Properties

Label 108.4.b.b.107.5
Level 108
Weight 4
Character 108.107
Analytic conductor 6.372
Analytic rank 0
Dimension 12
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 108.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.37220628062\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Defining polynomial: \(x^{12} + 3 x^{10} - 12 x^{9} + 73 x^{8} - 12 x^{7} + 589 x^{6} + 84 x^{5} + 2452 x^{4} + 852 x^{3} + 6854 x^{2} - 888 x + 9496\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{14}\cdot 3^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 107.5
Root \(-0.453986 + 2.07664i\) of defining polynomial
Character \(\chi\) \(=\) 108.107
Dual form 108.4.b.b.107.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.419903 - 2.79708i) q^{2} +(-7.64736 + 2.34901i) q^{4} +1.49508i q^{5} +26.1852i q^{7} +(9.78152 + 20.4040i) q^{8} +O(q^{10})\) \(q+(-0.419903 - 2.79708i) q^{2} +(-7.64736 + 2.34901i) q^{4} +1.49508i q^{5} +26.1852i q^{7} +(9.78152 + 20.4040i) q^{8} +(4.18188 - 0.627790i) q^{10} +56.3941 q^{11} -41.3170 q^{13} +(73.2423 - 10.9953i) q^{14} +(52.9643 - 35.9274i) q^{16} +51.0410i q^{17} +79.0640i q^{19} +(-3.51196 - 11.4335i) q^{20} +(-23.6801 - 157.739i) q^{22} +27.3688 q^{23} +122.765 q^{25} +(17.3491 + 115.567i) q^{26} +(-61.5093 - 200.248i) q^{28} -134.567i q^{29} +187.192i q^{31} +(-122.732 - 133.060i) q^{32} +(142.766 - 21.4323i) q^{34} -39.1491 q^{35} -196.585 q^{37} +(221.149 - 33.1992i) q^{38} +(-30.5057 + 14.6242i) q^{40} +298.015i q^{41} +465.576i q^{43} +(-431.267 + 132.470i) q^{44} +(-11.4922 - 76.5529i) q^{46} -373.845 q^{47} -342.667 q^{49} +(-51.5492 - 343.383i) q^{50} +(315.966 - 97.0539i) q^{52} -620.093i q^{53} +84.3140i q^{55} +(-534.283 + 256.131i) q^{56} +(-376.396 + 56.5052i) q^{58} -321.152 q^{59} +674.699 q^{61} +(523.593 - 78.6026i) q^{62} +(-320.644 + 399.164i) q^{64} -61.7724i q^{65} -576.075i q^{67} +(-119.896 - 390.329i) q^{68} +(16.4388 + 109.503i) q^{70} +223.813 q^{71} +70.1371 q^{73} +(82.5465 + 549.864i) q^{74} +(-185.722 - 604.631i) q^{76} +1476.69i q^{77} -1052.32i q^{79} +(53.7145 + 79.1862i) q^{80} +(833.574 - 125.137i) q^{82} +1219.05 q^{83} -76.3107 q^{85} +(1302.26 - 195.497i) q^{86} +(551.621 + 1150.66i) q^{88} -1340.64i q^{89} -1081.89i q^{91} +(-209.299 + 64.2895i) q^{92} +(156.979 + 1045.68i) q^{94} -118.207 q^{95} -576.059 q^{97} +(143.887 + 958.467i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 6q^{4} + O(q^{10}) \) \( 12q + 6q^{4} + 42q^{10} - 72q^{13} + 114q^{16} + 66q^{22} - 384q^{25} - 282q^{28} - 324q^{34} - 240q^{37} + 774q^{40} + 1752q^{46} + 288q^{49} + 924q^{52} - 948q^{58} + 144q^{61} - 3066q^{64} - 3558q^{70} + 156q^{73} + 576q^{76} + 5832q^{82} - 168q^{85} + 5022q^{88} - 3444q^{94} + 516q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.419903 2.79708i −0.148458 0.988919i
\(3\) 0 0
\(4\) −7.64736 + 2.34901i −0.955920 + 0.293626i
\(5\) 1.49508i 0.133724i 0.997762 + 0.0668622i \(0.0212988\pi\)
−0.997762 + 0.0668622i \(0.978701\pi\)
\(6\) 0 0
\(7\) 26.1852i 1.41387i 0.707279 + 0.706935i \(0.249923\pi\)
−0.707279 + 0.706935i \(0.750077\pi\)
\(8\) 9.78152 + 20.4040i 0.432286 + 0.901736i
\(9\) 0 0
\(10\) 4.18188 0.627790i 0.132243 0.0198525i
\(11\) 56.3941 1.54577 0.772885 0.634546i \(-0.218813\pi\)
0.772885 + 0.634546i \(0.218813\pi\)
\(12\) 0 0
\(13\) −41.3170 −0.881482 −0.440741 0.897634i \(-0.645284\pi\)
−0.440741 + 0.897634i \(0.645284\pi\)
\(14\) 73.2423 10.9953i 1.39820 0.209900i
\(15\) 0 0
\(16\) 52.9643 35.9274i 0.827568 0.561366i
\(17\) 51.0410i 0.728192i 0.931361 + 0.364096i \(0.118622\pi\)
−0.931361 + 0.364096i \(0.881378\pi\)
\(18\) 0 0
\(19\) 79.0640i 0.954659i 0.878724 + 0.477330i \(0.158395\pi\)
−0.878724 + 0.477330i \(0.841605\pi\)
\(20\) −3.51196 11.4335i −0.0392650 0.127830i
\(21\) 0 0
\(22\) −23.6801 157.739i −0.229482 1.52864i
\(23\) 27.3688 0.248121 0.124061 0.992275i \(-0.460408\pi\)
0.124061 + 0.992275i \(0.460408\pi\)
\(24\) 0 0
\(25\) 122.765 0.982118
\(26\) 17.3491 + 115.567i 0.130863 + 0.871714i
\(27\) 0 0
\(28\) −61.5093 200.248i −0.415149 1.35155i
\(29\) 134.567i 0.861674i −0.902430 0.430837i \(-0.858218\pi\)
0.902430 0.430837i \(-0.141782\pi\)
\(30\) 0 0
\(31\) 187.192i 1.08454i 0.840204 + 0.542270i \(0.182435\pi\)
−0.840204 + 0.542270i \(0.817565\pi\)
\(32\) −122.732 133.060i −0.678004 0.735058i
\(33\) 0 0
\(34\) 142.766 21.4323i 0.720123 0.108106i
\(35\) −39.1491 −0.189069
\(36\) 0 0
\(37\) −196.585 −0.873469 −0.436734 0.899590i \(-0.643865\pi\)
−0.436734 + 0.899590i \(0.643865\pi\)
\(38\) 221.149 33.1992i 0.944081 0.141727i
\(39\) 0 0
\(40\) −30.5057 + 14.6242i −0.120584 + 0.0578072i
\(41\) 298.015i 1.13517i 0.823313 + 0.567587i \(0.192123\pi\)
−0.823313 + 0.567587i \(0.807877\pi\)
\(42\) 0 0
\(43\) 465.576i 1.65115i 0.564289 + 0.825577i \(0.309150\pi\)
−0.564289 + 0.825577i \(0.690850\pi\)
\(44\) −431.267 + 132.470i −1.47763 + 0.453878i
\(45\) 0 0
\(46\) −11.4922 76.5529i −0.0368356 0.245372i
\(47\) −373.845 −1.16023 −0.580116 0.814534i \(-0.696993\pi\)
−0.580116 + 0.814534i \(0.696993\pi\)
\(48\) 0 0
\(49\) −342.667 −0.999028
\(50\) −51.5492 343.383i −0.145803 0.971235i
\(51\) 0 0
\(52\) 315.966 97.0539i 0.842627 0.258826i
\(53\) 620.093i 1.60710i −0.595237 0.803550i \(-0.702942\pi\)
0.595237 0.803550i \(-0.297058\pi\)
\(54\) 0 0
\(55\) 84.3140i 0.206707i
\(56\) −534.283 + 256.131i −1.27494 + 0.611196i
\(57\) 0 0
\(58\) −376.396 + 56.5052i −0.852125 + 0.127922i
\(59\) −321.152 −0.708652 −0.354326 0.935122i \(-0.615290\pi\)
−0.354326 + 0.935122i \(0.615290\pi\)
\(60\) 0 0
\(61\) 674.699 1.41617 0.708085 0.706127i \(-0.249559\pi\)
0.708085 + 0.706127i \(0.249559\pi\)
\(62\) 523.593 78.6026i 1.07252 0.161009i
\(63\) 0 0
\(64\) −320.644 + 399.164i −0.626257 + 0.779616i
\(65\) 61.7724i 0.117876i
\(66\) 0 0
\(67\) 576.075i 1.05043i −0.850970 0.525215i \(-0.823985\pi\)
0.850970 0.525215i \(-0.176015\pi\)
\(68\) −119.896 390.329i −0.213816 0.696094i
\(69\) 0 0
\(70\) 16.4388 + 109.503i 0.0280688 + 0.186974i
\(71\) 223.813 0.374110 0.187055 0.982349i \(-0.440106\pi\)
0.187055 + 0.982349i \(0.440106\pi\)
\(72\) 0 0
\(73\) 70.1371 0.112451 0.0562255 0.998418i \(-0.482093\pi\)
0.0562255 + 0.998418i \(0.482093\pi\)
\(74\) 82.5465 + 549.864i 0.129673 + 0.863790i
\(75\) 0 0
\(76\) −185.722 604.631i −0.280313 0.912578i
\(77\) 1476.69i 2.18552i
\(78\) 0 0
\(79\) 1052.32i 1.49868i −0.662187 0.749338i \(-0.730372\pi\)
0.662187 0.749338i \(-0.269628\pi\)
\(80\) 53.7145 + 79.1862i 0.0750684 + 0.110666i
\(81\) 0 0
\(82\) 833.574 125.137i 1.12260 0.168526i
\(83\) 1219.05 1.61214 0.806070 0.591820i \(-0.201591\pi\)
0.806070 + 0.591820i \(0.201591\pi\)
\(84\) 0 0
\(85\) −76.3107 −0.0973771
\(86\) 1302.26 195.497i 1.63286 0.245127i
\(87\) 0 0
\(88\) 551.621 + 1150.66i 0.668215 + 1.39388i
\(89\) 1340.64i 1.59672i −0.602183 0.798358i \(-0.705702\pi\)
0.602183 0.798358i \(-0.294298\pi\)
\(90\) 0 0
\(91\) 1081.89i 1.24630i
\(92\) −209.299 + 64.2895i −0.237184 + 0.0728548i
\(93\) 0 0
\(94\) 156.979 + 1045.68i 0.172246 + 1.14737i
\(95\) −118.207 −0.127661
\(96\) 0 0
\(97\) −576.059 −0.602989 −0.301494 0.953468i \(-0.597485\pi\)
−0.301494 + 0.953468i \(0.597485\pi\)
\(98\) 143.887 + 958.467i 0.148314 + 0.987957i
\(99\) 0 0
\(100\) −938.826 + 288.375i −0.938826 + 0.288375i
\(101\) 116.079i 0.114359i −0.998364 0.0571797i \(-0.981789\pi\)
0.998364 0.0571797i \(-0.0182108\pi\)
\(102\) 0 0
\(103\) 165.074i 0.157915i −0.996878 0.0789573i \(-0.974841\pi\)
0.996878 0.0789573i \(-0.0251591\pi\)
\(104\) −404.143 843.030i −0.381052 0.794864i
\(105\) 0 0
\(106\) −1734.45 + 260.379i −1.58929 + 0.238587i
\(107\) 936.718 0.846318 0.423159 0.906056i \(-0.360921\pi\)
0.423159 + 0.906056i \(0.360921\pi\)
\(108\) 0 0
\(109\) 346.957 0.304885 0.152443 0.988312i \(-0.451286\pi\)
0.152443 + 0.988312i \(0.451286\pi\)
\(110\) 235.833 35.4037i 0.204417 0.0306874i
\(111\) 0 0
\(112\) 940.768 + 1386.88i 0.793698 + 1.17007i
\(113\) 1462.22i 1.21729i 0.793443 + 0.608645i \(0.208287\pi\)
−0.793443 + 0.608645i \(0.791713\pi\)
\(114\) 0 0
\(115\) 40.9187i 0.0331799i
\(116\) 316.100 + 1029.09i 0.253010 + 0.823691i
\(117\) 0 0
\(118\) 134.853 + 898.290i 0.105205 + 0.700799i
\(119\) −1336.52 −1.02957
\(120\) 0 0
\(121\) 1849.30 1.38941
\(122\) −283.308 1887.19i −0.210242 1.40048i
\(123\) 0 0
\(124\) −439.716 1431.53i −0.318449 1.03673i
\(125\) 370.429i 0.265058i
\(126\) 0 0
\(127\) 265.004i 0.185160i 0.995705 + 0.0925800i \(0.0295114\pi\)
−0.995705 + 0.0925800i \(0.970489\pi\)
\(128\) 1251.13 + 729.258i 0.863950 + 0.503577i
\(129\) 0 0
\(130\) −172.783 + 25.9384i −0.116569 + 0.0174996i
\(131\) 1151.86 0.768231 0.384115 0.923285i \(-0.374507\pi\)
0.384115 + 0.923285i \(0.374507\pi\)
\(132\) 0 0
\(133\) −2070.31 −1.34976
\(134\) −1611.33 + 241.896i −1.03879 + 0.155945i
\(135\) 0 0
\(136\) −1041.44 + 499.259i −0.656637 + 0.314787i
\(137\) 2348.67i 1.46467i −0.680943 0.732337i \(-0.738430\pi\)
0.680943 0.732337i \(-0.261570\pi\)
\(138\) 0 0
\(139\) 215.240i 0.131341i −0.997841 0.0656706i \(-0.979081\pi\)
0.997841 0.0656706i \(-0.0209187\pi\)
\(140\) 299.388 91.9616i 0.180735 0.0555155i
\(141\) 0 0
\(142\) −93.9799 626.025i −0.0555396 0.369964i
\(143\) −2330.04 −1.36257
\(144\) 0 0
\(145\) 201.190 0.115227
\(146\) −29.4508 196.179i −0.0166943 0.111205i
\(147\) 0 0
\(148\) 1503.36 461.779i 0.834967 0.256473i
\(149\) 219.954i 0.120935i −0.998170 0.0604674i \(-0.980741\pi\)
0.998170 0.0604674i \(-0.0192591\pi\)
\(150\) 0 0
\(151\) 1148.02i 0.618703i −0.950948 0.309351i \(-0.899888\pi\)
0.950948 0.309351i \(-0.100112\pi\)
\(152\) −1613.22 + 773.366i −0.860851 + 0.412686i
\(153\) 0 0
\(154\) 4130.44 620.068i 2.16130 0.324458i
\(155\) −279.869 −0.145030
\(156\) 0 0
\(157\) −276.320 −0.140463 −0.0702316 0.997531i \(-0.522374\pi\)
−0.0702316 + 0.997531i \(0.522374\pi\)
\(158\) −2943.43 + 441.873i −1.48207 + 0.222491i
\(159\) 0 0
\(160\) 198.936 183.495i 0.0982952 0.0906658i
\(161\) 716.659i 0.350811i
\(162\) 0 0
\(163\) 1419.15i 0.681941i 0.940074 + 0.340971i \(0.110756\pi\)
−0.940074 + 0.340971i \(0.889244\pi\)
\(164\) −700.040 2279.03i −0.333317 1.08514i
\(165\) 0 0
\(166\) −511.880 3409.77i −0.239335 1.59428i
\(167\) −3508.69 −1.62581 −0.812906 0.582394i \(-0.802116\pi\)
−0.812906 + 0.582394i \(0.802116\pi\)
\(168\) 0 0
\(169\) −489.908 −0.222990
\(170\) 32.0431 + 213.447i 0.0144564 + 0.0962980i
\(171\) 0 0
\(172\) −1093.64 3560.43i −0.484822 1.57837i
\(173\) 330.965i 0.145450i 0.997352 + 0.0727248i \(0.0231695\pi\)
−0.997352 + 0.0727248i \(0.976831\pi\)
\(174\) 0 0
\(175\) 3214.62i 1.38859i
\(176\) 2986.88 2026.10i 1.27923 0.867743i
\(177\) 0 0
\(178\) −3749.89 + 562.939i −1.57902 + 0.237045i
\(179\) 1136.75 0.474662 0.237331 0.971429i \(-0.423727\pi\)
0.237331 + 0.971429i \(0.423727\pi\)
\(180\) 0 0
\(181\) 2056.92 0.844692 0.422346 0.906435i \(-0.361207\pi\)
0.422346 + 0.906435i \(0.361207\pi\)
\(182\) −3026.15 + 454.291i −1.23249 + 0.185023i
\(183\) 0 0
\(184\) 267.709 + 558.432i 0.107259 + 0.223740i
\(185\) 293.911i 0.116804i
\(186\) 0 0
\(187\) 2878.42i 1.12562i
\(188\) 2858.93 878.164i 1.10909 0.340674i
\(189\) 0 0
\(190\) 49.6356 + 330.636i 0.0189523 + 0.126247i
\(191\) 1983.23 0.751316 0.375658 0.926758i \(-0.377417\pi\)
0.375658 + 0.926758i \(0.377417\pi\)
\(192\) 0 0
\(193\) −189.908 −0.0708283 −0.0354141 0.999373i \(-0.511275\pi\)
−0.0354141 + 0.999373i \(0.511275\pi\)
\(194\) 241.889 + 1611.29i 0.0895185 + 0.596307i
\(195\) 0 0
\(196\) 2620.50 804.926i 0.954991 0.293340i
\(197\) 2160.42i 0.781337i −0.920531 0.390669i \(-0.872244\pi\)
0.920531 0.390669i \(-0.127756\pi\)
\(198\) 0 0
\(199\) 2656.23i 0.946205i 0.881007 + 0.473103i \(0.156866\pi\)
−0.881007 + 0.473103i \(0.843134\pi\)
\(200\) 1200.83 + 2504.89i 0.424556 + 0.885611i
\(201\) 0 0
\(202\) −324.683 + 48.7419i −0.113092 + 0.0169776i
\(203\) 3523.68 1.21829
\(204\) 0 0
\(205\) −445.558 −0.151801
\(206\) −461.725 + 69.3149i −0.156165 + 0.0234437i
\(207\) 0 0
\(208\) −2188.33 + 1484.41i −0.729486 + 0.494834i
\(209\) 4458.75i 1.47568i
\(210\) 0 0
\(211\) 1001.20i 0.326662i 0.986571 + 0.163331i \(0.0522239\pi\)
−0.986571 + 0.163331i \(0.947776\pi\)
\(212\) 1456.60 + 4742.07i 0.471886 + 1.53626i
\(213\) 0 0
\(214\) −393.331 2620.08i −0.125643 0.836939i
\(215\) −696.075 −0.220800
\(216\) 0 0
\(217\) −4901.68 −1.53340
\(218\) −145.688 970.469i −0.0452626 0.301507i
\(219\) 0 0
\(220\) −198.054 644.780i −0.0606946 0.197596i
\(221\) 2108.86i 0.641888i
\(222\) 0 0
\(223\) 3193.62i 0.959015i 0.877538 + 0.479507i \(0.159185\pi\)
−0.877538 + 0.479507i \(0.840815\pi\)
\(224\) 3484.20 3213.76i 1.03928 0.958610i
\(225\) 0 0
\(226\) 4089.94 613.989i 1.20380 0.180717i
\(227\) 1714.72 0.501366 0.250683 0.968069i \(-0.419345\pi\)
0.250683 + 0.968069i \(0.419345\pi\)
\(228\) 0 0
\(229\) −407.497 −0.117590 −0.0587951 0.998270i \(-0.518726\pi\)
−0.0587951 + 0.998270i \(0.518726\pi\)
\(230\) 114.453 17.1819i 0.0328122 0.00492582i
\(231\) 0 0
\(232\) 2745.71 1316.27i 0.777003 0.372490i
\(233\) 3210.54i 0.902702i 0.892346 + 0.451351i \(0.149058\pi\)
−0.892346 + 0.451351i \(0.850942\pi\)
\(234\) 0 0
\(235\) 558.930i 0.155151i
\(236\) 2455.97 754.389i 0.677415 0.208079i
\(237\) 0 0
\(238\) 561.209 + 3738.36i 0.152848 + 1.01816i
\(239\) −1561.19 −0.422532 −0.211266 0.977429i \(-0.567759\pi\)
−0.211266 + 0.977429i \(0.567759\pi\)
\(240\) 0 0
\(241\) 1460.89 0.390475 0.195238 0.980756i \(-0.437452\pi\)
0.195238 + 0.980756i \(0.437452\pi\)
\(242\) −776.526 5172.65i −0.206269 1.37401i
\(243\) 0 0
\(244\) −5159.67 + 1584.87i −1.35375 + 0.415824i
\(245\) 512.316i 0.133594i
\(246\) 0 0
\(247\) 3266.69i 0.841515i
\(248\) −3819.47 + 1831.03i −0.977970 + 0.468832i
\(249\) 0 0
\(250\) 1036.12 155.544i 0.262120 0.0393499i
\(251\) 6868.44 1.72722 0.863609 0.504162i \(-0.168198\pi\)
0.863609 + 0.504162i \(0.168198\pi\)
\(252\) 0 0
\(253\) 1543.44 0.383539
\(254\) 741.239 111.276i 0.183108 0.0274885i
\(255\) 0 0
\(256\) 1514.44 3805.74i 0.369737 0.929137i
\(257\) 4450.84i 1.08029i −0.841570 0.540147i \(-0.818368\pi\)
0.841570 0.540147i \(-0.181632\pi\)
\(258\) 0 0
\(259\) 5147.62i 1.23497i
\(260\) 145.104 + 472.396i 0.0346114 + 0.112680i
\(261\) 0 0
\(262\) −483.668 3221.84i −0.114050 0.759718i
\(263\) −6525.31 −1.52991 −0.764957 0.644081i \(-0.777240\pi\)
−0.764957 + 0.644081i \(0.777240\pi\)
\(264\) 0 0
\(265\) 927.091 0.214909
\(266\) 869.329 + 5790.83i 0.200383 + 1.33481i
\(267\) 0 0
\(268\) 1353.20 + 4405.46i 0.308433 + 1.00413i
\(269\) 3222.22i 0.730343i 0.930940 + 0.365171i \(0.118990\pi\)
−0.930940 + 0.365171i \(0.881010\pi\)
\(270\) 0 0
\(271\) 7368.93i 1.65177i −0.563837 0.825886i \(-0.690675\pi\)
0.563837 0.825886i \(-0.309325\pi\)
\(272\) 1833.77 + 2703.35i 0.408782 + 0.602628i
\(273\) 0 0
\(274\) −6569.42 + 986.212i −1.44844 + 0.217443i
\(275\) 6923.21 1.51813
\(276\) 0 0
\(277\) 9078.61 1.96924 0.984622 0.174699i \(-0.0558952\pi\)
0.984622 + 0.174699i \(0.0558952\pi\)
\(278\) −602.045 + 90.3800i −0.129886 + 0.0194987i
\(279\) 0 0
\(280\) −382.938 798.798i −0.0817319 0.170490i
\(281\) 2613.34i 0.554801i 0.960754 + 0.277400i \(0.0894729\pi\)
−0.960754 + 0.277400i \(0.910527\pi\)
\(282\) 0 0
\(283\) 927.970i 0.194919i −0.995239 0.0974596i \(-0.968928\pi\)
0.995239 0.0974596i \(-0.0310717\pi\)
\(284\) −1711.58 + 525.739i −0.357619 + 0.109848i
\(285\) 0 0
\(286\) 978.388 + 6517.31i 0.202284 + 1.34747i
\(287\) −7803.60 −1.60499
\(288\) 0 0
\(289\) 2307.81 0.469736
\(290\) −84.4801 562.745i −0.0171064 0.113950i
\(291\) 0 0
\(292\) −536.364 + 164.753i −0.107494 + 0.0330185i
\(293\) 5351.73i 1.06707i −0.845778 0.533535i \(-0.820863\pi\)
0.845778 0.533535i \(-0.179137\pi\)
\(294\) 0 0
\(295\) 480.150i 0.0947641i
\(296\) −1922.90 4011.11i −0.377589 0.787639i
\(297\) 0 0
\(298\) −615.229 + 92.3591i −0.119595 + 0.0179538i
\(299\) −1130.80 −0.218714
\(300\) 0 0
\(301\) −12191.2 −2.33452
\(302\) −3211.10 + 482.055i −0.611847 + 0.0918514i
\(303\) 0 0
\(304\) 2840.57 + 4187.57i 0.535913 + 0.790045i
\(305\) 1008.73i 0.189377i
\(306\) 0 0
\(307\) 1892.38i 0.351804i 0.984408 + 0.175902i \(0.0562842\pi\)
−0.984408 + 0.175902i \(0.943716\pi\)
\(308\) −3468.76 11292.8i −0.641725 2.08918i
\(309\) 0 0
\(310\) 117.518 + 782.816i 0.0215308 + 0.143422i
\(311\) −5645.22 −1.02930 −0.514648 0.857402i \(-0.672077\pi\)
−0.514648 + 0.857402i \(0.672077\pi\)
\(312\) 0 0
\(313\) −818.001 −0.147719 −0.0738597 0.997269i \(-0.523532\pi\)
−0.0738597 + 0.997269i \(0.523532\pi\)
\(314\) 116.027 + 772.890i 0.0208529 + 0.138907i
\(315\) 0 0
\(316\) 2471.91 + 8047.49i 0.440050 + 1.43262i
\(317\) 1946.72i 0.344917i 0.985017 + 0.172458i \(0.0551710\pi\)
−0.985017 + 0.172458i \(0.944829\pi\)
\(318\) 0 0
\(319\) 7588.81i 1.33195i
\(320\) −596.784 479.390i −0.104254 0.0837459i
\(321\) 0 0
\(322\) 2004.55 300.927i 0.346924 0.0520807i
\(323\) −4035.51 −0.695176
\(324\) 0 0
\(325\) −5072.27 −0.865719
\(326\) 3969.48 595.905i 0.674385 0.101240i
\(327\) 0 0
\(328\) −6080.69 + 2915.04i −1.02363 + 0.490720i
\(329\) 9789.22i 1.64042i
\(330\) 0 0
\(331\) 3404.83i 0.565396i −0.959209 0.282698i \(-0.908771\pi\)
0.959209 0.282698i \(-0.0912295\pi\)
\(332\) −9322.48 + 2863.55i −1.54108 + 0.473366i
\(333\) 0 0
\(334\) 1473.31 + 9814.11i 0.241365 + 1.60780i
\(335\) 861.281 0.140468
\(336\) 0 0
\(337\) 7072.15 1.14316 0.571579 0.820547i \(-0.306331\pi\)
0.571579 + 0.820547i \(0.306331\pi\)
\(338\) 205.714 + 1370.31i 0.0331046 + 0.220519i
\(339\) 0 0
\(340\) 583.575 179.254i 0.0930848 0.0285924i
\(341\) 10556.6i 1.67645i
\(342\) 0 0
\(343\) 8.73194i 0.00137458i
\(344\) −9499.60 + 4554.04i −1.48891 + 0.713771i
\(345\) 0 0
\(346\) 925.736 138.973i 0.143838 0.0215932i
\(347\) −5783.02 −0.894665 −0.447332 0.894368i \(-0.647626\pi\)
−0.447332 + 0.894368i \(0.647626\pi\)
\(348\) 0 0
\(349\) 1748.60 0.268196 0.134098 0.990968i \(-0.457186\pi\)
0.134098 + 0.990968i \(0.457186\pi\)
\(350\) 8991.57 1349.83i 1.37320 0.206147i
\(351\) 0 0
\(352\) −6921.36 7503.79i −1.04804 1.13623i
\(353\) 9552.31i 1.44028i −0.693830 0.720139i \(-0.744078\pi\)
0.693830 0.720139i \(-0.255922\pi\)
\(354\) 0 0
\(355\) 334.620i 0.0500276i
\(356\) 3149.18 + 10252.4i 0.468837 + 1.52633i
\(357\) 0 0
\(358\) −477.323 3179.58i −0.0704673 0.469402i
\(359\) −921.392 −0.135457 −0.0677287 0.997704i \(-0.521575\pi\)
−0.0677287 + 0.997704i \(0.521575\pi\)
\(360\) 0 0
\(361\) 607.881 0.0886254
\(362\) −863.704 5753.37i −0.125401 0.835332i
\(363\) 0 0
\(364\) 2541.38 + 8273.64i 0.365946 + 1.19136i
\(365\) 104.861i 0.0150375i
\(366\) 0 0
\(367\) 8490.66i 1.20765i 0.797115 + 0.603827i \(0.206358\pi\)
−0.797115 + 0.603827i \(0.793642\pi\)
\(368\) 1449.57 983.291i 0.205337 0.139287i
\(369\) 0 0
\(370\) −822.094 + 123.414i −0.115510 + 0.0173405i
\(371\) 16237.3 2.27223
\(372\) 0 0
\(373\) 2824.92 0.392142 0.196071 0.980590i \(-0.437182\pi\)
0.196071 + 0.980590i \(0.437182\pi\)
\(374\) 8051.17 1208.65i 1.11314 0.167107i
\(375\) 0 0
\(376\) −3656.77 7627.92i −0.501552 1.04622i
\(377\) 5559.92i 0.759550i
\(378\) 0 0
\(379\) 5322.35i 0.721348i −0.932692 0.360674i \(-0.882547\pi\)
0.932692 0.360674i \(-0.117453\pi\)
\(380\) 903.975 277.670i 0.122034 0.0374847i
\(381\) 0 0
\(382\) −832.763 5547.26i −0.111539 0.742990i
\(383\) 8320.49 1.11007 0.555035 0.831827i \(-0.312705\pi\)
0.555035 + 0.831827i \(0.312705\pi\)
\(384\) 0 0
\(385\) −2207.78 −0.292257
\(386\) 79.7428 + 531.188i 0.0105150 + 0.0700434i
\(387\) 0 0
\(388\) 4405.33 1353.17i 0.576409 0.177053i
\(389\) 8358.52i 1.08944i 0.838617 + 0.544722i \(0.183365\pi\)
−0.838617 + 0.544722i \(0.816635\pi\)
\(390\) 0 0
\(391\) 1396.93i 0.180680i
\(392\) −3351.80 6991.76i −0.431866 0.900860i
\(393\) 0 0
\(394\) −6042.87 + 907.166i −0.772679 + 0.115996i
\(395\) 1573.31 0.200410
\(396\) 0 0
\(397\) 7283.17 0.920735 0.460367 0.887728i \(-0.347718\pi\)
0.460367 + 0.887728i \(0.347718\pi\)
\(398\) 7429.69 1115.36i 0.935720 0.140472i
\(399\) 0 0
\(400\) 6502.15 4410.62i 0.812769 0.551327i
\(401\) 1549.41i 0.192952i 0.995335 + 0.0964759i \(0.0307571\pi\)
−0.995335 + 0.0964759i \(0.969243\pi\)
\(402\) 0 0
\(403\) 7734.22i 0.956003i
\(404\) 272.671 + 887.699i 0.0335789 + 0.109318i
\(405\) 0 0
\(406\) −1479.60 9856.03i −0.180866 1.20479i
\(407\) −11086.2 −1.35018
\(408\) 0 0
\(409\) 3291.67 0.397952 0.198976 0.980004i \(-0.436238\pi\)
0.198976 + 0.980004i \(0.436238\pi\)
\(410\) 187.091 + 1246.26i 0.0225360 + 0.150118i
\(411\) 0 0
\(412\) 387.759 + 1262.38i 0.0463678 + 0.150954i
\(413\) 8409.45i 1.00194i
\(414\) 0 0
\(415\) 1822.58i 0.215583i
\(416\) 5070.91 + 5497.62i 0.597649 + 0.647940i
\(417\) 0 0
\(418\) 12471.5 1872.24i 1.45933 0.219077i
\(419\) 5299.78 0.617927 0.308964 0.951074i \(-0.400018\pi\)
0.308964 + 0.951074i \(0.400018\pi\)
\(420\) 0 0
\(421\) −10681.4 −1.23653 −0.618265 0.785970i \(-0.712164\pi\)
−0.618265 + 0.785970i \(0.712164\pi\)
\(422\) 2800.45 420.408i 0.323042 0.0484956i
\(423\) 0 0
\(424\) 12652.4 6065.45i 1.44918 0.694727i
\(425\) 6266.04i 0.715170i
\(426\) 0 0
\(427\) 17667.2i 2.00228i
\(428\) −7163.43 + 2200.36i −0.809012 + 0.248501i
\(429\) 0 0
\(430\) 292.284 + 1946.98i 0.0327795 + 0.218353i
\(431\) 9866.13 1.10263 0.551316 0.834296i \(-0.314126\pi\)
0.551316 + 0.834296i \(0.314126\pi\)
\(432\) 0 0
\(433\) −12560.2 −1.39400 −0.697002 0.717069i \(-0.745483\pi\)
−0.697002 + 0.717069i \(0.745483\pi\)
\(434\) 2058.23 + 13710.4i 0.227645 + 1.51641i
\(435\) 0 0
\(436\) −2653.31 + 815.005i −0.291446 + 0.0895221i
\(437\) 2163.89i 0.236871i
\(438\) 0 0
\(439\) 929.228i 0.101024i 0.998723 + 0.0505121i \(0.0160854\pi\)
−0.998723 + 0.0505121i \(0.983915\pi\)
\(440\) −1720.34 + 824.719i −0.186396 + 0.0893567i
\(441\) 0 0
\(442\) −5898.66 + 885.516i −0.634775 + 0.0952935i
\(443\) −4373.85 −0.469092 −0.234546 0.972105i \(-0.575360\pi\)
−0.234546 + 0.972105i \(0.575360\pi\)
\(444\) 0 0
\(445\) 2004.37 0.213520
\(446\) 8932.81 1341.01i 0.948388 0.142373i
\(447\) 0 0
\(448\) −10452.2 8396.13i −1.10228 0.885446i
\(449\) 14149.5i 1.48721i −0.668618 0.743606i \(-0.733114\pi\)
0.668618 0.743606i \(-0.266886\pi\)
\(450\) 0 0
\(451\) 16806.3i 1.75472i
\(452\) −3434.76 11182.1i −0.357428 1.16363i
\(453\) 0 0
\(454\) −720.017 4796.22i −0.0744319 0.495810i
\(455\) 1617.52 0.166661
\(456\) 0 0
\(457\) −12582.4 −1.28792 −0.643960 0.765059i \(-0.722710\pi\)
−0.643960 + 0.765059i \(0.722710\pi\)
\(458\) 171.109 + 1139.80i 0.0174572 + 0.116287i
\(459\) 0 0
\(460\) −96.1183 312.920i −0.00974247 0.0317173i
\(461\) 10602.2i 1.07114i −0.844492 0.535568i \(-0.820098\pi\)
0.844492 0.535568i \(-0.179902\pi\)
\(462\) 0 0
\(463\) 5080.88i 0.509997i 0.966941 + 0.254999i \(0.0820750\pi\)
−0.966941 + 0.254999i \(0.917925\pi\)
\(464\) −4834.66 7127.27i −0.483714 0.713093i
\(465\) 0 0
\(466\) 8980.16 1348.12i 0.892699 0.134013i
\(467\) 6903.92 0.684102 0.342051 0.939681i \(-0.388879\pi\)
0.342051 + 0.939681i \(0.388879\pi\)
\(468\) 0 0
\(469\) 15084.7 1.48517
\(470\) −1563.37 + 234.696i −0.153432 + 0.0230335i
\(471\) 0 0
\(472\) −3141.36 6552.78i −0.306341 0.639017i
\(473\) 26255.8i 2.55231i
\(474\) 0 0
\(475\) 9706.27i 0.937588i
\(476\) 10220.9 3139.50i 0.984186 0.302308i
\(477\) 0 0
\(478\) 655.548 + 4366.78i 0.0627282 + 0.417849i
\(479\) −5114.56 −0.487871 −0.243936 0.969791i \(-0.578439\pi\)
−0.243936 + 0.969791i \(0.578439\pi\)
\(480\) 0 0
\(481\) 8122.29 0.769947
\(482\) −613.434 4086.25i −0.0579692 0.386148i
\(483\) 0 0
\(484\) −14142.3 + 4344.02i −1.32816 + 0.407966i
\(485\) 861.257i 0.0806344i
\(486\) 0 0
\(487\) 15594.2i 1.45101i 0.688218 + 0.725504i \(0.258393\pi\)
−0.688218 + 0.725504i \(0.741607\pi\)
\(488\) 6599.58 + 13766.5i 0.612191 + 1.27701i
\(489\) 0 0
\(490\) −1432.99 + 215.123i −0.132114 + 0.0198332i
\(491\) −10521.0 −0.967023 −0.483511 0.875338i \(-0.660639\pi\)
−0.483511 + 0.875338i \(0.660639\pi\)
\(492\) 0 0
\(493\) 6868.46 0.627464
\(494\) −9137.20 + 1371.69i −0.832190 + 0.124930i
\(495\) 0 0
\(496\) 6725.34 + 9914.52i 0.608824 + 0.897531i
\(497\) 5860.61i 0.528942i
\(498\) 0 0
\(499\) 8984.43i 0.806009i −0.915198 0.403004i \(-0.867966\pi\)
0.915198 0.403004i \(-0.132034\pi\)
\(500\) −870.141 2832.81i −0.0778278 0.253374i
\(501\) 0 0
\(502\) −2884.08 19211.6i −0.256420 1.70808i
\(503\) −4299.12 −0.381090 −0.190545 0.981678i \(-0.561026\pi\)
−0.190545 + 0.981678i \(0.561026\pi\)
\(504\) 0 0
\(505\) 173.548 0.0152926
\(506\) −648.095 4317.13i −0.0569394 0.379288i
\(507\) 0 0
\(508\) −622.497 2026.58i −0.0543678 0.176998i
\(509\) 2984.83i 0.259922i −0.991519 0.129961i \(-0.958515\pi\)
0.991519 0.129961i \(-0.0414853\pi\)
\(510\) 0 0
\(511\) 1836.56i 0.158991i
\(512\) −11280.9 2637.98i −0.973731 0.227702i
\(513\) 0 0
\(514\) −12449.4 + 1868.92i −1.06832 + 0.160378i
\(515\) 246.799 0.0211170
\(516\) 0 0
\(517\) −21082.7 −1.79345
\(518\) −14398.3 + 2161.50i −1.22129 + 0.183341i
\(519\) 0 0
\(520\) 1260.40 604.228i 0.106293 0.0509560i
\(521\) 12255.7i 1.03058i −0.857016 0.515290i \(-0.827684\pi\)
0.857016 0.515290i \(-0.172316\pi\)
\(522\) 0 0
\(523\) 15148.5i 1.26654i −0.773932 0.633269i \(-0.781713\pi\)
0.773932 0.633269i \(-0.218287\pi\)
\(524\) −8808.67 + 2705.72i −0.734367 + 0.225572i
\(525\) 0 0
\(526\) 2739.99 + 18251.8i 0.227128 + 1.51296i
\(527\) −9554.49 −0.789754
\(528\) 0 0
\(529\) −11417.9 −0.938436
\(530\) −389.288 2593.15i −0.0319049 0.212527i
\(531\) 0 0
\(532\) 15832.4 4863.17i 1.29027 0.396326i
\(533\) 12313.1i 1.00064i
\(534\) 0 0
\(535\) 1400.47i 0.113173i
\(536\) 11754.2 5634.89i 0.947211 0.454086i
\(537\) 0 0
\(538\) 9012.82 1353.02i 0.722250 0.108425i
\(539\) −19324.4 −1.54427
\(540\) 0 0
\(541\) 5723.84 0.454875 0.227437 0.973793i \(-0.426965\pi\)
0.227437 + 0.973793i \(0.426965\pi\)
\(542\) −20611.5 + 3094.23i −1.63347 + 0.245219i
\(543\) 0 0
\(544\) 6791.50 6264.36i 0.535263 0.493717i
\(545\) 518.730i 0.0407706i
\(546\) 0 0
\(547\) 8367.43i 0.654051i 0.945016 + 0.327025i \(0.106046\pi\)
−0.945016 + 0.327025i \(0.893954\pi\)
\(548\) 5517.04 + 17961.1i 0.430066 + 1.40011i
\(549\) 0 0
\(550\) −2907.08 19364.8i −0.225378 1.50131i
\(551\) 10639.4 0.822605
\(552\) 0 0
\(553\) 27555.3 2.11893
\(554\) −3812.13 25393.6i −0.292350 1.94742i
\(555\) 0 0
\(556\) 505.601 + 1646.02i 0.0385652 + 0.125552i
\(557\) 15824.2i 1.20375i −0.798589 0.601877i \(-0.794420\pi\)
0.798589 0.601877i \(-0.205580\pi\)
\(558\) 0 0
\(559\) 19236.2i 1.45546i
\(560\) −2073.51 + 1406.53i −0.156467 + 0.106137i
\(561\) 0 0
\(562\) 7309.74 1097.35i 0.548653 0.0823647i
\(563\) −2781.72 −0.208233 −0.104117 0.994565i \(-0.533202\pi\)
−0.104117 + 0.994565i \(0.533202\pi\)
\(564\) 0 0
\(565\) −2186.14 −0.162781
\(566\) −2595.61 + 389.657i −0.192759 + 0.0289373i
\(567\) 0 0
\(568\) 2189.24 + 4566.68i 0.161722 + 0.337348i
\(569\) 4687.63i 0.345370i −0.984977 0.172685i \(-0.944756\pi\)
0.984977 0.172685i \(-0.0552443\pi\)
\(570\) 0 0
\(571\) 15169.4i 1.11177i −0.831259 0.555885i \(-0.812379\pi\)
0.831259 0.555885i \(-0.187621\pi\)
\(572\) 17818.6 5473.27i 1.30251 0.400085i
\(573\) 0 0
\(574\) 3276.75 + 21827.3i 0.238274 + 1.58720i
\(575\) 3359.92 0.243684
\(576\) 0 0
\(577\) −14452.3 −1.04273 −0.521367 0.853332i \(-0.674578\pi\)
−0.521367 + 0.853332i \(0.674578\pi\)
\(578\) −969.057 6455.15i −0.0697361 0.464531i
\(579\) 0 0
\(580\) −1538.57 + 472.596i −0.110148 + 0.0338336i
\(581\) 31921.0i 2.27936i
\(582\) 0 0
\(583\) 34969.6i 2.48421i
\(584\) 686.047 + 1431.07i 0.0486110 + 0.101401i
\(585\) 0 0
\(586\) −14969.3 + 2247.21i −1.05525 + 0.158415i
\(587\) −7405.55 −0.520715 −0.260358 0.965512i \(-0.583840\pi\)
−0.260358 + 0.965512i \(0.583840\pi\)
\(588\) 0 0
\(589\) −14800.2 −1.03537
\(590\) −1343.02 + 201.616i −0.0937140 + 0.0140685i
\(591\) 0 0
\(592\) −10412.0 + 7062.79i −0.722855 + 0.490336i
\(593\) 19888.1i 1.37725i 0.725120 + 0.688623i \(0.241784\pi\)
−0.725120 + 0.688623i \(0.758216\pi\)
\(594\) 0 0
\(595\) 1998.21i 0.137679i
\(596\) 516.672 + 1682.06i 0.0355096 + 0.115604i
\(597\) 0 0
\(598\) 474.824 + 3162.93i 0.0324699 + 0.216291i
\(599\) −2335.49 −0.159308 −0.0796539 0.996823i \(-0.525382\pi\)
−0.0796539 + 0.996823i \(0.525382\pi\)
\(600\) 0 0
\(601\) 24547.9 1.66611 0.833054 0.553192i \(-0.186590\pi\)
0.833054 + 0.553192i \(0.186590\pi\)
\(602\) 5119.12 + 34099.9i 0.346578 + 2.30865i
\(603\) 0 0
\(604\) 2696.70 + 8779.29i 0.181667 + 0.591431i
\(605\) 2764.86i 0.185798i
\(606\) 0 0
\(607\) 18328.9i 1.22561i 0.790233 + 0.612806i \(0.209959\pi\)
−0.790233 + 0.612806i \(0.790041\pi\)
\(608\) 10520.2 9703.68i 0.701730 0.647263i
\(609\) 0 0
\(610\) 2821.51 423.570i 0.187278 0.0281145i
\(611\) 15446.1 1.02272
\(612\) 0 0
\(613\) 6450.01 0.424981 0.212491 0.977163i \(-0.431843\pi\)
0.212491 + 0.977163i \(0.431843\pi\)
\(614\) 5293.15 794.616i 0.347906 0.0522282i
\(615\) 0 0
\(616\) −30130.4 + 14444.3i −1.97076 + 0.944769i
\(617\) 6724.96i 0.438795i −0.975636 0.219398i \(-0.929591\pi\)
0.975636 0.219398i \(-0.0704092\pi\)
\(618\) 0 0
\(619\) 3136.55i 0.203665i −0.994802 0.101832i \(-0.967529\pi\)
0.994802 0.101832i \(-0.0324705\pi\)
\(620\) 2140.26 657.413i 0.138637 0.0425844i
\(621\) 0 0
\(622\) 2370.44 + 15790.2i 0.152807 + 1.01789i
\(623\) 35105.0 2.25755
\(624\) 0 0
\(625\) 14791.8 0.946673
\(626\) 343.481 + 2288.02i 0.0219301 + 0.146082i
\(627\) 0 0
\(628\) 2113.12 649.077i 0.134272 0.0412436i
\(629\) 10033.9i 0.636053i
\(630\) 0 0
\(631\) 6061.57i 0.382420i 0.981549 + 0.191210i \(0.0612412\pi\)
−0.981549 + 0.191210i \(0.938759\pi\)
\(632\) 21471.5 10293.3i 1.35141 0.647857i
\(633\) 0 0
\(634\) 5445.14 817.433i 0.341095 0.0512057i
\(635\) −396.204 −0.0247604
\(636\) 0 0
\(637\) 14157.9 0.880625
\(638\) −21226.6 + 3186.56i −1.31719 + 0.197739i
\(639\) 0 0
\(640\) −1090.30 + 1870.55i −0.0673406 + 0.115531i
\(641\) 18603.3i 1.14631i −0.819446 0.573157i \(-0.805719\pi\)
0.819446 0.573157i \(-0.194281\pi\)
\(642\) 0 0
\(643\) 21602.4i 1.32491i −0.749103 0.662453i \(-0.769515\pi\)
0.749103 0.662453i \(-0.230485\pi\)
\(644\) −1683.44 5480.55i −0.103007 0.335348i
\(645\) 0 0
\(646\) 1694.52 + 11287.7i 0.103204 + 0.687472i
\(647\) 672.754 0.0408790 0.0204395 0.999791i \(-0.493493\pi\)
0.0204395 + 0.999791i \(0.493493\pi\)
\(648\) 0 0
\(649\) −18111.1 −1.09541
\(650\) 2129.86 + 14187.6i 0.128523 + 0.856126i
\(651\) 0 0
\(652\) −3333.59 10852.8i −0.200236 0.651882i
\(653\) 3322.88i 0.199134i 0.995031 + 0.0995668i \(0.0317457\pi\)
−0.995031 + 0.0995668i \(0.968254\pi\)
\(654\) 0 0
\(655\) 1722.12i 0.102731i
\(656\) 10706.9 + 15784.2i 0.637248 + 0.939434i
\(657\) 0 0
\(658\) −27381.3 + 4110.52i −1.62224 + 0.243533i
\(659\) −25093.7 −1.48332 −0.741662 0.670773i \(-0.765962\pi\)
−0.741662 + 0.670773i \(0.765962\pi\)
\(660\) 0 0
\(661\) −28966.3 −1.70447 −0.852237 0.523157i \(-0.824754\pi\)
−0.852237 + 0.523157i \(0.824754\pi\)
\(662\) −9523.59 + 1429.70i −0.559131 + 0.0839376i
\(663\) 0 0
\(664\) 11924.1 + 24873.4i 0.696906 + 1.45373i
\(665\) 3095.29i 0.180496i
\(666\) 0 0
\(667\) 3682.95i 0.213800i
\(668\) 26832.2 8241.94i 1.55415 0.477381i
\(669\) 0 0
\(670\) −361.654 2409.08i −0.0208536 0.138912i
\(671\) 38049.1 2.18907
\(672\) 0 0
\(673\) −4710.36 −0.269793 −0.134897 0.990860i \(-0.543070\pi\)
−0.134897 + 0.990860i \(0.543070\pi\)
\(674\) −2969.62 19781.4i −0.169711 1.13049i
\(675\) 0 0
\(676\) 3746.51 1150.80i 0.213160 0.0654755i
\(677\) 4784.53i 0.271617i −0.990735 0.135808i \(-0.956637\pi\)
0.990735 0.135808i \(-0.0433631\pi\)
\(678\) 0 0
\(679\) 15084.2i 0.852548i
\(680\) −746.434 1557.04i −0.0420948 0.0878085i
\(681\) 0 0
\(682\) 29527.6 4432.73i 1.65787 0.248883i
\(683\) −18019.8 −1.00953 −0.504764 0.863258i \(-0.668420\pi\)
−0.504764 + 0.863258i \(0.668420\pi\)
\(684\) 0 0
\(685\) 3511.46 0.195863
\(686\) 24.4240 3.66657i 0.00135935 0.000204067i
\(687\) 0 0
\(688\) 16726.9 + 24658.9i 0.926902 + 1.36644i
\(689\) 25620.4i 1.41663i
\(690\) 0 0
\(691\) 16956.5i 0.933511i 0.884386 + 0.466756i \(0.154577\pi\)
−0.884386 + 0.466756i \(0.845423\pi\)
\(692\) −777.439 2531.01i −0.0427078 0.139038i
\(693\) 0 0
\(694\) 2428.31 + 16175.6i 0.132820 + 0.884751i
\(695\) 321.802 0.0175635
\(696\) 0 0
\(697\) −15211.0 −0.826625
\(698\) −734.243 4890.99i −0.0398159 0.265225i
\(699\) 0 0
\(700\) −7551.17 24583.4i −0.407725 1.32738i
\(701\) 30620.5i 1.64982i 0.565266 + 0.824909i \(0.308774\pi\)
−0.565266 + 0.824909i \(0.691226\pi\)
\(702\) 0 0
\(703\) 15542.8i 0.833865i
\(704\) −18082.4 + 22510.5i −0.968050 + 1.20511i
\(705\) 0 0
\(706\) −26718.6 + 4011.04i −1.42432 + 0.213821i
\(707\) 3039.56 0.161689
\(708\) 0 0
\(709\) 24192.8 1.28149 0.640747 0.767752i \(-0.278625\pi\)
0.640747 + 0.767752i \(0.278625\pi\)
\(710\) 935.961 140.508i 0.0494732 0.00742700i
\(711\) 0 0
\(712\) 27354.4 13113.5i 1.43982 0.690238i
\(713\) 5123.23i 0.269098i
\(714\) 0 0
\(715\) 3483.60i 0.182209i
\(716\) −8693.11 + 2670.23i −0.453739 + 0.139373i
\(717\) 0 0
\(718\) 386.895 + 2577.21i 0.0201098 + 0.133956i
\(719\) 37146.6 1.92675 0.963377 0.268151i \(-0.0864124\pi\)
0.963377 + 0.268151i \(0.0864124\pi\)
\(720\) 0 0
\(721\) 4322.49 0.223271
\(722\) −255.251 1700.30i −0.0131571 0.0876433i
\(723\) 0 0
\(724\) −15730.0 + 4831.71i −0.807459 + 0.248024i
\(725\) 16520.1i 0.846265i
\(726\) 0 0
\(727\) 14614.3i 0.745551i 0.927922 + 0.372775i \(0.121594\pi\)
−0.927922 + 0.372775i \(0.878406\pi\)
\(728\) 22074.9 10582.6i 1.12383 0.538759i
\(729\) 0 0
\(730\) 293.305 44.0314i 0.0148708 0.00223243i
\(731\) −23763.5 −1.20236
\(732\) 0 0
\(733\) −8044.73 −0.405374 −0.202687 0.979244i \(-0.564967\pi\)
−0.202687 + 0.979244i \(0.564967\pi\)
\(734\) 23749.1 3565.25i 1.19427 0.179286i
\(735\) 0 0
\(736\) −3359.03 3641.68i −0.168227 0.182384i
\(737\) 32487.3i 1.62372i
\(738\) 0 0
\(739\) 7025.01i 0.349688i −0.984596 0.174844i \(-0.944058\pi\)
0.984596 0.174844i \(-0.0559420\pi\)
\(740\) 690.399 + 2247.64i 0.0342967 + 0.111655i
\(741\) 0 0
\(742\) −6818.08 45417.0i −0.337331 2.24705i
\(743\) −27063.4 −1.33629 −0.668143 0.744033i \(-0.732911\pi\)
−0.668143 + 0.744033i \(0.732911\pi\)
\(744\) 0 0
\(745\) 328.849 0.0161719
\(746\) −1186.19 7901.54i −0.0582166 0.387796i
\(747\) 0 0
\(748\) −6761.42 22012.3i −0.330511 1.07600i
\(749\) 24528.2i 1.19658i
\(750\) 0 0
\(751\) 11434.2i 0.555579i −0.960642 0.277789i \(-0.910398\pi\)
0.960642 0.277789i \(-0.0896017\pi\)
\(752\) −19800.4 + 13431.3i −0.960170 + 0.651315i
\(753\) 0 0
\(754\) 15551.6 2334.62i 0.751133 0.112761i
\(755\) 1716.38 0.0827357
\(756\) 0 0
\(757\) 22087.2 1.06046 0.530232 0.847853i \(-0.322105\pi\)
0.530232 + 0.847853i \(0.322105\pi\)
\(758\) −14887.1 + 2234.87i −0.713354 + 0.107090i
\(759\) 0 0
\(760\) −1156.25 2411.90i −0.0551862 0.115117i
\(761\) 35524.0i 1.69218i −0.533043 0.846088i \(-0.678952\pi\)
0.533043 0.846088i \(-0.321048\pi\)
\(762\) 0 0
\(763\) 9085.16i 0.431068i
\(764\) −15166.5 + 4658.62i −0.718198 + 0.220606i
\(765\) 0 0
\(766\) −3493.79 23273.1i −0.164799 1.09777i
\(767\) 13269.0 0.624664
\(768\) 0 0
\(769\) 21213.0 0.994745 0.497372 0.867537i \(-0.334298\pi\)
0.497372 + 0.867537i \(0.334298\pi\)
\(770\) 927.054 + 6175.36i 0.0433879 + 0.289019i
\(771\) 0 0
\(772\) 1452.29 446.095i 0.0677062 0.0207970i
\(773\) 14370.7i 0.668663i −0.942456 0.334332i \(-0.891489\pi\)
0.942456 0.334332i \(-0.108511\pi\)
\(774\) 0 0
\(775\) 22980.6i 1.06515i
\(776\) −5634.73 11753.9i −0.260664 0.543737i
\(777\) 0 0
\(778\) 23379.5 3509.77i 1.07737 0.161737i
\(779\) −23562.3 −1.08371
\(780\) 0 0
\(781\) 12621.8 0.578287
\(782\) 3907.34 586.575i 0.178678 0.0268234i
\(783\) 0 0
\(784\) −18149.1 + 12311.1i −0.826763 + 0.560820i
\(785\) 413.122i 0.0187834i
\(786\) 0 0
\(787\) 41642.9i 1.88616i 0.332564 + 0.943081i \(0.392086\pi\)
−0.332564 + 0.943081i \(0.607914\pi\)
\(788\) 5074.84 + 16521.5i 0.229421 + 0.746896i
\(789\) 0 0
\(790\) −660.637 4400.68i −0.0297524 0.198189i
\(791\) −38288.5 −1.72109