(-188.871 - 327.134i) q^{77} +(97.5540 - 168.969i) q^{79} +(380.352 - 658.789i) q^{83} +(-312.047 - 540.480i) q^{85} +1214.67 q^{89} -774.586 q^{91} +(113.613 + 196.783i) q^{95} +(552.402 - 956.788i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{5} - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{5} - 6 q^{7} - 51 q^{11} + 12 q^{13} + 222 q^{17} + 30 q^{19} - 210 q^{23} - 3 q^{25} - 456 q^{29} + 48 q^{31} + 1104 q^{35} - 96 q^{37} - 897 q^{41} + 129 q^{43} - 522 q^{47} - 225 q^{49} + 2208 q^{53} - 216 q^{55} - 453 q^{59} - 402 q^{61} - 1110 q^{65} - 213 q^{67} - 120 q^{71} + 750 q^{73} - 1128 q^{77} + 552 q^{79} + 612 q^{83} + 1188 q^{85} + 924 q^{89} - 264 q^{91} + 2184 q^{95} + 93 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.44901 4.24182i −0.219047 0.379400i 0.735470 0.677557i \(-0.236961\pi\)
−0.954517 + 0.298157i \(0.903628\pi\)
\(6\) 0 0
\(7\) 5.32725 9.22708i 0.287645 0.498215i −0.685602 0.727976i \(-0.740461\pi\)
0.973247 + 0.229761i \(0.0737944\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 17.7268 30.7038i 0.485895 0.841594i −0.513974 0.857806i \(-0.671827\pi\)
0.999869 + 0.0162115i \(0.00516051\pi\)
\(12\) 0 0
\(13\) −36.3501 62.9603i −0.775517 1.34323i −0.934504 0.355954i \(-0.884156\pi\)
0.158987 0.987281i \(-0.449177\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 127.417 1.81784 0.908918 0.416975i \(-0.136910\pi\)
0.908918 + 0.416975i \(0.136910\pi\)
\(18\) 0 0
\(19\) −46.3913 −0.560152 −0.280076 0.959978i \(-0.590360\pi\)
−0.280076 + 0.959978i \(0.590360\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −65.5739 113.577i −0.594483 1.02967i −0.993620 0.112783i \(-0.964024\pi\)
0.399137 0.916891i \(-0.369310\pi\)
\(24\) 0 0
\(25\) 50.5047 87.4766i 0.404037 0.699813i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −68.7549 + 119.087i −0.440258 + 0.762548i −0.997708 0.0676615i \(-0.978446\pi\)
0.557451 + 0.830210i \(0.311780\pi\)
\(30\) 0 0
\(31\) 53.0640 + 91.9096i 0.307438 + 0.532498i 0.977801 0.209535i \(-0.0671950\pi\)
−0.670363 + 0.742033i \(0.733862\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −52.1861 −0.252030
\(36\) 0 0
\(37\) 137.401 0.610500 0.305250 0.952272i \(-0.401260\pi\)
0.305250 + 0.952272i \(0.401260\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −35.8986 62.1782i −0.136742 0.236844i 0.789520 0.613725i \(-0.210330\pi\)
−0.926261 + 0.376881i \(0.876996\pi\)
\(42\) 0 0
\(43\) −188.459 + 326.421i −0.668367 + 1.15765i 0.309994 + 0.950739i \(0.399673\pi\)
−0.978361 + 0.206907i \(0.933660\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −306.813 + 531.416i −0.952198 + 1.64926i −0.211544 + 0.977368i \(0.567849\pi\)
−0.740654 + 0.671887i \(0.765484\pi\)
\(48\) 0 0
\(49\) 114.741 + 198.737i 0.334521 + 0.579407i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 431.757 1.11899 0.559494 0.828835i \(-0.310996\pi\)
0.559494 + 0.828835i \(0.310996\pi\)
\(54\) 0 0
\(55\) −173.653 −0.425734
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −142.878 247.471i −0.315272 0.546068i 0.664223 0.747535i \(-0.268763\pi\)
−0.979495 + 0.201467i \(0.935429\pi\)
\(60\) 0 0
\(61\) 21.9682 38.0500i 0.0461104 0.0798656i −0.842049 0.539401i \(-0.818651\pi\)
0.888159 + 0.459535i \(0.151984\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −178.044 + 308.381i −0.339748 + 0.588462i
\(66\) 0 0
\(67\) 22.6052 + 39.1533i 0.0412188 + 0.0713930i 0.885899 0.463879i \(-0.153543\pi\)
−0.844680 + 0.535272i \(0.820209\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −357.328 −0.597282 −0.298641 0.954366i \(-0.596533\pi\)
−0.298641 + 0.954366i \(0.596533\pi\)
\(72\) 0 0
\(73\) 530.718 0.850901 0.425451 0.904982i \(-0.360116\pi\)
0.425451 + 0.904982i \(0.360116\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −188.871 327.134i −0.279530 0.484160i
\(78\) 0 0
\(79\) 97.5540 168.969i 0.138933 0.240639i −0.788160 0.615470i \(-0.788966\pi\)
0.927093 + 0.374832i \(0.122299\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 380.352 658.789i 0.503001 0.871223i −0.496993 0.867754i \(-0.665563\pi\)
0.999994 0.00346848i \(-0.00110405\pi\)
\(84\) 0 0
\(85\) −312.047 540.480i −0.398191 0.689686i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1214.67 1.44668 0.723339 0.690493i \(-0.242607\pi\)
0.723339 + 0.690493i \(0.242607\pi\)
\(90\) 0 0
\(91\) −774.586 −0.892293
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 113.613 + 196.783i 0.122699 + 0.212522i
\(96\) 0 0
\(97\) 552.402 956.788i 0.578226 1.00152i −0.417457 0.908697i \(-0.637078\pi\)
0.995683 0.0928202i \(-0.0295882\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 508.962 881.547i 0.501421 0.868487i −0.498577 0.866845i \(-0.666144\pi\)
0.999999 0.00164208i \(-0.000522691\pi\)
\(102\) 0 0
\(103\) −416.128 720.756i −0.398081 0.689497i 0.595408 0.803423i \(-0.296990\pi\)
−0.993489 + 0.113927i \(0.963657\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −481.992 −0.435476 −0.217738 0.976007i \(-0.569868\pi\)
−0.217738 + 0.976007i \(0.569868\pi\)
\(108\) 0 0
\(109\) −904.531 −0.794847 −0.397424 0.917635i \(-0.630096\pi\)
−0.397424 + 0.917635i \(0.630096\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 400.494 + 693.675i 0.333410 + 0.577482i 0.983178 0.182650i \(-0.0584675\pi\)
−0.649768 + 0.760132i \(0.725134\pi\)
\(114\) 0 0
\(115\) −321.183 + 556.305i −0.260439 + 0.451093i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 678.784 1175.69i 0.522891 0.905673i
\(120\) 0 0
\(121\) 37.0186 + 64.1181i 0.0278126 + 0.0481729i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1107.00 −0.792105
\(126\) 0 0
\(127\) 1755.04 1.22626 0.613129 0.789982i \(-0.289910\pi\)
0.613129 + 0.789982i \(0.289910\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 551.870 + 955.868i 0.368070 + 0.637516i 0.989264 0.146141i \(-0.0466854\pi\)
−0.621194 + 0.783657i \(0.713352\pi\)
\(132\) 0 0
\(133\) −247.138 + 428.056i −0.161125 + 0.279076i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1063.25 + 1841.61i −0.663064 + 1.14846i 0.316742 + 0.948512i \(0.397411\pi\)
−0.979806 + 0.199949i \(0.935922\pi\)
\(138\) 0 0
\(139\) 1127.73 + 1953.29i 0.688151 + 1.19191i 0.972435 + 0.233173i \(0.0749108\pi\)
−0.284284 + 0.958740i \(0.591756\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2577.49 −1.50728
\(144\) 0 0
\(145\) 673.527 0.385748
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −342.725 593.617i −0.188437 0.326383i 0.756292 0.654234i \(-0.227009\pi\)
−0.944729 + 0.327851i \(0.893676\pi\)
\(150\) 0 0
\(151\) −270.165 + 467.939i −0.145601 + 0.252188i −0.929597 0.368578i \(-0.879845\pi\)
0.783996 + 0.620766i \(0.213178\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 259.909 450.176i 0.134686 0.233284i
\(156\) 0 0
\(157\) 236.664 + 409.913i 0.120304 + 0.208373i 0.919888 0.392182i \(-0.128280\pi\)
−0.799583 + 0.600555i \(0.794946\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1397.31 −0.683999
\(162\) 0 0
\(163\) −198.981 −0.0956160 −0.0478080 0.998857i \(-0.515224\pi\)
−0.0478080 + 0.998857i \(0.515224\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2137.82 + 3702.82i 0.990598 + 1.71577i 0.613778 + 0.789479i \(0.289649\pi\)
0.376819 + 0.926287i \(0.377018\pi\)
\(168\) 0 0
\(169\) −1544.17 + 2674.57i −0.702852 + 1.21738i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.55237 13.0811i 0.00331905 0.00574877i −0.864361 0.502872i \(-0.832277\pi\)
0.867680 + 0.497123i \(0.165610\pi\)
\(174\) 0 0
\(175\) −538.102 932.021i −0.232438 0.402595i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 309.915 0.129408 0.0647042 0.997904i \(-0.479390\pi\)
0.0647042 + 0.997904i \(0.479390\pi\)
\(180\) 0 0
\(181\) −2253.32 −0.925348 −0.462674 0.886529i \(-0.653110\pi\)
−0.462674 + 0.886529i \(0.653110\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −336.496 582.828i −0.133728 0.231624i
\(186\) 0 0
\(187\) 2258.70 3912.19i 0.883277 1.52988i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 1849.28 3203.04i 0.700571 1.21342i −0.267695 0.963504i \(-0.586262\pi\)
0.968266 0.249921i \(-0.0804046\pi\)
\(192\) 0 0
\(193\) 1781.64 + 3085.89i 0.664482 + 1.15092i 0.979425 + 0.201807i \(0.0646813\pi\)
−0.314943 + 0.949111i \(0.601985\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −89.0014 −0.0321883 −0.0160941 0.999870i \(-0.505123\pi\)
−0.0160941 + 0.999870i \(0.505123\pi\)
\(198\) 0 0
\(199\) 287.103 0.102272 0.0511362 0.998692i \(-0.483716\pi\)
0.0511362 + 0.998692i \(0.483716\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 732.550 + 1268.81i 0.253276 + 0.438686i
\(204\) 0 0
\(205\) −175.832 + 304.550i −0.0599056 + 0.103760i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −822.371 + 1424.39i −0.272175 + 0.471421i
\(210\) 0 0
\(211\) −2529.93 4381.97i −0.825438 1.42970i −0.901584 0.432605i \(-0.857595\pi\)
0.0761454 0.997097i \(-0.475739\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1846.16 0.585614
\(216\) 0 0
\(217\) 1130.74 0.353732
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4631.63 8022.23i −1.40976 2.44178i
\(222\) 0 0
\(223\) 199.857 346.162i 0.0600153 0.103949i −0.834457 0.551073i \(-0.814218\pi\)
0.894472 + 0.447124i \(0.147552\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −187.709 + 325.121i −0.0548840 + 0.0950619i −0.892162 0.451715i \(-0.850812\pi\)
0.837278 + 0.546777i \(0.184146\pi\)
\(228\) 0 0
\(229\) −2413.28 4179.93i −0.696394 1.20619i −0.969709 0.244265i \(-0.921453\pi\)
0.273315 0.961925i \(-0.411880\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3858.19 1.08480 0.542401 0.840120i \(-0.317516\pi\)
0.542401 + 0.840120i \(0.317516\pi\)
\(234\) 0 0
\(235\) 3005.56 0.834303
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 652.603 + 1130.34i 0.176625 + 0.305924i 0.940722 0.339177i \(-0.110149\pi\)
−0.764097 + 0.645101i \(0.776815\pi\)
\(240\) 0 0
\(241\) 1108.07 1919.23i 0.296170 0.512982i −0.679086 0.734058i \(-0.737624\pi\)
0.975256 + 0.221077i \(0.0709572\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 562.003 973.418i 0.146551 0.253834i
\(246\) 0 0
\(247\) 1686.33 + 2920.81i 0.434407 + 0.752415i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2993.80 0.752856 0.376428 0.926446i \(-0.377152\pi\)
0.376428 + 0.926446i \(0.377152\pi\)
\(252\) 0 0
\(253\) −4649.67 −1.15542
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1467.52 + 2541.81i 0.356191 + 0.616941i 0.987321 0.158736i \(-0.0507419\pi\)
−0.631130 + 0.775677i \(0.717409\pi\)
\(258\) 0 0
\(259\) 731.968 1267.81i 0.175607 0.304161i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 776.883 1345.60i 0.182147 0.315488i −0.760464 0.649380i \(-0.775029\pi\)
0.942611 + 0.333892i \(0.108362\pi\)
\(264\) 0 0
\(265\) −1057.38 1831.43i −0.245110 0.424543i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 1762.62 0.399513 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(270\) 0 0
\(271\) −6924.63 −1.55218 −0.776091 0.630621i \(-0.782800\pi\)
−0.776091 + 0.630621i \(0.782800\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1790.58 3101.37i −0.392639 0.680071i
\(276\) 0 0
\(277\) −3012.48 + 5217.76i −0.653437 + 1.13179i 0.328846 + 0.944384i \(0.393340\pi\)
−0.982283 + 0.187403i \(0.939993\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3168.74 + 5488.42i −0.672709 + 1.16517i 0.304424 + 0.952537i \(0.401536\pi\)
−0.977133 + 0.212629i \(0.931797\pi\)
\(282\) 0 0
\(283\) 984.338 + 1704.92i 0.206759 + 0.358117i 0.950692 0.310137i \(-0.100375\pi\)
−0.743933 + 0.668254i \(0.767042\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −764.963 −0.157332
\(288\) 0 0
\(289\) 11322.1 2.30453
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −587.208 1017.07i −0.117082 0.202792i 0.801528 0.597957i \(-0.204021\pi\)
−0.918610 + 0.395165i \(0.870687\pi\)
\(294\) 0 0
\(295\) −699.818 + 1212.12i −0.138119 + 0.239228i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4767.24 + 8257.10i −0.922062 + 1.59706i
\(300\) 0 0
\(301\) 2007.94 + 3477.86i 0.384504 + 0.665981i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −215.202 −0.0404013
\(306\) 0 0
\(307\) 3258.92 0.605851 0.302926 0.953014i \(-0.402037\pi\)
0.302926 + 0.953014i \(0.402037\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3979.01 6891.84i −0.725495 1.25659i −0.958770 0.284183i \(-0.908278\pi\)
0.233275 0.972411i \(-0.425056\pi\)
\(312\) 0 0
\(313\) 2098.13 3634.06i 0.378892 0.656260i −0.612009 0.790850i \(-0.709639\pi\)
0.990901 + 0.134590i \(0.0429719\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2416.78 + 4185.99i −0.428202 + 0.741667i −0.996713 0.0810079i \(-0.974186\pi\)
0.568512 + 0.822675i \(0.307519\pi\)
\(318\) 0 0
\(319\) 2437.61 + 4222.07i 0.427838 + 0.741037i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −5911.05 −1.01826
\(324\) 0 0
\(325\) −7343.41 −1.25335
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3268.94 + 5661.98i 0.547789 + 0.948799i
\(330\) 0 0
\(331\) −5270.34 + 9128.50i −0.875179 + 1.51585i −0.0186067 + 0.999827i \(0.505923\pi\)
−0.856572 + 0.516027i \(0.827410\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 110.721 191.774i 0.0180577 0.0312768i
\(336\) 0 0
\(337\) 2437.45 + 4221.79i 0.393995 + 0.682420i 0.992972 0.118346i \(-0.0377593\pi\)
−0.598977 + 0.800766i \(0.704426\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3762.63 0.597530
\(342\) 0 0
\(343\) 6099.51 0.960182
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −135.378 234.482i −0.0209437 0.0362756i 0.855364 0.518028i \(-0.173334\pi\)
−0.876307 + 0.481753i \(0.840000\pi\)
\(348\) 0 0
\(349\) 5219.99 9041.30i 0.800630 1.38673i −0.118572 0.992945i \(-0.537832\pi\)
0.919202 0.393786i \(-0.128835\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 32.9627 57.0931i 0.00497005 0.00860838i −0.863530 0.504298i \(-0.831751\pi\)
0.868500 + 0.495690i \(0.165085\pi\)
\(354\) 0 0
\(355\) 875.101 + 1515.72i 0.130833 + 0.226609i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1973.98 −0.290203 −0.145101 0.989417i \(-0.546351\pi\)
−0.145101 + 0.989417i \(0.546351\pi\)
\(360\) 0 0
\(361\) −4706.85 −0.686230
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1299.73 2251.21i −0.186387 0.322832i
\(366\) 0 0
\(367\) −2187.97 + 3789.68i −0.311202 + 0.539018i −0.978623 0.205663i \(-0.934065\pi\)
0.667421 + 0.744681i \(0.267398\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 2300.08 3983.85i 0.321871 0.557497i
\(372\) 0 0
\(373\) −5417.10 9382.69i −0.751975 1.30246i −0.946864 0.321633i \(-0.895768\pi\)
0.194890 0.980825i \(-0.437565\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9997.01 1.36571
\(378\) 0 0
\(379\) −9390.04 −1.27265 −0.636325 0.771421i \(-0.719546\pi\)
−0.636325 + 0.771421i \(0.719546\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3566.61 + 6177.55i 0.475836 + 0.824173i 0.999617 0.0276806i \(-0.00881215\pi\)
−0.523781 + 0.851853i \(0.675479\pi\)
\(384\) 0 0
\(385\) −925.094 + 1602.31i −0.122460 + 0.212107i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4243.29 7349.59i 0.553068 0.957941i −0.444983 0.895539i \(-0.646790\pi\)
0.998051 0.0624026i \(-0.0198763\pi\)
\(390\) 0 0
\(391\) −8355.24 14471.7i −1.08067 1.87178i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −955.645 −0.121731
\(396\) 0 0
\(397\) 13046.4 1.64932 0.824660 0.565628i \(-0.191366\pi\)
0.824660 + 0.565628i \(0.191366\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1302.03 2255.19i −0.162146 0.280844i 0.773492 0.633806i \(-0.218508\pi\)
−0.935638 + 0.352961i \(0.885175\pi\)
\(402\) 0 0
\(403\) 3857.77 6681.85i 0.476847 0.825923i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2435.68 4218.72i 0.296639 0.513794i
\(408\) 0 0
\(409\) 3996.52 + 6922.18i 0.483167 + 0.836870i 0.999813 0.0193290i \(-0.00615301\pi\)
−0.516646 + 0.856199i \(0.672820\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3044.58 −0.362746
\(414\) 0 0
\(415\) −3725.95 −0.440722
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −139.200 241.102i −0.0162300 0.0281112i 0.857796 0.513990i \(-0.171833\pi\)
−0.874026 + 0.485879i \(0.838500\pi\)
\(420\) 0 0
\(421\) 429.620 744.124i 0.0497350 0.0861435i −0.840086 0.542453i \(-0.817496\pi\)
0.889821 + 0.456309i \(0.150829\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6435.16 11146.0i 0.734473 1.27215i
\(426\) 0 0
\(427\) −234.060 405.404i −0.0265269 0.0459459i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −9455.34 −1.05672 −0.528362 0.849019i \(-0.677193\pi\)
−0.528362 + 0.849019i \(0.677193\pi\)
\(432\) 0 0
\(433\) 1527.61 0.169544 0.0847718 0.996400i \(-0.472984\pi\)
0.0847718 + 0.996400i \(0.472984\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3042.06 + 5269.00i 0.333001 + 0.576774i
\(438\) 0 0
\(439\) 1303.03 2256.91i 0.141663 0.245368i −0.786460 0.617641i \(-0.788088\pi\)
0.928123 + 0.372274i \(0.121422\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 726.222 1257.85i 0.0778868 0.134904i −0.824451 0.565933i \(-0.808516\pi\)
0.902338 + 0.431029i \(0.141849\pi\)
\(444\) 0 0
\(445\) −2974.73 5152.39i −0.316890 0.548869i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −12241.5 −1.28666 −0.643331 0.765589i \(-0.722448\pi\)
−0.643331 + 0.765589i \(0.722448\pi\)
\(450\) 0 0
\(451\) −2545.47 −0.265769
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1896.97 + 3285.65i 0.195454 + 0.338536i
\(456\) 0 0
\(457\) 4878.13 8449.16i 0.499320 0.864847i −0.500680 0.865632i \(-0.666917\pi\)
1.00000 0.000785332i \(0.000249979\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5122.00 8871.56i 0.517474 0.896290i −0.482321 0.875995i \(-0.660206\pi\)
0.999794 0.0202956i \(-0.00646074\pi\)
\(462\) 0 0
\(463\) 6943.67 + 12026.8i 0.696976 + 1.20720i 0.969510 + 0.245051i \(0.0788048\pi\)
−0.272534 + 0.962146i \(0.587862\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 14367.2 1.42363 0.711815 0.702367i \(-0.247874\pi\)
0.711815 + 0.702367i \(0.247874\pi\)
\(468\) 0 0
\(469\) 481.694 0.0474255
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6681.57 + 11572.8i 0.649512 + 1.12499i
\(474\) 0 0
\(475\) −2342.98 + 4058.15i −0.226322 + 0.392002i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5185.59 + 8981.71i −0.494647 + 0.856753i −0.999981 0.00617045i \(-0.998036\pi\)
0.505334 + 0.862924i \(0.331369\pi\)
\(480\) 0 0
\(481\) −4994.53 8650.78i −0.473453 0.820045i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −5411.36 −0.506634
\(486\) 0 0
\(487\) −4805.47 −0.447139 −0.223569 0.974688i \(-0.571771\pi\)
−0.223569 + 0.974688i \(0.571771\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8774.67 15198.2i −0.806508 1.39691i −0.915268 0.402845i \(-0.868021\pi\)
0.108760 0.994068i \(-0.465312\pi\)
\(492\) 0 0
\(493\) −8760.56 + 15173.7i −0.800316 + 1.38619i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1903.58 + 3297.09i −0.171805 + 0.297575i
\(498\) 0 0
\(499\) 397.080 + 687.763i 0.0356227 + 0.0617004i 0.883287 0.468832i \(-0.155325\pi\)
−0.847664 + 0.530533i \(0.821992\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −6389.32 −0.566374 −0.283187 0.959065i \(-0.591392\pi\)
−0.283187 + 0.959065i \(0.591392\pi\)
\(504\) 0 0
\(505\) −4985.82 −0.439338
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6935.53 + 12012.7i 0.603953 + 1.04608i 0.992216 + 0.124529i \(0.0397419\pi\)
−0.388263 + 0.921549i \(0.626925\pi\)
\(510\) 0 0
\(511\) 2827.27 4896.97i 0.244757 0.423932i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2038.21 + 3530.28i −0.174397 + 0.302064i
\(516\) 0 0
\(517\) 10877.7 + 18840.7i 0.925336 + 1.60273i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13682.5 −1.15056 −0.575280 0.817956i \(-0.695107\pi\)
−0.575280 + 0.817956i \(0.695107\pi\)
\(522\) 0 0
\(523\) 8390.18 0.701485 0.350743 0.936472i \(-0.385929\pi\)
0.350743 + 0.936472i \(0.385929\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 6761.27 + 11710.9i 0.558872 + 0.967995i
\(528\) 0 0
\(529\) −2516.37 + 4358.48i −0.206819 + 0.358221i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2609.84 + 4520.37i −0.212091 + 0.367353i
\(534\) 0 0
\(535\) 1180.40 + 2044.52i 0.0953894 + 0.165219i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 8135.96 0.650168
\(540\) 0 0
\(541\) −3447.33 −0.273960 −0.136980 0.990574i \(-0.543740\pi\)
−0.136980 + 0.990574i \(0.543740\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2215.21 + 3836.85i 0.174108 + 0.301565i
\(546\) 0 0
\(547\) −7269.23 + 12590.7i −0.568208 + 0.984166i 0.428535 + 0.903525i \(0.359030\pi\)
−0.996743 + 0.0806404i \(0.974303\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3189.63 5524.60i 0.246611 0.427143i
\(552\) 0 0
\(553\) −1039.39 1800.28i −0.0799265 0.138437i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −14894.7 −1.13305 −0.566525 0.824044i \(-0.691713\pi\)
−0.566525 + 0.824044i \(0.691713\pi\)
\(558\) 0 0
\(559\) 27402.1 2.07332
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −6068.66 10511.2i −0.454287 0.786848i 0.544360 0.838852i \(-0.316773\pi\)
−0.998647 + 0.0520035i \(0.983439\pi\)
\(564\) 0 0
\(565\) 1961.63 3397.64i 0.146064 0.252991i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −260.242 + 450.752i −0.0191738 + 0.0332100i −0.875453 0.483303i \(-0.839437\pi\)
0.856279 + 0.516513i \(0.172770\pi\)
\(570\) 0 0
\(571\) 2295.73 + 3976.33i 0.168255 + 0.291426i 0.937806 0.347159i \(-0.112854\pi\)
−0.769552 + 0.638585i \(0.779520\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −13247.1 −0.960772
\(576\) 0 0
\(577\) −5429.84 −0.391763 −0.195881 0.980628i \(-0.562757\pi\)
−0.195881 + 0.980628i \(0.562757\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4052.46 7019.07i −0.289371 0.501205i
\(582\) 0 0
\(583\) 7653.68 13256.6i 0.543710 0.941734i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9893.33 + 17135.7i −0.695641 + 1.20489i 0.274323 + 0.961638i \(0.411546\pi\)
−0.969964 + 0.243248i \(0.921787\pi\)
\(588\) 0 0
\(589\) −2461.71 4263.80i −0.172212 0.298280i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2181.13 −0.151042 −0.0755212 0.997144i \(-0.524062\pi\)
−0.0755212 + 0.997144i \(0.524062\pi\)
\(594\) 0 0
\(595\) −6649.41 −0.458150
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2043.62 + 3539.65i 0.139399 + 0.241446i 0.927269 0.374395i \(-0.122150\pi\)
−0.787870 + 0.615841i \(0.788816\pi\)
\(600\) 0 0
\(601\) −5842.45 + 10119.4i −0.396537 + 0.686822i −0.993296 0.115598i \(-0.963121\pi\)
0.596759 + 0.802420i \(0.296455\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 181.318 314.052i 0.0121845 0.0211042i
\(606\) 0 0
\(607\) −1865.37 3230.92i −0.124733 0.216045i 0.796895 0.604117i \(-0.206474\pi\)
−0.921629 + 0.388073i \(0.873141\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 44610.8 2.95378
\(612\) 0 0
\(613\) −2259.79 −0.148894 −0.0744470 0.997225i \(-0.523719\pi\)
−0.0744470 + 0.997225i \(0.523719\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11613.8 20115.7i −0.757787 1.31253i −0.943977 0.330012i \(-0.892947\pi\)
0.186190 0.982514i \(-0.440386\pi\)
\(618\) 0 0
\(619\) 4199.81 7274.28i 0.272705 0.472339i −0.696848 0.717218i \(-0.745415\pi\)
0.969554 + 0.244879i \(0.0787483\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6470.83 11207.8i 0.416129 0.720757i
\(624\) 0 0
\(625\) −3602.02 6238.89i −0.230529 0.399289i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17507.2 1.10979
\(630\) 0 0
\(631\) −22475.2 −1.41795 −0.708973 0.705236i \(-0.750841\pi\)
−0.708973 + 0.705236i \(0.750841\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4298.13 7444.57i −0.268608 0.465242i
\(636\) 0 0
\(637\) 8341.68 14448.2i 0.518853 0.898680i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4437.04 7685.17i 0.273405 0.473551i −0.696327 0.717725i \(-0.745184\pi\)
0.969731 + 0.244174i \(0.0785168\pi\)
\(642\) 0 0
\(643\) −10676.6 18492.4i −0.654810 1.13416i −0.981941 0.189185i \(-0.939415\pi\)
0.327132 0.944979i \(-0.393918\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24145.6 1.46718 0.733588 0.679595i \(-0.237844\pi\)
0.733588 + 0.679595i \(0.237844\pi\)
\(648\) 0 0
\(649\) −10131.1 −0.612757
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5847.64 + 10128.4i 0.350438 + 0.606976i 0.986326 0.164805i \(-0.0526995\pi\)
−0.635889 + 0.771781i \(0.719366\pi\)
\(654\) 0 0
\(655\) 2703.08 4681.87i 0.161249 0.279291i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −2914.45 + 5047.97i −0.172277 + 0.298393i −0.939216 0.343328i \(-0.888446\pi\)
0.766938 + 0.641721i \(0.221779\pi\)
\(660\) 0 0
\(661\) 810.655 + 1404.10i 0.0477017 + 0.0826218i 0.888890 0.458120i \(-0.151477\pi\)
−0.841189 + 0.540742i \(0.818144\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2420.98 0.141175
\(666\) 0 0
\(667\) 18034.1 1.04690
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −778.853 1349.01i −0.0448096 0.0776126i
\(672\) 0 0
\(673\) −10188.2 + 17646.5i −0.583545 + 1.01073i 0.411510 + 0.911405i \(0.365002\pi\)
−0.995055 + 0.0993246i \(0.968332\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −5675.10 + 9829.57i −0.322174 + 0.558022i −0.980936 0.194329i \(-0.937747\pi\)
0.658762 + 0.752351i \(0.271080\pi\)
\(678\) 0 0
\(679\) −5885.57 10194.1i −0.332647 0.576162i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3508.08 0.196534 0.0982670 0.995160i \(-0.468670\pi\)
0.0982670 + 0.995160i \(0.468670\pi\)
\(684\) 0 0
\(685\) 10415.7 0.580968
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −15694.4 27183.5i −0.867793 1.50306i
\(690\) 0 0
\(691\) 8769.38 15189.0i 0.482783 0.836204i −0.517022 0.855972i \(-0.672959\pi\)
0.999805 + 0.0197680i \(0.00629275\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5523.67 9567.27i 0.301474 0.522169i
\(696\) 0 0
\(697\) −4574.10 7922.57i −0.248574 0.430543i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15208.5 −0.819428 −0.409714 0.912214i \(-0.634371\pi\)
−0.409714 + 0.912214i \(0.634371\pi\)
\(702\) 0 0
\(703\) −6374.19 −0.341973
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −5422.73 9392.45i −0.288462 0.499632i
\(708\) 0 0
\(709\) −97.2400 + 168.425i −0.00515081 + 0.00892146i −0.868589 0.495533i \(-0.834973\pi\)
0.863439 + 0.504454i \(0.168306\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6959.23 12053.7i 0.365533 0.633122i
\(714\) 0 0
\(715\) 6312.32 + 10933.3i 0.330164 + 0.571861i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1001.11 −0.0519266 −0.0259633 0.999663i \(-0.508265\pi\)
−0.0259633 + 0.999663i \(0.508265\pi\)
\(720\) 0 0
\(721\) −8867.29 −0.458024
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6944.89 + 12028.9i 0.355761 + 0.616196i
\(726\) 0 0
\(727\) 7492.50 12977.4i 0.382231 0.662043i −0.609150 0.793055i \(-0.708489\pi\)
0.991381 + 0.131012i \(0.0418227\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −24013.0 + 41591.6i −1.21498 + 2.10441i
\(732\) 0 0
\(733\) 15849.0 + 27451.3i 0.798632 + 1.38327i 0.920507 + 0.390725i \(0.127776\pi\)
−0.121876 + 0.992545i \(0.538891\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1602.87 0.0801120
\(738\) 0 0
\(739\) −1333.07 −0.0663570 −0.0331785 0.999449i \(-0.510563\pi\)
−0.0331785 + 0.999449i \(0.510563\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1103.33 + 1911.02i 0.0544780 + 0.0943586i 0.891978 0.452078i \(-0.149317\pi\)
−0.837500 + 0.546437i \(0.815984\pi\)
\(744\) 0 0
\(745\) −1678.68 + 2907.55i −0.0825530 + 0.142986i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −2567.69 + 4447.37i −0.125262 + 0.216961i
\(750\) 0 0
\(751\) 8344.02 + 14452.3i 0.405430 + 0.702225i 0.994371 0.105951i \(-0.0337886\pi\)
−0.588942 + 0.808175i \(0.700455\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2646.55 0.127573
\(756\) 0 0
\(757\) 17183.8 0.825039 0.412519 0.910949i \(-0.364649\pi\)
0.412519 + 0.910949i \(0.364649\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9476.94 16414.5i −0.451431 0.781901i 0.547044 0.837104i \(-0.315753\pi\)
−0.998475 + 0.0552024i \(0.982420\pi\)
\(762\) 0 0
\(763\) −4818.67 + 8346.17i −0.228634 + 0.396005i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −10387.2 + 17991.2i −0.488998 + 0.846969i
\(768\) 0 0
\(769\) −3124.38 5411.58i −0.146512 0.253767i 0.783424 0.621488i \(-0.213471\pi\)
−0.929936 + 0.367721i \(0.880138\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4856.58 −0.225975 −0.112988 0.993596i \(-0.536042\pi\)
−0.112988 + 0.993596i \(0.536042\pi\)
\(774\) 0 0
\(775\) 10719.9 0.496866
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1665.38 + 2884.52i 0.0765962 + 0.132669i
\(780\) 0 0
\(781\) −6334.29 + 10971.3i −0.290216 + 0.502669i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 1159.18 2007.77i 0.0527046 0.0912870i
\(786\) 0 0
\(787\) −8239.01 14270.4i −0.373175 0.646359i 0.616877 0.787060i \(-0.288398\pi\)
−0.990052 + 0.140701i \(0.955064\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 8534.13 0.383614
\(792\) 0 0
\(793\) −3194.19 −0.143038
\(794\) 0 0