Properties

Label 108.4.e.a.37.3
Level $108$
Weight $4$
Character 108.37
Analytic conductor $6.372$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [108,4,Mod(37,108)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(108, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("108.37");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 108.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.37220628062\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.6831243.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 13x^{4} + 49x^{2} + 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{5} \)
Twist minimal: no (minimal twist has level 36)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.3
Root \(-2.13353i\) of defining polynomial
Character \(\chi\) \(=\) 108.37
Dual form 108.4.e.a.73.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(6.37096 - 11.0348i) q^{5} +(7.02674 + 12.1707i) q^{7} +O(q^{10})\) \(q+(6.37096 - 11.0348i) q^{5} +(7.02674 + 12.1707i) q^{7} +(-21.2745 - 36.8486i) q^{11} +(36.2316 - 62.7550i) q^{13} +59.6114 q^{17} +105.570 q^{19} +(-0.112590 + 0.195011i) q^{23} +(-18.6781 - 32.3515i) q^{25} +(-112.855 - 195.470i) q^{29} +(-100.597 + 174.239i) q^{31} +179.068 q^{35} -152.926 q^{37} +(-244.824 + 424.047i) q^{41} +(3.79372 + 6.57091i) q^{43} +(186.696 + 323.366i) q^{47} +(72.7498 - 126.006i) q^{49} +43.6780 q^{53} -542.157 q^{55} +(-335.949 + 581.881i) q^{59} +(-37.0177 - 64.1165i) q^{61} +(-461.660 - 799.619i) q^{65} +(-210.436 + 364.485i) q^{67} +730.840 q^{71} +473.927 q^{73} +(298.982 - 517.851i) q^{77} +(264.811 + 458.666i) q^{79} +(13.0767 + 22.6495i) q^{83} +(379.781 - 657.801i) q^{85} -415.949 q^{89} +1018.36 q^{91} +(672.583 - 1164.95i) q^{95} +(-463.743 - 803.226i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{5} - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{5} - 6 q^{7} - 51 q^{11} + 12 q^{13} + 222 q^{17} + 30 q^{19} - 210 q^{23} - 3 q^{25} - 456 q^{29} + 48 q^{31} + 1104 q^{35} - 96 q^{37} - 897 q^{41} + 129 q^{43} - 522 q^{47} - 225 q^{49} + 2208 q^{53} - 216 q^{55} - 453 q^{59} - 402 q^{61} - 1110 q^{65} - 213 q^{67} - 120 q^{71} + 750 q^{73} - 1128 q^{77} + 552 q^{79} + 612 q^{83} + 1188 q^{85} + 924 q^{89} - 264 q^{91} + 2184 q^{95} + 93 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 6.37096 11.0348i 0.569836 0.986984i −0.426746 0.904371i \(-0.640340\pi\)
0.996582 0.0826127i \(-0.0263264\pi\)
\(6\) 0 0
\(7\) 7.02674 + 12.1707i 0.379408 + 0.657155i 0.990976 0.134037i \(-0.0427942\pi\)
−0.611568 + 0.791192i \(0.709461\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −21.2745 36.8486i −0.583138 1.01002i −0.995105 0.0988256i \(-0.968491\pi\)
0.411967 0.911199i \(-0.364842\pi\)
\(12\) 0 0
\(13\) 36.2316 62.7550i 0.772988 1.33885i −0.162930 0.986638i \(-0.552095\pi\)
0.935918 0.352217i \(-0.114572\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 59.6114 0.850464 0.425232 0.905084i \(-0.360193\pi\)
0.425232 + 0.905084i \(0.360193\pi\)
\(18\) 0 0
\(19\) 105.570 1.27471 0.637354 0.770571i \(-0.280029\pi\)
0.637354 + 0.770571i \(0.280029\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.112590 + 0.195011i −0.00102072 + 0.00176794i −0.866535 0.499116i \(-0.833658\pi\)
0.865515 + 0.500884i \(0.166992\pi\)
\(24\) 0 0
\(25\) −18.6781 32.3515i −0.149425 0.258812i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −112.855 195.470i −0.722642 1.25165i −0.959937 0.280214i \(-0.909594\pi\)
0.237296 0.971437i \(-0.423739\pi\)
\(30\) 0 0
\(31\) −100.597 + 174.239i −0.582831 + 1.00949i 0.412312 + 0.911043i \(0.364722\pi\)
−0.995142 + 0.0984492i \(0.968612\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 179.068 0.864802
\(36\) 0 0
\(37\) −152.926 −0.679485 −0.339743 0.940518i \(-0.610340\pi\)
−0.339743 + 0.940518i \(0.610340\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −244.824 + 424.047i −0.932563 + 1.61525i −0.153639 + 0.988127i \(0.549099\pi\)
−0.778923 + 0.627119i \(0.784234\pi\)
\(42\) 0 0
\(43\) 3.79372 + 6.57091i 0.0134543 + 0.0233036i 0.872674 0.488303i \(-0.162384\pi\)
−0.859220 + 0.511607i \(0.829051\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 186.696 + 323.366i 0.579412 + 1.00357i 0.995547 + 0.0942681i \(0.0300511\pi\)
−0.416135 + 0.909303i \(0.636616\pi\)
\(48\) 0 0
\(49\) 72.7498 126.006i 0.212098 0.367365i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 43.6780 0.113201 0.0566003 0.998397i \(-0.481974\pi\)
0.0566003 + 0.998397i \(0.481974\pi\)
\(54\) 0 0
\(55\) −542.157 −1.32917
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −335.949 + 581.881i −0.741303 + 1.28397i 0.210599 + 0.977572i \(0.432458\pi\)
−0.951902 + 0.306402i \(0.900875\pi\)
\(60\) 0 0
\(61\) −37.0177 64.1165i −0.0776988 0.134578i 0.824558 0.565778i \(-0.191424\pi\)
−0.902257 + 0.431199i \(0.858091\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −461.660 799.619i −0.880952 1.52585i
\(66\) 0 0
\(67\) −210.436 + 364.485i −0.383713 + 0.664611i −0.991590 0.129421i \(-0.958688\pi\)
0.607876 + 0.794032i \(0.292022\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 730.840 1.22162 0.610808 0.791778i \(-0.290845\pi\)
0.610808 + 0.791778i \(0.290845\pi\)
\(72\) 0 0
\(73\) 473.927 0.759849 0.379925 0.925017i \(-0.375950\pi\)
0.379925 + 0.925017i \(0.375950\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 298.982 517.851i 0.442495 0.766424i
\(78\) 0 0
\(79\) 264.811 + 458.666i 0.377134 + 0.653215i 0.990644 0.136472i \(-0.0435764\pi\)
−0.613510 + 0.789687i \(0.710243\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 13.0767 + 22.6495i 0.0172934 + 0.0299531i 0.874543 0.484949i \(-0.161162\pi\)
−0.857249 + 0.514902i \(0.827828\pi\)
\(84\) 0 0
\(85\) 379.781 657.801i 0.484624 0.839394i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −415.949 −0.495399 −0.247700 0.968837i \(-0.579675\pi\)
−0.247700 + 0.968837i \(0.579675\pi\)
\(90\) 0 0
\(91\) 1018.36 1.17311
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 672.583 1164.95i 0.726374 1.25812i
\(96\) 0 0
\(97\) −463.743 803.226i −0.485422 0.840776i 0.514438 0.857528i \(-0.328001\pi\)
−0.999860 + 0.0167522i \(0.994667\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −45.0590 78.0445i −0.0443915 0.0768883i 0.842976 0.537951i \(-0.180802\pi\)
−0.887367 + 0.461063i \(0.847468\pi\)
\(102\) 0 0
\(103\) 162.826 282.023i 0.155765 0.269792i −0.777573 0.628793i \(-0.783549\pi\)
0.933337 + 0.359001i \(0.116883\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1073.49 −0.969888 −0.484944 0.874545i \(-0.661160\pi\)
−0.484944 + 0.874545i \(0.661160\pi\)
\(108\) 0 0
\(109\) 601.488 0.528552 0.264276 0.964447i \(-0.414867\pi\)
0.264276 + 0.964447i \(0.414867\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −210.019 + 363.764i −0.174840 + 0.302832i −0.940106 0.340882i \(-0.889274\pi\)
0.765266 + 0.643715i \(0.222608\pi\)
\(114\) 0 0
\(115\) 1.43461 + 2.48482i 0.00116329 + 0.00201487i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 418.874 + 725.511i 0.322673 + 0.558886i
\(120\) 0 0
\(121\) −239.713 + 415.194i −0.180100 + 0.311942i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1116.75 0.799080
\(126\) 0 0
\(127\) −980.264 −0.684916 −0.342458 0.939533i \(-0.611259\pi\)
−0.342458 + 0.939533i \(0.611259\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 677.695 1173.80i 0.451988 0.782866i −0.546521 0.837445i \(-0.684048\pi\)
0.998509 + 0.0545787i \(0.0173816\pi\)
\(132\) 0 0
\(133\) 741.815 + 1284.86i 0.483635 + 0.837681i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 453.261 + 785.071i 0.282662 + 0.489585i 0.972040 0.234817i \(-0.0754492\pi\)
−0.689378 + 0.724402i \(0.742116\pi\)
\(138\) 0 0
\(139\) 409.209 708.771i 0.249703 0.432498i −0.713741 0.700410i \(-0.753000\pi\)
0.963443 + 0.267912i \(0.0863338\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −3083.25 −1.80303
\(144\) 0 0
\(145\) −2875.97 −1.64715
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −579.748 + 1004.15i −0.318757 + 0.552103i −0.980229 0.197867i \(-0.936599\pi\)
0.661472 + 0.749970i \(0.269932\pi\)
\(150\) 0 0
\(151\) 318.987 + 552.501i 0.171912 + 0.297761i 0.939088 0.343676i \(-0.111672\pi\)
−0.767176 + 0.641437i \(0.778339\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1281.80 + 2220.14i 0.664235 + 1.15049i
\(156\) 0 0
\(157\) −1645.86 + 2850.71i −0.836649 + 1.44912i 0.0560311 + 0.998429i \(0.482155\pi\)
−0.892680 + 0.450690i \(0.851178\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3.16456 −0.00154908
\(162\) 0 0
\(163\) −1197.14 −0.575258 −0.287629 0.957742i \(-0.592867\pi\)
−0.287629 + 0.957742i \(0.592867\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 419.419 726.455i 0.194345 0.336615i −0.752341 0.658774i \(-0.771075\pi\)
0.946686 + 0.322159i \(0.104409\pi\)
\(168\) 0 0
\(169\) −1526.96 2644.77i −0.695021 1.20381i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1153.59 + 1998.08i 0.506970 + 0.878098i 0.999967 + 0.00806725i \(0.00256791\pi\)
−0.492997 + 0.870031i \(0.664099\pi\)
\(174\) 0 0
\(175\) 262.493 454.651i 0.113386 0.196391i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −3114.47 −1.30048 −0.650241 0.759728i \(-0.725332\pi\)
−0.650241 + 0.759728i \(0.725332\pi\)
\(180\) 0 0
\(181\) 3902.75 1.60270 0.801350 0.598195i \(-0.204115\pi\)
0.801350 + 0.598195i \(0.204115\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −974.288 + 1687.52i −0.387195 + 0.670641i
\(186\) 0 0
\(187\) −1268.20 2196.60i −0.495938 0.858989i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 52.8697 + 91.5730i 0.0200289 + 0.0346911i 0.875866 0.482554i \(-0.160291\pi\)
−0.855837 + 0.517245i \(0.826958\pi\)
\(192\) 0 0
\(193\) 792.685 1372.97i 0.295641 0.512065i −0.679493 0.733682i \(-0.737800\pi\)
0.975134 + 0.221617i \(0.0711334\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 3905.37 1.41242 0.706208 0.708005i \(-0.250405\pi\)
0.706208 + 0.708005i \(0.250405\pi\)
\(198\) 0 0
\(199\) 1538.77 0.548143 0.274072 0.961709i \(-0.411629\pi\)
0.274072 + 0.961709i \(0.411629\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1586.00 2747.04i 0.548353 0.949775i
\(204\) 0 0
\(205\) 3119.52 + 5403.17i 1.06281 + 1.84085i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2245.96 3890.11i −0.743331 1.28749i
\(210\) 0 0
\(211\) −470.733 + 815.334i −0.153586 + 0.266019i −0.932543 0.361058i \(-0.882416\pi\)
0.778957 + 0.627077i \(0.215749\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 96.6784 0.0306670
\(216\) 0 0
\(217\) −2827.48 −0.884523
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2159.82 3740.91i 0.657398 1.13865i
\(222\) 0 0
\(223\) −1660.78 2876.56i −0.498719 0.863807i 0.501280 0.865285i \(-0.332863\pi\)
−0.999999 + 0.00147850i \(0.999529\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −2105.92 3647.56i −0.615749 1.06651i −0.990253 0.139283i \(-0.955520\pi\)
0.374504 0.927225i \(-0.377813\pi\)
\(228\) 0 0
\(229\) 177.072 306.698i 0.0510973 0.0885031i −0.839345 0.543598i \(-0.817061\pi\)
0.890443 + 0.455095i \(0.150395\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −868.789 −0.244276 −0.122138 0.992513i \(-0.538975\pi\)
−0.122138 + 0.992513i \(0.538975\pi\)
\(234\) 0 0
\(235\) 4757.72 1.32068
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −602.177 + 1043.00i −0.162977 + 0.282285i −0.935935 0.352172i \(-0.885443\pi\)
0.772958 + 0.634457i \(0.218776\pi\)
\(240\) 0 0
\(241\) 2543.70 + 4405.82i 0.679893 + 1.17761i 0.975013 + 0.222149i \(0.0713072\pi\)
−0.295120 + 0.955460i \(0.595360\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −926.971 1605.56i −0.241722 0.418676i
\(246\) 0 0
\(247\) 3824.98 6625.06i 0.985335 1.70665i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 5463.91 1.37402 0.687010 0.726648i \(-0.258923\pi\)
0.687010 + 0.726648i \(0.258923\pi\)
\(252\) 0 0
\(253\) 9.58119 0.00238089
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3701.06 + 6410.43i −0.898311 + 1.55592i −0.0686576 + 0.997640i \(0.521872\pi\)
−0.829653 + 0.558279i \(0.811462\pi\)
\(258\) 0 0
\(259\) −1074.58 1861.22i −0.257803 0.446527i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −100.015 173.232i −0.0234495 0.0406156i 0.854063 0.520170i \(-0.174132\pi\)
−0.877512 + 0.479555i \(0.840798\pi\)
\(264\) 0 0
\(265\) 278.270 481.979i 0.0645057 0.111727i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5493.50 1.24515 0.622574 0.782561i \(-0.286087\pi\)
0.622574 + 0.782561i \(0.286087\pi\)
\(270\) 0 0
\(271\) −1861.89 −0.417350 −0.208675 0.977985i \(-0.566915\pi\)
−0.208675 + 0.977985i \(0.566915\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −794.738 + 1376.53i −0.174271 + 0.301846i
\(276\) 0 0
\(277\) −2819.52 4883.55i −0.611582 1.05929i −0.990974 0.134055i \(-0.957200\pi\)
0.379391 0.925236i \(-0.376133\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1279.02 + 2215.33i 0.271530 + 0.470303i 0.969254 0.246063i \(-0.0791371\pi\)
−0.697724 + 0.716367i \(0.745804\pi\)
\(282\) 0 0
\(283\) −3733.97 + 6467.43i −0.784317 + 1.35848i 0.145089 + 0.989419i \(0.453653\pi\)
−0.929406 + 0.369058i \(0.879680\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6881.26 −1.41529
\(288\) 0 0
\(289\) −1359.48 −0.276712
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1780.66 + 3084.19i −0.355041 + 0.614950i −0.987125 0.159950i \(-0.948867\pi\)
0.632084 + 0.774900i \(0.282200\pi\)
\(294\) 0 0
\(295\) 4280.64 + 7414.28i 0.844842 + 1.46331i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.15863 + 14.1312i 0.00157801 + 0.00273320i
\(300\) 0 0
\(301\) −53.3149 + 92.3442i −0.0102094 + 0.0176832i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −943.352 −0.177102
\(306\) 0 0
\(307\) −6101.93 −1.13438 −0.567192 0.823586i \(-0.691970\pi\)
−0.567192 + 0.823586i \(0.691970\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 185.618 321.499i 0.0338438 0.0586191i −0.848607 0.529023i \(-0.822558\pi\)
0.882451 + 0.470404i \(0.155892\pi\)
\(312\) 0 0
\(313\) −4660.55 8072.31i −0.841629 1.45774i −0.888517 0.458844i \(-0.848264\pi\)
0.0468881 0.998900i \(-0.485070\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3191.79 5528.33i −0.565516 0.979502i −0.997001 0.0773824i \(-0.975344\pi\)
0.431486 0.902120i \(-0.357990\pi\)
\(318\) 0 0
\(319\) −4801.87 + 8317.08i −0.842799 + 1.45977i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6293.19 1.08409
\(324\) 0 0
\(325\) −2706.96 −0.462015
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −2623.73 + 4544.43i −0.439668 + 0.761527i
\(330\) 0 0
\(331\) 1264.71 + 2190.54i 0.210014 + 0.363755i 0.951719 0.306971i \(-0.0993156\pi\)
−0.741704 + 0.670727i \(0.765982\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2681.35 + 4644.24i 0.437307 + 0.757438i
\(336\) 0 0
\(337\) −1799.91 + 3117.53i −0.290941 + 0.503924i −0.974032 0.226408i \(-0.927302\pi\)
0.683092 + 0.730333i \(0.260635\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 8560.62 1.35948
\(342\) 0 0
\(343\) 6865.12 1.08070
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −5686.60 + 9849.48i −0.879748 + 1.52377i −0.0281313 + 0.999604i \(0.508956\pi\)
−0.851617 + 0.524165i \(0.824378\pi\)
\(348\) 0 0
\(349\) 894.476 + 1549.28i 0.137193 + 0.237624i 0.926433 0.376460i \(-0.122859\pi\)
−0.789240 + 0.614084i \(0.789525\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −555.184 961.608i −0.0837096 0.144989i 0.821131 0.570740i \(-0.193343\pi\)
−0.904841 + 0.425750i \(0.860010\pi\)
\(354\) 0 0
\(355\) 4656.15 8064.69i 0.696121 1.20572i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2250.71 −0.330886 −0.165443 0.986219i \(-0.552905\pi\)
−0.165443 + 0.986219i \(0.552905\pi\)
\(360\) 0 0
\(361\) 4286.07 0.624883
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 3019.37 5229.70i 0.432989 0.749959i
\(366\) 0 0
\(367\) −1253.69 2171.45i −0.178316 0.308852i 0.762988 0.646413i \(-0.223732\pi\)
−0.941304 + 0.337560i \(0.890398\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 306.914 + 531.591i 0.0429493 + 0.0743903i
\(372\) 0 0
\(373\) 2482.71 4300.17i 0.344637 0.596929i −0.640651 0.767833i \(-0.721335\pi\)
0.985288 + 0.170903i \(0.0546686\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −16355.6 −2.23437
\(378\) 0 0
\(379\) −13541.7 −1.83534 −0.917668 0.397349i \(-0.869930\pi\)
−0.917668 + 0.397349i \(0.869930\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4175.04 7231.38i 0.557009 0.964768i −0.440735 0.897637i \(-0.645282\pi\)
0.997744 0.0671311i \(-0.0213846\pi\)
\(384\) 0 0
\(385\) −3809.60 6598.41i −0.504299 0.873471i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1162.31 2013.18i −0.151495 0.262396i 0.780283 0.625427i \(-0.215075\pi\)
−0.931777 + 0.363031i \(0.881742\pi\)
\(390\) 0 0
\(391\) −6.71164 + 11.6249i −0.000868087 + 0.00150357i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6748.39 0.859617
\(396\) 0 0
\(397\) 13253.5 1.67550 0.837749 0.546056i \(-0.183871\pi\)
0.837749 + 0.546056i \(0.183871\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7790.28 13493.2i 0.970144 1.68034i 0.275037 0.961434i \(-0.411310\pi\)
0.695108 0.718906i \(-0.255357\pi\)
\(402\) 0 0
\(403\) 7289.58 + 12625.9i 0.901042 + 1.56065i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3253.44 + 5635.13i 0.396234 + 0.686297i
\(408\) 0 0
\(409\) 6119.59 10599.4i 0.739840 1.28144i −0.212728 0.977112i \(-0.568235\pi\)
0.952567 0.304328i \(-0.0984320\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9442.52 −1.12503
\(414\) 0 0
\(415\) 333.244 0.0394176
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3196.50 5536.50i 0.372695 0.645526i −0.617284 0.786740i \(-0.711767\pi\)
0.989979 + 0.141214i \(0.0451005\pi\)
\(420\) 0 0
\(421\) 7916.31 + 13711.5i 0.916431 + 1.58730i 0.804793 + 0.593556i \(0.202276\pi\)
0.111638 + 0.993749i \(0.464390\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1113.43 1928.52i −0.127081 0.220110i
\(426\) 0 0
\(427\) 520.227 901.060i 0.0589592 0.102120i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 9339.01 1.04372 0.521861 0.853030i \(-0.325238\pi\)
0.521861 + 0.853030i \(0.325238\pi\)
\(432\) 0 0
\(433\) −3379.19 −0.375043 −0.187522 0.982260i \(-0.560045\pi\)
−0.187522 + 0.982260i \(0.560045\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −11.8861 + 20.5874i −0.00130112 + 0.00225361i
\(438\) 0 0
\(439\) −7273.52 12598.1i −0.790766 1.36965i −0.925493 0.378764i \(-0.876349\pi\)
0.134728 0.990883i \(-0.456984\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2951.00 5111.28i −0.316492 0.548181i 0.663261 0.748388i \(-0.269172\pi\)
−0.979754 + 0.200207i \(0.935839\pi\)
\(444\) 0 0
\(445\) −2650.00 + 4589.93i −0.282296 + 0.488951i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2448.48 −0.257352 −0.128676 0.991687i \(-0.541073\pi\)
−0.128676 + 0.991687i \(0.541073\pi\)
\(450\) 0 0
\(451\) 20834.1 2.17525
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 6487.93 11237.4i 0.668481 1.15784i
\(456\) 0 0
\(457\) −2236.87 3874.38i −0.228964 0.396577i 0.728537 0.685006i \(-0.240200\pi\)
−0.957501 + 0.288429i \(0.906867\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 251.107 + 434.929i 0.0253692 + 0.0439407i 0.878431 0.477869i \(-0.158591\pi\)
−0.853062 + 0.521809i \(0.825257\pi\)
\(462\) 0 0
\(463\) −3543.37 + 6137.30i −0.355668 + 0.616036i −0.987232 0.159288i \(-0.949080\pi\)
0.631564 + 0.775324i \(0.282413\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −8057.18 −0.798376 −0.399188 0.916869i \(-0.630708\pi\)
−0.399188 + 0.916869i \(0.630708\pi\)
\(468\) 0 0
\(469\) −5914.71 −0.582336
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 161.419 279.586i 0.0156915 0.0271784i
\(474\) 0 0
\(475\) −1971.85 3415.35i −0.190473 0.329910i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8580.44 + 14861.8i 0.818477 + 1.41764i 0.906804 + 0.421552i \(0.138515\pi\)
−0.0883271 + 0.996092i \(0.528152\pi\)
\(480\) 0 0
\(481\) −5540.77 + 9596.90i −0.525234 + 0.909732i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11817.9 −1.10644
\(486\) 0 0
\(487\) −9909.84 −0.922090 −0.461045 0.887377i \(-0.652525\pi\)
−0.461045 + 0.887377i \(0.652525\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9744.27 + 16877.6i −0.895627 + 1.55127i −0.0626007 + 0.998039i \(0.519939\pi\)
−0.833026 + 0.553233i \(0.813394\pi\)
\(492\) 0 0
\(493\) −6727.43 11652.2i −0.614580 1.06448i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5135.43 + 8894.82i 0.463492 + 0.802791i
\(498\) 0 0
\(499\) 462.728 801.468i 0.0415121 0.0719011i −0.844523 0.535520i \(-0.820116\pi\)
0.886035 + 0.463618i \(0.153449\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −8723.45 −0.773279 −0.386640 0.922231i \(-0.626364\pi\)
−0.386640 + 0.922231i \(0.626364\pi\)
\(504\) 0 0
\(505\) −1148.28 −0.101183
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1524.35 2640.25i 0.132742 0.229916i −0.791991 0.610533i \(-0.790955\pi\)
0.924733 + 0.380617i \(0.124288\pi\)
\(510\) 0 0
\(511\) 3330.17 + 5768.02i 0.288293 + 0.499339i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2074.72 3593.52i −0.177520 0.307474i
\(516\) 0 0
\(517\) 7943.73 13758.9i 0.675754 1.17044i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15593.0 1.31121 0.655607 0.755103i \(-0.272413\pi\)
0.655607 + 0.755103i \(0.272413\pi\)
\(522\) 0 0
\(523\) −9052.67 −0.756875 −0.378438 0.925627i \(-0.623539\pi\)
−0.378438 + 0.925627i \(0.623539\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −5996.72 + 10386.6i −0.495676 + 0.858536i
\(528\) 0 0
\(529\) 6083.47 + 10536.9i 0.499998 + 0.866022i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 17740.7 + 30727.9i 1.44172 + 2.49713i
\(534\) 0 0
\(535\) −6839.14 + 11845.7i −0.552677 + 0.957264i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6190.87 −0.494730
\(540\) 0 0
\(541\) −11742.8 −0.933200 −0.466600 0.884469i \(-0.654521\pi\)
−0.466600 + 0.884469i \(0.654521\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3832.05 6637.31i 0.301187 0.521672i
\(546\) 0 0
\(547\) −1973.46 3418.12i −0.154257 0.267182i 0.778531 0.627606i \(-0.215965\pi\)
−0.932788 + 0.360424i \(0.882632\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −11914.1 20635.8i −0.921158 1.59549i
\(552\) 0 0
\(553\) −3721.52 + 6445.86i −0.286175 + 0.495670i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3129.69 −0.238078 −0.119039 0.992890i \(-0.537981\pi\)
−0.119039 + 0.992890i \(0.537981\pi\)
\(558\) 0 0
\(559\) 549.810 0.0416001
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −96.0178 + 166.308i −0.00718769 + 0.0124494i −0.869597 0.493762i \(-0.835621\pi\)
0.862409 + 0.506212i \(0.168955\pi\)
\(564\) 0 0
\(565\) 2676.05 + 4635.05i 0.199260 + 0.345129i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1630.51 + 2824.12i 0.120131 + 0.208073i 0.919819 0.392343i \(-0.128335\pi\)
−0.799688 + 0.600415i \(0.795002\pi\)
\(570\) 0 0
\(571\) 4707.22 8153.15i 0.344993 0.597546i −0.640359 0.768075i \(-0.721215\pi\)
0.985353 + 0.170530i \(0.0545479\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 8.41187 0.000610086
\(576\) 0 0
\(577\) −9739.86 −0.702731 −0.351366 0.936238i \(-0.614283\pi\)
−0.351366 + 0.936238i \(0.614283\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −183.773 + 318.304i −0.0131225 + 0.0227289i
\(582\) 0 0
\(583\) −929.229 1609.47i −0.0660116 0.114335i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −12702.8 22002.0i −0.893190 1.54705i −0.836029 0.548685i \(-0.815129\pi\)
−0.0571605 0.998365i \(-0.518205\pi\)
\(588\) 0 0
\(589\) −10620.0 + 18394.5i −0.742939 + 1.28681i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2751.26 −0.190524 −0.0952620 0.995452i \(-0.530369\pi\)
−0.0952620 + 0.995452i \(0.530369\pi\)
\(594\) 0 0
\(595\) 10674.5 0.735482
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1658.11 2871.93i 0.113103 0.195900i −0.803917 0.594742i \(-0.797254\pi\)
0.917020 + 0.398842i \(0.130588\pi\)
\(600\) 0 0
\(601\) 3959.84 + 6858.65i 0.268761 + 0.465508i 0.968542 0.248850i \(-0.0800525\pi\)
−0.699781 + 0.714357i \(0.746719\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3054.40 + 5290.37i 0.205254 + 0.355511i
\(606\) 0 0
\(607\) 4737.24 8205.13i 0.316768 0.548659i −0.663043 0.748581i \(-0.730736\pi\)
0.979812 + 0.199922i \(0.0640688\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 27057.2 1.79151
\(612\) 0 0
\(613\) −3165.90 −0.208596 −0.104298 0.994546i \(-0.533260\pi\)
−0.104298 + 0.994546i \(0.533260\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −315.172 + 545.894i −0.0205646 + 0.0356189i −0.876125 0.482085i \(-0.839880\pi\)
0.855560 + 0.517704i \(0.173213\pi\)
\(618\) 0 0
\(619\) −586.272 1015.45i −0.0380683 0.0659362i 0.846364 0.532606i \(-0.178787\pi\)
−0.884432 + 0.466669i \(0.845454\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −2922.77 5062.39i −0.187959 0.325554i
\(624\) 0 0
\(625\) 9449.52 16367.1i 0.604769 1.04749i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9116.16 −0.577878
\(630\) 0 0
\(631\) 17925.9 1.13093 0.565465 0.824772i \(-0.308697\pi\)
0.565465 + 0.824772i \(0.308697\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −6245.22 + 10817.0i −0.390290 + 0.676001i
\(636\) 0 0
\(637\) −5271.68 9130.82i −0.327899 0.567938i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3348.43 5799.65i −0.206326 0.357367i 0.744228 0.667925i \(-0.232817\pi\)
−0.950554 + 0.310558i \(0.899484\pi\)
\(642\) 0 0
\(643\) 14845.5 25713.2i 0.910498 1.57703i 0.0971358 0.995271i \(-0.469032\pi\)
0.813362 0.581758i \(-0.197635\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 12607.6 0.766084 0.383042 0.923731i \(-0.374876\pi\)
0.383042 + 0.923731i \(0.374876\pi\)
\(648\) 0 0
\(649\) 28588.7 1.72913
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −469.730 + 813.596i −0.0281500 + 0.0487573i −0.879757 0.475423i \(-0.842295\pi\)
0.851607 + 0.524180i \(0.175628\pi\)
\(654\) 0 0
\(655\) −8635.12 14956.5i −0.515118 0.892210i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −6941.60 12023.2i −0.410328 0.710709i 0.584597 0.811324i \(-0.301253\pi\)
−0.994926 + 0.100614i \(0.967919\pi\)
\(660\) 0 0
\(661\) −4072.30 + 7053.42i −0.239628 + 0.415047i −0.960608 0.277909i \(-0.910359\pi\)
0.720980 + 0.692956i \(0.243692\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 18904.3 1.10237
\(666\) 0 0
\(667\) 50.8252 0.00295047
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1575.07 + 2728.10i −0.0906182 + 0.156955i
\(672\) 0 0
\(673\) 14461.2 + 25047.6i 0.828290 + 1.43464i 0.899379 + 0.437170i \(0.144019\pi\)
−0.0710895 + 0.997470i \(0.522648\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −13590.4 23539.3i −0.771524 1.33632i −0.936727 0.350060i \(-0.886161\pi\)
0.165203 0.986260i \(-0.447172\pi\)
\(678\) 0 0
\(679\) 6517.20 11288.1i 0.368346 0.637995i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7985.87 0.447395 0.223697 0.974659i \(-0.428187\pi\)
0.223697 + 0.974659i \(0.428187\pi\)
\(684\) 0 0
\(685\) 11550.8 0.644283
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1582.52 2741.01i 0.0875027 0.151559i
\(690\) 0 0
\(691\) −4625.03 8010.78i −0.254623 0.441020i 0.710170 0.704030i \(-0.248618\pi\)
−0.964793 + 0.263010i \(0.915285\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5214.11 9031.10i −0.284579 0.492905i
\(696\) 0 0
\(697\) −14594.3 + 25278.0i −0.793111 + 1.37371i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 10267.4 0.553201 0.276601 0.960985i \(-0.410792\pi\)
0.276601 + 0.960985i \(0.410792\pi\)
\(702\) 0 0
\(703\) −16144.5 −0.866146
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 633.236 1096.80i 0.0336850 0.0583441i
\(708\) 0 0
\(709\) −6979.33 12088.6i −0.369696 0.640332i 0.619822 0.784742i \(-0.287205\pi\)
−0.989518 + 0.144410i \(0.953871\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −22.6524 39.2351i −0.00118982 0.00206082i
\(714\) 0 0
\(715\) −19643.2 + 34023.0i −1.02743 + 1.77957i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −26373.7 −1.36798 −0.683988 0.729493i \(-0.739756\pi\)
−0.683988 + 0.729493i \(0.739756\pi\)
\(720\) 0 0
\(721\) 4576.55 0.236394
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4215.83 + 7302.04i −0.215962 + 0.374056i
\(726\) 0 0
\(727\) 4396.92 + 7615.69i 0.224309 + 0.388515i 0.956112 0.293002i \(-0.0946541\pi\)
−0.731803 + 0.681516i \(0.761321\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 226.149 + 391.701i 0.0114424 + 0.0198189i
\(732\) 0 0
\(733\) 5337.00 9243.95i 0.268931 0.465802i −0.699655 0.714481i \(-0.746663\pi\)
0.968586 + 0.248678i \(0.0799963\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 17907.7 0.895031
\(738\) 0 0
\(739\) −12678.1 −0.631084 −0.315542 0.948912i \(-0.602186\pi\)
−0.315542 + 0.948912i \(0.602186\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11055.6 19148.9i 0.545884 0.945499i −0.452666 0.891680i \(-0.649527\pi\)
0.998551 0.0538194i \(-0.0171395\pi\)
\(744\) 0 0
\(745\) 7387.10 + 12794.8i 0.363278 + 0.629216i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −7543.12 13065.1i −0.367984 0.637366i
\(750\) 0 0
\(751\) 11075.5 19183.4i 0.538151 0.932105i −0.460853 0.887477i \(-0.652456\pi\)
0.999004 0.0446283i \(-0.0142104\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8129.00 0.391847
\(756\) 0 0
\(757\) −25282.2 −1.21387 −0.606933 0.794753i \(-0.707601\pi\)
−0.606933 + 0.794753i \(0.707601\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5064.47 + 8771.91i −0.241244 + 0.417847i −0.961069 0.276309i \(-0.910889\pi\)
0.719825 + 0.694156i \(0.244222\pi\)
\(762\) 0 0
\(763\) 4226.50 + 7320.52i 0.200537 + 0.347340i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 24344.0 + 42165.0i 1.14604 + 1.98499i
\(768\) 0 0
\(769\) 12617.2 21853.7i 0.591663 1.02479i −0.402345 0.915488i \(-0.631805\pi\)
0.994009 0.109303i \(-0.0348618\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −30384.6 −1.41379 −0.706895 0.707319i \(-0.749904\pi\)
−0.706895 + 0.707319i \(0.749904\pi\)
\(774\) 0 0
\(775\) 7515.85 0.348358
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −25846.1 + 44766.8i −1.18875 + 2.05897i
\(780\) 0 0
\(781\) −15548.3 26930.4i −0.712371 1.23386i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 20971.4 + 36323.5i 0.953505 + 1.65152i
\(786\) 0 0
\(787\) −15072.3 + 26106.0i −0.682682 + 1.18244i 0.291478 + 0.956578i \(0.405853\pi\)
−0.974159 + 0.225862i \(0.927480\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −5903.01 −0.265344
\(792\) 0 0
\(793\) −5364.84 −0.240241
\(794\) 0 0