Properties

Label 108.4.b.a.107.6
Level 108
Weight 4
Character 108.107
Analytic conductor 6.372
Analytic rank 0
Dimension 12
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 108.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(6.37220628062\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{18}\cdot 3^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 107.6
Root \(2.48442 - 1.43438i\) of \(x^{12} - 12 x^{10} + 112 x^{8} - 368 x^{6} + 928 x^{4} - 256 x^{2} + 64\)
Character \(\chi\) \(=\) 108.107
Dual form 108.4.b.a.107.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.889241 + 2.68500i) q^{2} +(-6.41850 - 4.77523i) q^{4} -14.9230i q^{5} +30.0528i q^{7} +(18.5291 - 12.9874i) q^{8} +O(q^{10})\) \(q+(-0.889241 + 2.68500i) q^{2} +(-6.41850 - 4.77523i) q^{4} -14.9230i q^{5} +30.0528i q^{7} +(18.5291 - 12.9874i) q^{8} +(40.0683 + 13.2701i) q^{10} +55.9380 q^{11} +57.4627 q^{13} +(-80.6918 - 26.7241i) q^{14} +(18.3943 + 61.2997i) q^{16} +29.2840i q^{17} -0.709738i q^{19} +(-71.2608 + 95.7833i) q^{20} +(-49.7423 + 150.194i) q^{22} +48.0368 q^{23} -97.6960 q^{25} +(-51.0981 + 154.288i) q^{26} +(143.509 - 192.894i) q^{28} -172.964i q^{29} +45.2268i q^{31} +(-180.947 - 5.12130i) q^{32} +(-78.6277 - 26.0405i) q^{34} +448.477 q^{35} +248.625 q^{37} +(1.90565 + 0.631128i) q^{38} +(-193.811 - 276.510i) q^{40} +51.3323i q^{41} +19.9660i q^{43} +(-359.038 - 267.117i) q^{44} +(-42.7163 + 128.979i) q^{46} -10.8215 q^{47} -560.168 q^{49} +(86.8753 - 262.314i) q^{50} +(-368.824 - 274.398i) q^{52} -37.0817i q^{53} -834.763i q^{55} +(390.306 + 556.851i) q^{56} +(464.410 + 153.807i) q^{58} +411.262 q^{59} -308.855 q^{61} +(-121.434 - 40.2175i) q^{62} +(174.656 - 481.289i) q^{64} -857.516i q^{65} +113.616i q^{67} +(139.838 - 187.959i) q^{68} +(-398.804 + 1204.16i) q^{70} -1134.56 q^{71} +728.560 q^{73} +(-221.088 + 667.560i) q^{74} +(-3.38916 + 4.55545i) q^{76} +1681.09i q^{77} +487.025i q^{79} +(914.775 - 274.499i) q^{80} +(-137.827 - 45.6468i) q^{82} -1165.71 q^{83} +437.005 q^{85} +(-53.6088 - 17.7546i) q^{86} +(1036.48 - 726.488i) q^{88} +1198.68i q^{89} +1726.91i q^{91} +(-308.324 - 229.387i) q^{92} +(9.62289 - 29.0557i) q^{94} -10.5914 q^{95} +624.472 q^{97} +(498.124 - 1504.05i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 12q^{4} + O(q^{10}) \) \( 12q - 12q^{4} + 24q^{10} + 36q^{13} + 24q^{16} + 120q^{22} - 132q^{25} + 420q^{28} - 360q^{34} + 516q^{37} - 1152q^{40} - 696q^{46} - 720q^{49} + 204q^{52} + 2832q^{58} - 972q^{61} + 2496q^{64} - 1848q^{70} + 660q^{73} - 5004q^{76} - 3888q^{82} + 1056q^{85} + 3168q^{88} + 7608q^{94} + 2532q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.889241 + 2.68500i −0.314394 + 0.949293i
\(3\) 0 0
\(4\) −6.41850 4.77523i −0.802313 0.596904i
\(5\) 14.9230i 1.33475i −0.744720 0.667377i \(-0.767417\pi\)
0.744720 0.667377i \(-0.232583\pi\)
\(6\) 0 0
\(7\) 30.0528i 1.62270i 0.584563 + 0.811348i \(0.301266\pi\)
−0.584563 + 0.811348i \(0.698734\pi\)
\(8\) 18.5291 12.9874i 0.818879 0.573966i
\(9\) 0 0
\(10\) 40.0683 + 13.2701i 1.26707 + 0.419639i
\(11\) 55.9380 1.53327 0.766634 0.642085i \(-0.221930\pi\)
0.766634 + 0.642085i \(0.221930\pi\)
\(12\) 0 0
\(13\) 57.4627 1.22594 0.612972 0.790105i \(-0.289974\pi\)
0.612972 + 0.790105i \(0.289974\pi\)
\(14\) −80.6918 26.7241i −1.54041 0.510166i
\(15\) 0 0
\(16\) 18.3943 + 61.2997i 0.287411 + 0.957807i
\(17\) 29.2840i 0.417789i 0.977938 + 0.208895i \(0.0669865\pi\)
−0.977938 + 0.208895i \(0.933013\pi\)
\(18\) 0 0
\(19\) 0.709738i 0.00856974i −0.999991 0.00428487i \(-0.998636\pi\)
0.999991 0.00428487i \(-0.00136392\pi\)
\(20\) −71.2608 + 95.7833i −0.796720 + 1.07089i
\(21\) 0 0
\(22\) −49.7423 + 150.194i −0.482050 + 1.45552i
\(23\) 48.0368 0.435494 0.217747 0.976005i \(-0.430129\pi\)
0.217747 + 0.976005i \(0.430129\pi\)
\(24\) 0 0
\(25\) −97.6960 −0.781568
\(26\) −51.0981 + 154.288i −0.385430 + 1.16378i
\(27\) 0 0
\(28\) 143.509 192.894i 0.968594 1.30191i
\(29\) 172.964i 1.10754i −0.832670 0.553770i \(-0.813189\pi\)
0.832670 0.553770i \(-0.186811\pi\)
\(30\) 0 0
\(31\) 45.2268i 0.262031i 0.991380 + 0.131016i \(0.0418238\pi\)
−0.991380 + 0.131016i \(0.958176\pi\)
\(32\) −180.947 5.12130i −0.999600 0.0282914i
\(33\) 0 0
\(34\) −78.6277 26.0405i −0.396604 0.131350i
\(35\) 448.477 2.16590
\(36\) 0 0
\(37\) 248.625 1.10470 0.552348 0.833613i \(-0.313732\pi\)
0.552348 + 0.833613i \(0.313732\pi\)
\(38\) 1.90565 + 0.631128i 0.00813519 + 0.00269427i
\(39\) 0 0
\(40\) −193.811 276.510i −0.766104 1.09300i
\(41\) 51.3323i 0.195531i 0.995209 + 0.0977653i \(0.0311695\pi\)
−0.995209 + 0.0977653i \(0.968831\pi\)
\(42\) 0 0
\(43\) 19.9660i 0.0708090i 0.999373 + 0.0354045i \(0.0112720\pi\)
−0.999373 + 0.0354045i \(0.988728\pi\)
\(44\) −359.038 267.117i −1.23016 0.915213i
\(45\) 0 0
\(46\) −42.7163 + 128.979i −0.136917 + 0.413411i
\(47\) −10.8215 −0.0335845 −0.0167923 0.999859i \(-0.505345\pi\)
−0.0167923 + 0.999859i \(0.505345\pi\)
\(48\) 0 0
\(49\) −560.168 −1.63314
\(50\) 86.8753 262.314i 0.245720 0.741937i
\(51\) 0 0
\(52\) −368.824 274.398i −0.983591 0.731771i
\(53\) 37.0817i 0.0961051i −0.998845 0.0480525i \(-0.984699\pi\)
0.998845 0.0480525i \(-0.0153015\pi\)
\(54\) 0 0
\(55\) 834.763i 2.04653i
\(56\) 390.306 + 556.851i 0.931373 + 1.32879i
\(57\) 0 0
\(58\) 464.410 + 153.807i 1.05138 + 0.348204i
\(59\) 411.262 0.907487 0.453744 0.891132i \(-0.350088\pi\)
0.453744 + 0.891132i \(0.350088\pi\)
\(60\) 0 0
\(61\) −308.855 −0.648275 −0.324138 0.946010i \(-0.605074\pi\)
−0.324138 + 0.946010i \(0.605074\pi\)
\(62\) −121.434 40.2175i −0.248744 0.0823811i
\(63\) 0 0
\(64\) 174.656 481.289i 0.341125 0.940018i
\(65\) 857.516i 1.63633i
\(66\) 0 0
\(67\) 113.616i 0.207170i 0.994621 + 0.103585i \(0.0330314\pi\)
−0.994621 + 0.103585i \(0.966969\pi\)
\(68\) 139.838 187.959i 0.249380 0.335197i
\(69\) 0 0
\(70\) −398.804 + 1204.16i −0.680946 + 2.05607i
\(71\) −1134.56 −1.89645 −0.948224 0.317603i \(-0.897122\pi\)
−0.948224 + 0.317603i \(0.897122\pi\)
\(72\) 0 0
\(73\) 728.560 1.16810 0.584051 0.811717i \(-0.301467\pi\)
0.584051 + 0.811717i \(0.301467\pi\)
\(74\) −221.088 + 667.560i −0.347310 + 1.04868i
\(75\) 0 0
\(76\) −3.38916 + 4.55545i −0.00511531 + 0.00687561i
\(77\) 1681.09i 2.48803i
\(78\) 0 0
\(79\) 487.025i 0.693602i 0.937939 + 0.346801i \(0.112732\pi\)
−0.937939 + 0.346801i \(0.887268\pi\)
\(80\) 914.775 274.499i 1.27844 0.383623i
\(81\) 0 0
\(82\) −137.827 45.6468i −0.185616 0.0614737i
\(83\) −1165.71 −1.54161 −0.770803 0.637074i \(-0.780145\pi\)
−0.770803 + 0.637074i \(0.780145\pi\)
\(84\) 0 0
\(85\) 437.005 0.557646
\(86\) −53.6088 17.7546i −0.0672184 0.0222619i
\(87\) 0 0
\(88\) 1036.48 726.488i 1.25556 0.880044i
\(89\) 1198.68i 1.42764i 0.700332 + 0.713818i \(0.253035\pi\)
−0.700332 + 0.713818i \(0.746965\pi\)
\(90\) 0 0
\(91\) 1726.91i 1.98934i
\(92\) −308.324 229.387i −0.349402 0.259948i
\(93\) 0 0
\(94\) 9.62289 29.0557i 0.0105588 0.0318815i
\(95\) −10.5914 −0.0114385
\(96\) 0 0
\(97\) 624.472 0.653665 0.326833 0.945082i \(-0.394019\pi\)
0.326833 + 0.945082i \(0.394019\pi\)
\(98\) 498.124 1504.05i 0.513450 1.55033i
\(99\) 0 0
\(100\) 627.062 + 466.521i 0.627062 + 0.466521i
\(101\) 1757.10i 1.73107i −0.500849 0.865535i \(-0.666979\pi\)
0.500849 0.865535i \(-0.333021\pi\)
\(102\) 0 0
\(103\) 3.90175i 0.00373254i 0.999998 + 0.00186627i \(0.000594052\pi\)
−0.999998 + 0.00186627i \(0.999406\pi\)
\(104\) 1064.73 746.289i 1.00390 0.703651i
\(105\) 0 0
\(106\) 99.5646 + 32.9746i 0.0912318 + 0.0302149i
\(107\) −77.3509 −0.0698859 −0.0349429 0.999389i \(-0.511125\pi\)
−0.0349429 + 0.999389i \(0.511125\pi\)
\(108\) 0 0
\(109\) −1660.75 −1.45937 −0.729683 0.683785i \(-0.760333\pi\)
−0.729683 + 0.683785i \(0.760333\pi\)
\(110\) 2241.34 + 742.305i 1.94276 + 0.643418i
\(111\) 0 0
\(112\) −1842.22 + 552.800i −1.55423 + 0.466381i
\(113\) 253.390i 0.210946i −0.994422 0.105473i \(-0.966364\pi\)
0.994422 0.105473i \(-0.0336357\pi\)
\(114\) 0 0
\(115\) 716.853i 0.581277i
\(116\) −825.945 + 1110.17i −0.661095 + 0.888594i
\(117\) 0 0
\(118\) −365.711 + 1104.24i −0.285309 + 0.861471i
\(119\) −880.065 −0.677945
\(120\) 0 0
\(121\) 1798.06 1.35091
\(122\) 274.646 829.276i 0.203814 0.615403i
\(123\) 0 0
\(124\) 215.968 290.288i 0.156408 0.210231i
\(125\) 407.457i 0.291553i
\(126\) 0 0
\(127\) 1429.82i 0.999022i −0.866307 0.499511i \(-0.833513\pi\)
0.866307 0.499511i \(-0.166487\pi\)
\(128\) 1136.95 + 896.934i 0.785104 + 0.619364i
\(129\) 0 0
\(130\) 2302.43 + 762.538i 1.55336 + 0.514454i
\(131\) −2037.82 −1.35912 −0.679560 0.733620i \(-0.737829\pi\)
−0.679560 + 0.733620i \(0.737829\pi\)
\(132\) 0 0
\(133\) 21.3296 0.0139061
\(134\) −305.059 101.032i −0.196665 0.0651330i
\(135\) 0 0
\(136\) 380.322 + 542.607i 0.239797 + 0.342119i
\(137\) 804.869i 0.501931i 0.967996 + 0.250966i \(0.0807481\pi\)
−0.967996 + 0.250966i \(0.919252\pi\)
\(138\) 0 0
\(139\) 413.813i 0.252512i −0.991998 0.126256i \(-0.959704\pi\)
0.991998 0.126256i \(-0.0402961\pi\)
\(140\) −2878.55 2141.58i −1.73773 1.29283i
\(141\) 0 0
\(142\) 1008.90 3046.31i 0.596232 1.80028i
\(143\) 3214.35 1.87970
\(144\) 0 0
\(145\) −2581.15 −1.47829
\(146\) −647.865 + 1956.19i −0.367245 + 1.10887i
\(147\) 0 0
\(148\) −1595.80 1187.24i −0.886312 0.659398i
\(149\) 1459.08i 0.802233i 0.916027 + 0.401116i \(0.131378\pi\)
−0.916027 + 0.401116i \(0.868622\pi\)
\(150\) 0 0
\(151\) 1668.38i 0.899144i −0.893244 0.449572i \(-0.851576\pi\)
0.893244 0.449572i \(-0.148424\pi\)
\(152\) −9.21763 13.1508i −0.00491874 0.00701757i
\(153\) 0 0
\(154\) −4513.74 1494.89i −2.36187 0.782221i
\(155\) 674.920 0.349747
\(156\) 0 0
\(157\) −1773.81 −0.901691 −0.450846 0.892602i \(-0.648877\pi\)
−0.450846 + 0.892602i \(0.648877\pi\)
\(158\) −1307.66 433.082i −0.658431 0.218064i
\(159\) 0 0
\(160\) −76.4251 + 2700.27i −0.0377621 + 1.33422i
\(161\) 1443.64i 0.706674i
\(162\) 0 0
\(163\) 3549.13i 1.70546i 0.522356 + 0.852728i \(0.325053\pi\)
−0.522356 + 0.852728i \(0.674947\pi\)
\(164\) 245.124 329.476i 0.116713 0.156877i
\(165\) 0 0
\(166\) 1036.60 3129.94i 0.484672 1.46343i
\(167\) 1888.67 0.875146 0.437573 0.899183i \(-0.355838\pi\)
0.437573 + 0.899183i \(0.355838\pi\)
\(168\) 0 0
\(169\) 1104.96 0.502939
\(170\) −388.603 + 1173.36i −0.175320 + 0.529369i
\(171\) 0 0
\(172\) 95.3422 128.152i 0.0422661 0.0568109i
\(173\) 2104.10i 0.924694i −0.886699 0.462347i \(-0.847008\pi\)
0.886699 0.462347i \(-0.152992\pi\)
\(174\) 0 0
\(175\) 2936.03i 1.26825i
\(176\) 1028.94 + 3428.98i 0.440678 + 1.46857i
\(177\) 0 0
\(178\) −3218.45 1065.91i −1.35524 0.448840i
\(179\) −1830.10 −0.764178 −0.382089 0.924126i \(-0.624795\pi\)
−0.382089 + 0.924126i \(0.624795\pi\)
\(180\) 0 0
\(181\) 3333.54 1.36895 0.684475 0.729036i \(-0.260032\pi\)
0.684475 + 0.729036i \(0.260032\pi\)
\(182\) −4636.77 1535.64i −1.88846 0.625435i
\(183\) 0 0
\(184\) 890.079 623.872i 0.356617 0.249959i
\(185\) 3710.24i 1.47450i
\(186\) 0 0
\(187\) 1638.09i 0.640582i
\(188\) 69.4576 + 51.6750i 0.0269453 + 0.0200467i
\(189\) 0 0
\(190\) 9.41832 28.4380i 0.00359619 0.0108585i
\(191\) 3622.23 1.37223 0.686114 0.727494i \(-0.259315\pi\)
0.686114 + 0.727494i \(0.259315\pi\)
\(192\) 0 0
\(193\) −2588.68 −0.965479 −0.482740 0.875764i \(-0.660358\pi\)
−0.482740 + 0.875764i \(0.660358\pi\)
\(194\) −555.306 + 1676.71i −0.205508 + 0.620520i
\(195\) 0 0
\(196\) 3595.44 + 2674.93i 1.31029 + 0.974829i
\(197\) 1752.24i 0.633717i −0.948473 0.316858i \(-0.897372\pi\)
0.948473 0.316858i \(-0.102628\pi\)
\(198\) 0 0
\(199\) 3316.58i 1.18144i −0.806877 0.590719i \(-0.798844\pi\)
0.806877 0.590719i \(-0.201156\pi\)
\(200\) −1810.22 + 1268.82i −0.640010 + 0.448594i
\(201\) 0 0
\(202\) 4717.82 + 1562.49i 1.64329 + 0.544238i
\(203\) 5198.05 1.79720
\(204\) 0 0
\(205\) 766.032 0.260985
\(206\) −10.4762 3.46960i −0.00354327 0.00117349i
\(207\) 0 0
\(208\) 1056.99 + 3522.44i 0.352350 + 1.17422i
\(209\) 39.7013i 0.0131397i
\(210\) 0 0
\(211\) 5960.10i 1.94460i 0.233738 + 0.972300i \(0.424904\pi\)
−0.233738 + 0.972300i \(0.575096\pi\)
\(212\) −177.074 + 238.009i −0.0573655 + 0.0771063i
\(213\) 0 0
\(214\) 68.7836 207.687i 0.0219717 0.0663422i
\(215\) 297.953 0.0945125
\(216\) 0 0
\(217\) −1359.19 −0.425197
\(218\) 1476.81 4459.12i 0.458816 1.38537i
\(219\) 0 0
\(220\) −3986.19 + 5357.93i −1.22158 + 1.64196i
\(221\) 1682.74i 0.512186i
\(222\) 0 0
\(223\) 1995.23i 0.599150i −0.954073 0.299575i \(-0.903155\pi\)
0.954073 0.299575i \(-0.0968449\pi\)
\(224\) 153.909 5437.95i 0.0459084 1.62205i
\(225\) 0 0
\(226\) 680.354 + 225.325i 0.200250 + 0.0663203i
\(227\) 2280.12 0.666682 0.333341 0.942806i \(-0.391824\pi\)
0.333341 + 0.942806i \(0.391824\pi\)
\(228\) 0 0
\(229\) 4647.94 1.34124 0.670621 0.741800i \(-0.266028\pi\)
0.670621 + 0.741800i \(0.266028\pi\)
\(230\) 1924.75 + 637.455i 0.551802 + 0.182750i
\(231\) 0 0
\(232\) −2246.35 3204.88i −0.635691 0.906941i
\(233\) 2824.81i 0.794247i −0.917765 0.397124i \(-0.870008\pi\)
0.917765 0.397124i \(-0.129992\pi\)
\(234\) 0 0
\(235\) 161.489i 0.0448271i
\(236\) −2639.69 1963.87i −0.728089 0.541683i
\(237\) 0 0
\(238\) 782.590 2362.98i 0.213142 0.643568i
\(239\) −2405.85 −0.651136 −0.325568 0.945519i \(-0.605555\pi\)
−0.325568 + 0.945519i \(0.605555\pi\)
\(240\) 0 0
\(241\) −226.108 −0.0604352 −0.0302176 0.999543i \(-0.509620\pi\)
−0.0302176 + 0.999543i \(0.509620\pi\)
\(242\) −1598.91 + 4827.80i −0.424718 + 1.28241i
\(243\) 0 0
\(244\) 1982.38 + 1474.85i 0.520120 + 0.386958i
\(245\) 8359.39i 2.17984i
\(246\) 0 0
\(247\) 40.7834i 0.0105060i
\(248\) 587.377 + 838.012i 0.150397 + 0.214572i
\(249\) 0 0
\(250\) 1094.02 + 362.328i 0.276769 + 0.0916624i
\(251\) −1071.12 −0.269357 −0.134679 0.990889i \(-0.543000\pi\)
−0.134679 + 0.990889i \(0.543000\pi\)
\(252\) 0 0
\(253\) 2687.08 0.667729
\(254\) 3839.07 + 1271.45i 0.948365 + 0.314087i
\(255\) 0 0
\(256\) −3419.30 + 2255.13i −0.834789 + 0.550569i
\(257\) 1844.28i 0.447638i −0.974631 0.223819i \(-0.928148\pi\)
0.974631 0.223819i \(-0.0718525\pi\)
\(258\) 0 0
\(259\) 7471.88i 1.79259i
\(260\) −4094.84 + 5503.96i −0.976734 + 1.31285i
\(261\) 0 0
\(262\) 1812.11 5471.54i 0.427299 1.29020i
\(263\) −7502.45 −1.75901 −0.879507 0.475886i \(-0.842128\pi\)
−0.879507 + 0.475886i \(0.842128\pi\)
\(264\) 0 0
\(265\) −553.371 −0.128277
\(266\) −18.9671 + 57.2700i −0.00437199 + 0.0132009i
\(267\) 0 0
\(268\) 542.542 729.243i 0.123661 0.166215i
\(269\) 3465.21i 0.785418i −0.919663 0.392709i \(-0.871538\pi\)
0.919663 0.392709i \(-0.128462\pi\)
\(270\) 0 0
\(271\) 2922.27i 0.655038i 0.944845 + 0.327519i \(0.106212\pi\)
−0.944845 + 0.327519i \(0.893788\pi\)
\(272\) −1795.10 + 538.660i −0.400161 + 0.120077i
\(273\) 0 0
\(274\) −2161.08 715.722i −0.476480 0.157804i
\(275\) −5464.92 −1.19835
\(276\) 0 0
\(277\) −6644.62 −1.44129 −0.720643 0.693306i \(-0.756153\pi\)
−0.720643 + 0.693306i \(0.756153\pi\)
\(278\) 1111.09 + 367.980i 0.239708 + 0.0793883i
\(279\) 0 0
\(280\) 8309.89 5824.54i 1.77361 1.24315i
\(281\) 6612.13i 1.40373i 0.712312 + 0.701863i \(0.247648\pi\)
−0.712312 + 0.701863i \(0.752352\pi\)
\(282\) 0 0
\(283\) 2658.33i 0.558379i −0.960236 0.279190i \(-0.909934\pi\)
0.960236 0.279190i \(-0.0900658\pi\)
\(284\) 7282.19 + 5417.80i 1.52154 + 1.13200i
\(285\) 0 0
\(286\) −2858.33 + 8630.53i −0.590967 + 1.78439i
\(287\) −1542.68 −0.317287
\(288\) 0 0
\(289\) 4055.45 0.825452
\(290\) 2295.26 6930.39i 0.464767 1.40333i
\(291\) 0 0
\(292\) −4676.26 3479.04i −0.937184 0.697245i
\(293\) 5553.60i 1.10732i −0.832743 0.553660i \(-0.813231\pi\)
0.832743 0.553660i \(-0.186769\pi\)
\(294\) 0 0
\(295\) 6137.26i 1.21127i
\(296\) 4606.81 3228.99i 0.904613 0.634059i
\(297\) 0 0
\(298\) −3917.64 1297.48i −0.761554 0.252217i
\(299\) 2760.32 0.533891
\(300\) 0 0
\(301\) −600.033 −0.114901
\(302\) 4479.61 + 1483.59i 0.853551 + 0.282686i
\(303\) 0 0
\(304\) 43.5067 13.0551i 0.00820815 0.00246304i
\(305\) 4609.04i 0.865288i
\(306\) 0 0
\(307\) 8694.95i 1.61644i −0.588880 0.808220i \(-0.700431\pi\)
0.588880 0.808220i \(-0.299569\pi\)
\(308\) 8027.60 10790.1i 1.48511 1.99618i
\(309\) 0 0
\(310\) −600.166 + 1812.16i −0.109959 + 0.332013i
\(311\) −6717.09 −1.22473 −0.612365 0.790575i \(-0.709782\pi\)
−0.612365 + 0.790575i \(0.709782\pi\)
\(312\) 0 0
\(313\) −1389.06 −0.250844 −0.125422 0.992103i \(-0.540028\pi\)
−0.125422 + 0.992103i \(0.540028\pi\)
\(314\) 1577.34 4762.69i 0.283486 0.855969i
\(315\) 0 0
\(316\) 2325.66 3125.97i 0.414014 0.556486i
\(317\) 1457.63i 0.258260i 0.991628 + 0.129130i \(0.0412185\pi\)
−0.991628 + 0.129130i \(0.958782\pi\)
\(318\) 0 0
\(319\) 9675.28i 1.69816i
\(320\) −7182.28 2606.39i −1.25469 0.455318i
\(321\) 0 0
\(322\) −3876.17 1283.74i −0.670841 0.222174i
\(323\) 20.7840 0.00358034
\(324\) 0 0
\(325\) −5613.87 −0.958159
\(326\) −9529.43 3156.03i −1.61898 0.536185i
\(327\) 0 0
\(328\) 666.672 + 951.142i 0.112228 + 0.160116i
\(329\) 325.215i 0.0544975i
\(330\) 0 0
\(331\) 4966.82i 0.824776i 0.911008 + 0.412388i \(0.135305\pi\)
−0.911008 + 0.412388i \(0.864695\pi\)
\(332\) 7482.11 + 5566.53i 1.23685 + 0.920190i
\(333\) 0 0
\(334\) −1679.48 + 5071.08i −0.275141 + 0.830769i
\(335\) 1695.49 0.276521
\(336\) 0 0
\(337\) −4892.90 −0.790899 −0.395450 0.918488i \(-0.629411\pi\)
−0.395450 + 0.918488i \(0.629411\pi\)
\(338\) −982.574 + 2966.82i −0.158121 + 0.477437i
\(339\) 0 0
\(340\) −2804.92 2086.80i −0.447406 0.332861i
\(341\) 2529.90i 0.401764i
\(342\) 0 0
\(343\) 6526.50i 1.02740i
\(344\) 259.306 + 369.952i 0.0406420 + 0.0579840i
\(345\) 0 0
\(346\) 5649.53 + 1871.05i 0.877805 + 0.290718i
\(347\) 253.981 0.0392923 0.0196461 0.999807i \(-0.493746\pi\)
0.0196461 + 0.999807i \(0.493746\pi\)
\(348\) 0 0
\(349\) −6464.21 −0.991465 −0.495732 0.868475i \(-0.665100\pi\)
−0.495732 + 0.868475i \(0.665100\pi\)
\(350\) 7883.27 + 2610.84i 1.20394 + 0.398730i
\(351\) 0 0
\(352\) −10121.8 286.475i −1.53265 0.0433783i
\(353\) 4033.67i 0.608188i 0.952642 + 0.304094i \(0.0983537\pi\)
−0.952642 + 0.304094i \(0.901646\pi\)
\(354\) 0 0
\(355\) 16931.1i 2.53129i
\(356\) 5723.96 7693.71i 0.852161 1.14541i
\(357\) 0 0
\(358\) 1627.40 4913.82i 0.240253 0.725428i
\(359\) −10670.4 −1.56870 −0.784350 0.620319i \(-0.787003\pi\)
−0.784350 + 0.620319i \(0.787003\pi\)
\(360\) 0 0
\(361\) 6858.50 0.999927
\(362\) −2964.32 + 8950.56i −0.430390 + 1.29953i
\(363\) 0 0
\(364\) 8246.40 11084.2i 1.18744 1.59607i
\(365\) 10872.3i 1.55913i
\(366\) 0 0
\(367\) 2559.84i 0.364094i −0.983290 0.182047i \(-0.941728\pi\)
0.983290 0.182047i \(-0.0582724\pi\)
\(368\) 883.604 + 2944.64i 0.125166 + 0.417119i
\(369\) 0 0
\(370\) 9962.01 + 3299.29i 1.39973 + 0.463573i
\(371\) 1114.41 0.155949
\(372\) 0 0
\(373\) 1935.92 0.268735 0.134368 0.990932i \(-0.457100\pi\)
0.134368 + 0.990932i \(0.457100\pi\)
\(374\) −4398.28 1456.65i −0.608100 0.201395i
\(375\) 0 0
\(376\) −200.512 + 140.542i −0.0275017 + 0.0192764i
\(377\) 9938.99i 1.35778i
\(378\) 0 0
\(379\) 5944.90i 0.805722i 0.915261 + 0.402861i \(0.131984\pi\)
−0.915261 + 0.402861i \(0.868016\pi\)
\(380\) 67.9810 + 50.5765i 0.00917724 + 0.00682768i
\(381\) 0 0
\(382\) −3221.03 + 9725.71i −0.431420 + 1.30264i
\(383\) −1696.80 −0.226378 −0.113189 0.993573i \(-0.536107\pi\)
−0.113189 + 0.993573i \(0.536107\pi\)
\(384\) 0 0
\(385\) 25086.9 3.32090
\(386\) 2301.96 6950.63i 0.303541 0.916522i
\(387\) 0 0
\(388\) −4008.17 2982.00i −0.524444 0.390175i
\(389\) 3913.71i 0.510111i 0.966926 + 0.255055i \(0.0820937\pi\)
−0.966926 + 0.255055i \(0.917906\pi\)
\(390\) 0 0
\(391\) 1406.71i 0.181945i
\(392\) −10379.4 + 7275.11i −1.33735 + 0.937369i
\(393\) 0 0
\(394\) 4704.78 + 1558.17i 0.601583 + 0.199237i
\(395\) 7267.87 0.925788
\(396\) 0 0
\(397\) 5079.98 0.642208 0.321104 0.947044i \(-0.395946\pi\)
0.321104 + 0.947044i \(0.395946\pi\)
\(398\) 8905.04 + 2949.24i 1.12153 + 0.371437i
\(399\) 0 0
\(400\) −1797.05 5988.73i −0.224632 0.748592i
\(401\) 9374.44i 1.16742i 0.811961 + 0.583712i \(0.198400\pi\)
−0.811961 + 0.583712i \(0.801600\pi\)
\(402\) 0 0
\(403\) 2598.85i 0.321236i
\(404\) −8390.56 + 11278.0i −1.03328 + 1.38886i
\(405\) 0 0
\(406\) −4622.32 + 13956.8i −0.565029 + 1.70607i
\(407\) 13907.6 1.69379
\(408\) 0 0
\(409\) −12392.7 −1.49824 −0.749120 0.662434i \(-0.769523\pi\)
−0.749120 + 0.662434i \(0.769523\pi\)
\(410\) −681.187 + 2056.80i −0.0820522 + 0.247751i
\(411\) 0 0
\(412\) 18.6318 25.0434i 0.00222797 0.00299466i
\(413\) 12359.6i 1.47258i
\(414\) 0 0
\(415\) 17395.9i 2.05766i
\(416\) −10397.7 294.283i −1.22545 0.0346837i
\(417\) 0 0
\(418\) 106.598 + 35.3040i 0.0124734 + 0.00413104i
\(419\) −266.866 −0.0311151 −0.0155576 0.999879i \(-0.504952\pi\)
−0.0155576 + 0.999879i \(0.504952\pi\)
\(420\) 0 0
\(421\) −9952.62 −1.15216 −0.576082 0.817392i \(-0.695419\pi\)
−0.576082 + 0.817392i \(0.695419\pi\)
\(422\) −16002.9 5299.97i −1.84599 0.611371i
\(423\) 0 0
\(424\) −481.595 687.092i −0.0551611 0.0786984i
\(425\) 2860.93i 0.326531i
\(426\) 0 0
\(427\) 9281.94i 1.05195i
\(428\) 496.477 + 369.368i 0.0560703 + 0.0417152i
\(429\) 0 0
\(430\) −264.952 + 800.004i −0.0297142 + 0.0897200i
\(431\) 6583.33 0.735749 0.367875 0.929875i \(-0.380086\pi\)
0.367875 + 0.929875i \(0.380086\pi\)
\(432\) 0 0
\(433\) −13747.0 −1.52572 −0.762860 0.646564i \(-0.776205\pi\)
−0.762860 + 0.646564i \(0.776205\pi\)
\(434\) 1208.65 3649.43i 0.133679 0.403637i
\(435\) 0 0
\(436\) 10659.5 + 7930.46i 1.17087 + 0.871102i
\(437\) 34.0935i 0.00373207i
\(438\) 0 0
\(439\) 13380.0i 1.45466i −0.686290 0.727328i \(-0.740762\pi\)
0.686290 0.727328i \(-0.259238\pi\)
\(440\) −10841.4 15467.4i −1.17464 1.67586i
\(441\) 0 0
\(442\) −4518.16 1496.36i −0.486214 0.161028i
\(443\) −16108.1 −1.72758 −0.863791 0.503851i \(-0.831916\pi\)
−0.863791 + 0.503851i \(0.831916\pi\)
\(444\) 0 0
\(445\) 17887.9 1.90554
\(446\) 5357.20 + 1774.24i 0.568769 + 0.188369i
\(447\) 0 0
\(448\) 14464.1 + 5248.90i 1.52536 + 0.553542i
\(449\) 11283.5i 1.18597i −0.805214 0.592984i \(-0.797950\pi\)
0.805214 0.592984i \(-0.202050\pi\)
\(450\) 0 0
\(451\) 2871.42i 0.299801i
\(452\) −1210.00 + 1626.39i −0.125915 + 0.169245i
\(453\) 0 0
\(454\) −2027.57 + 6122.13i −0.209601 + 0.632876i
\(455\) 25770.7 2.65527
\(456\) 0 0
\(457\) 1984.72 0.203154 0.101577 0.994828i \(-0.467611\pi\)
0.101577 + 0.994828i \(0.467611\pi\)
\(458\) −4133.14 + 12479.7i −0.421679 + 1.27323i
\(459\) 0 0
\(460\) −3423.14 + 4601.12i −0.346967 + 0.466366i
\(461\) 9634.41i 0.973360i −0.873580 0.486680i \(-0.838208\pi\)
0.873580 0.486680i \(-0.161792\pi\)
\(462\) 0 0
\(463\) 1392.38i 0.139762i −0.997555 0.0698808i \(-0.977738\pi\)
0.997555 0.0698808i \(-0.0222619\pi\)
\(464\) 10602.7 3181.56i 1.06081 0.318320i
\(465\) 0 0
\(466\) 7584.64 + 2511.94i 0.753973 + 0.249707i
\(467\) 15161.4 1.50232 0.751161 0.660119i \(-0.229494\pi\)
0.751161 + 0.660119i \(0.229494\pi\)
\(468\) 0 0
\(469\) −3414.47 −0.336174
\(470\) −433.598 143.602i −0.0425540 0.0140934i
\(471\) 0 0
\(472\) 7620.32 5341.22i 0.743122 0.520867i
\(473\) 1116.86i 0.108569i
\(474\) 0 0
\(475\) 69.3385i 0.00669783i
\(476\) 5648.70 + 4202.51i 0.543924 + 0.404668i
\(477\) 0 0
\(478\) 2139.38 6459.72i 0.204713 0.618118i
\(479\) −273.224 −0.0260625 −0.0130312 0.999915i \(-0.504148\pi\)
−0.0130312 + 0.999915i \(0.504148\pi\)
\(480\) 0 0
\(481\) 14286.7 1.35430
\(482\) 201.064 607.100i 0.0190005 0.0573707i
\(483\) 0 0
\(484\) −11540.8 8586.15i −1.08385 0.806362i
\(485\) 9319.00i 0.872482i
\(486\) 0 0
\(487\) 8706.60i 0.810131i −0.914288 0.405065i \(-0.867249\pi\)
0.914288 0.405065i \(-0.132751\pi\)
\(488\) −5722.80 + 4011.21i −0.530859 + 0.372088i
\(489\) 0 0
\(490\) −22445.0 7433.51i −2.06931 0.685330i
\(491\) 4442.47 0.408321 0.204161 0.978937i \(-0.434554\pi\)
0.204161 + 0.978937i \(0.434554\pi\)
\(492\) 0 0
\(493\) 5065.09 0.462718
\(494\) 109.504 + 36.2663i 0.00997328 + 0.00330303i
\(495\) 0 0
\(496\) −2772.39 + 831.916i −0.250975 + 0.0753108i
\(497\) 34096.7i 3.07736i
\(498\) 0 0
\(499\) 4920.29i 0.441408i −0.975341 0.220704i \(-0.929165\pi\)
0.975341 0.220704i \(-0.0708355\pi\)
\(500\) −1945.70 + 2615.27i −0.174029 + 0.233916i
\(501\) 0 0
\(502\) 952.486 2875.97i 0.0846843 0.255699i
\(503\) 5575.54 0.494237 0.247118 0.968985i \(-0.420516\pi\)
0.247118 + 0.968985i \(0.420516\pi\)
\(504\) 0 0
\(505\) −26221.2 −2.31055
\(506\) −2389.46 + 7214.83i −0.209930 + 0.633870i
\(507\) 0 0
\(508\) −6827.71 + 9177.29i −0.596320 + 0.801528i
\(509\) 17508.5i 1.52466i 0.647190 + 0.762328i \(0.275944\pi\)
−0.647190 + 0.762328i \(0.724056\pi\)
\(510\) 0 0
\(511\) 21895.2i 1.89548i
\(512\) −3014.46 11186.2i −0.260199 0.965555i
\(513\) 0 0
\(514\) 4951.90 + 1640.01i 0.424940 + 0.140735i
\(515\) 58.2259 0.00498202
\(516\) 0 0
\(517\) −605.331 −0.0514941
\(518\) −20062.0 6644.30i −1.70169 0.563579i
\(519\) 0 0
\(520\) −11136.9 15889.0i −0.939201 1.33996i
\(521\) 12662.1i 1.06475i 0.846507 + 0.532377i \(0.178701\pi\)
−0.846507 + 0.532377i \(0.821299\pi\)
\(522\) 0 0
\(523\) 2988.40i 0.249854i −0.992166 0.124927i \(-0.960130\pi\)
0.992166 0.124927i \(-0.0398697\pi\)
\(524\) 13079.7 + 9731.04i 1.09044 + 0.811264i
\(525\) 0 0
\(526\) 6671.48 20144.1i 0.553024 1.66982i
\(527\) −1324.42 −0.109474
\(528\) 0 0
\(529\) −9859.47 −0.810345
\(530\) 492.080 1485.80i 0.0403294 0.121772i
\(531\) 0 0
\(532\) −136.904 101.854i −0.0111570 0.00830059i
\(533\) 2949.69i 0.239710i
\(534\) 0 0
\(535\) 1154.31i 0.0932805i
\(536\) 1475.57 + 2105.20i 0.118909 + 0.169647i
\(537\) 0 0
\(538\) 9304.10 + 3081.40i 0.745591 + 0.246931i
\(539\) −31334.7 −2.50404
\(540\) 0 0
\(541\) 9079.39 0.721541 0.360770 0.932655i \(-0.382514\pi\)
0.360770 + 0.932655i \(0.382514\pi\)
\(542\) −7846.31 2598.60i −0.621822 0.205940i
\(543\) 0 0
\(544\) 149.972 5298.85i 0.0118199 0.417622i
\(545\) 24783.4i 1.94790i
\(546\) 0 0
\(547\) 21690.2i 1.69544i −0.530444 0.847720i \(-0.677975\pi\)
0.530444 0.847720i \(-0.322025\pi\)
\(548\) 3843.43 5166.05i 0.299605 0.402706i
\(549\) 0 0
\(550\) 4859.63 14673.3i 0.376755 1.13759i
\(551\) −122.759 −0.00949133
\(552\) 0 0
\(553\) −14636.4 −1.12551
\(554\) 5908.66 17840.8i 0.453132 1.36820i
\(555\) 0 0
\(556\) −1976.05 + 2656.06i −0.150725 + 0.202594i
\(557\) 18129.0i 1.37908i 0.724247 + 0.689541i \(0.242188\pi\)
−0.724247 + 0.689541i \(0.757812\pi\)
\(558\) 0 0
\(559\) 1147.30i 0.0868078i
\(560\) 8249.44 + 27491.5i 0.622504 + 2.07451i
\(561\) 0 0
\(562\) −17753.6 5879.78i −1.33255 0.441323i
\(563\) −4922.54 −0.368491 −0.184245 0.982880i \(-0.558984\pi\)
−0.184245 + 0.982880i \(0.558984\pi\)
\(564\) 0 0
\(565\) −3781.34 −0.281562
\(566\) 7137.63 + 2363.90i 0.530065 + 0.175551i
\(567\) 0 0
\(568\) −21022.4 + 14735.0i −1.55296 + 1.08850i
\(569\) 17731.7i 1.30641i 0.757179 + 0.653207i \(0.226577\pi\)
−0.757179 + 0.653207i \(0.773423\pi\)
\(570\) 0 0
\(571\) 17237.0i 1.26330i −0.775254 0.631650i \(-0.782378\pi\)
0.775254 0.631650i \(-0.217622\pi\)
\(572\) −20631.3 15349.2i −1.50811 1.12200i
\(573\) 0 0
\(574\) 1371.81 4142.09i 0.0997531 0.301198i
\(575\) −4693.00 −0.340368
\(576\) 0 0
\(577\) 6166.73 0.444929 0.222465 0.974941i \(-0.428590\pi\)
0.222465 + 0.974941i \(0.428590\pi\)
\(578\) −3606.27 + 10888.9i −0.259517 + 0.783596i
\(579\) 0 0
\(580\) 16567.1 + 12325.6i 1.18605 + 0.882399i
\(581\) 35032.8i 2.50156i
\(582\) 0 0
\(583\) 2074.28i 0.147355i
\(584\) 13499.6 9462.09i 0.956535 0.670452i
\(585\) 0 0
\(586\) 14911.5 + 4938.49i 1.05117 + 0.348135i
\(587\) 11268.2 0.792311 0.396155 0.918183i \(-0.370344\pi\)
0.396155 + 0.918183i \(0.370344\pi\)
\(588\) 0 0
\(589\) 32.0992 0.00224554
\(590\) 16478.6 + 5457.51i 1.14985 + 0.380817i
\(591\) 0 0
\(592\) 4573.30 + 15240.7i 0.317502 + 1.05809i
\(593\) 4766.20i 0.330058i 0.986289 + 0.165029i \(0.0527718\pi\)
−0.986289 + 0.165029i \(0.947228\pi\)
\(594\) 0 0
\(595\) 13133.2i 0.904889i
\(596\) 6967.46 9365.12i 0.478856 0.643642i
\(597\) 0 0
\(598\) −2454.59 + 7411.48i −0.167852 + 0.506819i
\(599\) −11994.7 −0.818177 −0.409089 0.912495i \(-0.634153\pi\)
−0.409089 + 0.912495i \(0.634153\pi\)
\(600\) 0 0
\(601\) 23975.3 1.62724 0.813622 0.581394i \(-0.197493\pi\)
0.813622 + 0.581394i \(0.197493\pi\)
\(602\) 533.574 1611.09i 0.0361243 0.109075i
\(603\) 0 0
\(604\) −7966.90 + 10708.5i −0.536703 + 0.721395i
\(605\) 26832.4i 1.80313i
\(606\) 0 0
\(607\) 18629.0i 1.24568i 0.782349 + 0.622840i \(0.214021\pi\)
−0.782349 + 0.622840i \(0.785979\pi\)
\(608\) −3.63478 + 128.425i −0.000242450 + 0.00856630i
\(609\) 0 0
\(610\) −12375.3 4098.55i −0.821412 0.272041i
\(611\) −621.830 −0.0411728
\(612\) 0 0
\(613\) 18552.5 1.22240 0.611198 0.791478i \(-0.290688\pi\)
0.611198 + 0.791478i \(0.290688\pi\)
\(614\) 23346.0 + 7731.91i 1.53447 + 0.508199i
\(615\) 0 0
\(616\) 21833.0 + 31149.1i 1.42804 + 2.03739i
\(617\) 7836.95i 0.511351i 0.966763 + 0.255676i \(0.0822979\pi\)
−0.966763 + 0.255676i \(0.917702\pi\)
\(618\) 0 0
\(619\) 16023.6i 1.04045i −0.854028 0.520227i \(-0.825847\pi\)
0.854028 0.520227i \(-0.174153\pi\)
\(620\) −4331.97 3222.90i −0.280607 0.208766i
\(621\) 0 0
\(622\) 5973.11 18035.4i 0.385048 1.16263i
\(623\) −36023.6 −2.31662
\(624\) 0 0
\(625\) −18292.5 −1.17072
\(626\) 1235.21 3729.62i 0.0788638 0.238124i
\(627\) 0 0
\(628\) 11385.2 + 8470.36i 0.723438 + 0.538223i
\(629\) 7280.75i 0.461530i
\(630\) 0 0
\(631\) 18451.1i 1.16407i −0.813164 0.582035i \(-0.802257\pi\)
0.813164 0.582035i \(-0.197743\pi\)
\(632\) 6325.18 + 9024.14i 0.398104 + 0.567976i
\(633\) 0 0
\(634\) −3913.73 1296.18i −0.245164 0.0811955i
\(635\) −21337.2 −1.33345
\(636\) 0 0
\(637\) −32188.7 −2.00214
\(638\) 25978.2 + 8603.65i 1.61205 + 0.533890i
\(639\) 0 0
\(640\) 13385.0 16966.7i 0.826698 1.04792i
\(641\) 20544.4i 1.26592i −0.774185 0.632960i \(-0.781840\pi\)
0.774185 0.632960i \(-0.218160\pi\)
\(642\) 0 0
\(643\) 27413.8i 1.68133i 0.541555 + 0.840665i \(0.317836\pi\)
−0.541555 + 0.840665i \(0.682164\pi\)
\(644\) 6893.70 9265.99i 0.421817 0.566974i
\(645\) 0 0
\(646\) −18.4819 + 55.8050i −0.00112564 + 0.00339879i
\(647\) 23051.0 1.40066 0.700332 0.713817i \(-0.253035\pi\)
0.700332 + 0.713817i \(0.253035\pi\)
\(648\) 0 0
\(649\) 23005.2 1.39142
\(650\) 4992.09 15073.3i 0.301240 0.909573i
\(651\) 0 0
\(652\) 16947.9 22780.1i 1.01799 1.36831i
\(653\) 27762.7i 1.66376i 0.554953 + 0.831882i \(0.312736\pi\)
−0.554953 + 0.831882i \(0.687264\pi\)
\(654\) 0 0
\(655\) 30410.3i 1.81409i
\(656\) −3146.65 + 944.223i −0.187281 + 0.0561977i
\(657\) 0 0
\(658\) 873.203 + 289.194i 0.0517341 + 0.0171337i
\(659\) −9857.22 −0.582675 −0.291338 0.956620i \(-0.594100\pi\)
−0.291338 + 0.956620i \(0.594100\pi\)
\(660\) 0 0
\(661\) 3542.53 0.208454 0.104227 0.994554i \(-0.466763\pi\)
0.104227 + 0.994554i \(0.466763\pi\)
\(662\) −13335.9 4416.70i −0.782954 0.259305i
\(663\) 0 0
\(664\) −21599.6 + 15139.5i −1.26239 + 0.884830i
\(665\) 318.301i 0.0185612i
\(666\) 0 0
\(667\) 8308.65i 0.482327i
\(668\) −12122.4 9018.82i −0.702141 0.522378i
\(669\) 0 0
\(670\) −1507.70 + 4552.40i −0.0869365 + 0.262499i
\(671\) −17276.7 −0.993979
\(672\) 0 0
\(673\) 19216.6 1.10066 0.550330 0.834947i \(-0.314502\pi\)
0.550330 + 0.834947i \(0.314502\pi\)
\(674\) 4350.96 13137.5i 0.248654 0.750795i
\(675\) 0 0
\(676\) −7092.17 5276.43i −0.403515 0.300206i
\(677\) 15731.9i 0.893093i 0.894760 + 0.446547i \(0.147346\pi\)
−0.894760 + 0.446547i \(0.852654\pi\)
\(678\) 0 0
\(679\) 18767.1i 1.06070i
\(680\) 8097.32 5675.55i 0.456644 0.320070i
\(681\) 0 0
\(682\) −6792.78 2249.69i −0.381392 0.126312i
\(683\) 16870.5 0.945142 0.472571 0.881293i \(-0.343326\pi\)
0.472571 + 0.881293i \(0.343326\pi\)
\(684\) 0 0
\(685\) 12011.1 0.669955
\(686\) 17523.7 + 5803.63i 0.975302 + 0.323008i
\(687\) 0 0
\(688\) −1223.91 + 367.261i −0.0678213 + 0.0203513i
\(689\) 2130.82i 0.117819i
\(690\) 0 0
\(691\) 29234.5i 1.60945i 0.593645 + 0.804727i \(0.297688\pi\)
−0.593645 + 0.804727i \(0.702312\pi\)
\(692\) −10047.6 + 13505.2i −0.551953 + 0.741894i
\(693\) 0 0
\(694\) −225.850 + 681.941i −0.0123533 + 0.0372999i
\(695\) −6175.33 −0.337041
\(696\) 0 0
\(697\) −1503.21 −0.0816905
\(698\) 5748.24 17356.4i 0.311711 0.941190i
\(699\) 0 0
\(700\) −14020.2 + 18844.9i −0.757022 + 1.01753i
\(701\) 14904.4i 0.803041i −0.915850 0.401520i \(-0.868482\pi\)
0.915850 0.401520i \(-0.131518\pi\)
\(702\) 0 0
\(703\) 176.459i 0.00946696i
\(704\) 9769.91 26922.3i 0.523036 1.44130i
\(705\) 0 0
\(706\) −10830.4 3586.90i −0.577348 0.191211i
\(707\) 52805.7 2.80900
\(708\) 0 0
\(709\) −17930.1 −0.949758 −0.474879 0.880051i \(-0.657508\pi\)
−0.474879 + 0.880051i \(0.657508\pi\)
\(710\) −45460.0 15055.8i −2.40294 0.795823i
\(711\) 0 0
\(712\) 15567.7 + 22210.4i 0.819415 + 1.16906i
\(713\) 2172.55i 0.114113i
\(714\) 0 0
\(715\) 47967.7i 2.50894i
\(716\) 11746.5 + 8739.13i 0.613109 + 0.456141i
\(717\) 0 0
\(718\) 9488.57 28650.1i 0.493190 1.48915i
\(719\) −19033.4 −0.987238 −0.493619 0.869678i \(-0.664326\pi\)
−0.493619 + 0.869678i \(0.664326\pi\)
\(720\) 0 0
\(721\) −117.258 −0.00605677
\(722\) −6098.85 + 18415.1i −0.314371 + 0.949223i
\(723\) 0 0
\(724\) −21396.3 15918.4i −1.09833 0.817131i
\(725\) 16897.9i 0.865618i
\(726\) 0 0
\(727\) 19643.0i 1.00209i 0.865422 + 0.501043i \(0.167050\pi\)
−0.865422 + 0.501043i \(0.832950\pi\)
\(728\) 22428.0 + 31998.1i 1.14181 + 1.62902i
\(729\) 0 0
\(730\) 29192.2 + 9668.10i 1.48007 + 0.490181i
\(731\) −584.684 −0.0295832
\(732\) 0 0
\(733\) 8335.12 0.420006 0.210003 0.977701i \(-0.432653\pi\)
0.210003 + 0.977701i \(0.432653\pi\)
\(734\) 6873.19 + 2276.32i 0.345632 + 0.114469i
\(735\) 0 0
\(736\) −8692.10 246.011i −0.435320 0.0123208i
\(737\) 6355.44i 0.317647i
\(738\) 0 0
\(739\) 12308.0i 0.612661i −0.951925 0.306331i \(-0.900899\pi\)
0.951925 0.306331i \(-0.0991013\pi\)
\(740\) −17717.2 + 23814.2i −0.880134 + 1.18301i
\(741\) 0 0
\(742\) −990.977 + 2992.19i −0.0490295 + 0.148042i
\(743\) −26227.7 −1.29502 −0.647511 0.762056i \(-0.724190\pi\)
−0.647511 + 0.762056i \(0.724190\pi\)
\(744\) 0 0
\(745\) 21773.9 1.07078
\(746\) −1721.50 + 5197.96i −0.0844887 + 0.255108i
\(747\) 0 0
\(748\) 7822.25 10514.1i 0.382366 0.513947i
\(749\) 2324.61i 0.113404i
\(750\) 0 0
\(751\) 2741.63i 0.133214i 0.997779 + 0.0666068i \(0.0212173\pi\)
−0.997779 + 0.0666068i \(0.978783\pi\)
\(752\) −199.054 663.352i −0.00965258 0.0321675i
\(753\) 0 0
\(754\) 26686.2 + 8838.16i 1.28893 + 0.426879i
\(755\) −24897.2 −1.20014
\(756\) 0 0
\(757\) −17816.8 −0.855434 −0.427717 0.903913i \(-0.640682\pi\)
−0.427717 + 0.903913i \(0.640682\pi\)
\(758\) −15962.1 5286.44i −0.764866 0.253314i
\(759\) 0 0
\(760\) −196.250 + 137.555i −0.00936674 + 0.00656531i
\(761\) 32228.2i 1.53518i −0.640940 0.767591i \(-0.721455\pi\)
0.640940 0.767591i \(-0.278545\pi\)
\(762\) 0 0
\(763\) 49910.1i 2.36811i
\(764\) −23249.3 17297.0i −1.10096 0.819088i
\(765\) 0 0
\(766\) 1508.87 4555.93i 0.0711718 0.214899i
\(767\) 23632.2 1.11253
\(768\) 0 0
\(769\) −4236.60 −0.198668 −0.0993340 0.995054i \(-0.531671\pi\)
−0.0993340 + 0.995054i \(0.531671\pi\)
\(770\) −22308.3 + 67358.5i −1.04407 + 3.15251i
\(771\) 0 0
\(772\) 16615.5 + 12361.6i 0.774616 + 0.576298i
\(773\) 1754.64i 0.0816431i 0.999166 + 0.0408215i \(0.0129975\pi\)
−0.999166 + 0.0408215i \(0.987002\pi\)
\(774\) 0 0
\(775\) 4418.48i 0.204795i
\(776\) 11570.9 8110.25i 0.535273 0.375182i
\(777\) 0 0
\(778\) −10508.3 3480.23i −0.484244 0.160376i
\(779\) 36.4324 0.00167565
\(780\) 0 0
\(781\) −63465.1 −2.90776
\(782\) −3777.02 1250.90i −0.172719 0.0572023i
\(783\) 0 0
\(784\) −10303.9 34338.1i −0.469384 1.56424i
\(785\) 26470.6i 1.20354i
\(786\) 0 0
\(787\) 11896.9i 0.538857i −0.963020 0.269428i \(-0.913165\pi\)
0.963020 0.269428i \(-0.0868347\pi\)
\(788\) −8367.37 + 11246.8i −0.378268 + 0.508439i
\(789\) 0 0
\(790\) −6462.89 +