Properties

Label 108.4.a.d
Level $108$
Weight $4$
Character orbit 108.a
Self dual yes
Analytic conductor $6.372$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [108,4,Mod(1,108)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(108, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("108.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 108.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.37220628062\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 9 q^{5} - q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 9 q^{5} - q^{7} + 63 q^{11} - 28 q^{13} + 72 q^{17} + 98 q^{19} + 126 q^{23} - 44 q^{25} - 126 q^{29} - 259 q^{31} - 9 q^{35} + 386 q^{37} - 450 q^{41} - 34 q^{43} - 54 q^{47} - 342 q^{49} - 693 q^{53} + 567 q^{55} + 180 q^{59} - 280 q^{61} - 252 q^{65} - 586 q^{67} + 504 q^{71} + 161 q^{73} - 63 q^{77} + 440 q^{79} + 999 q^{83} + 648 q^{85} + 882 q^{89} + 28 q^{91} + 882 q^{95} - 721 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 9.00000 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 108.4.a.d yes 1
3.b odd 2 1 108.4.a.a 1
4.b odd 2 1 432.4.a.l 1
8.b even 2 1 1728.4.a.g 1
8.d odd 2 1 1728.4.a.h 1
9.c even 3 2 324.4.e.b 2
9.d odd 6 2 324.4.e.g 2
12.b even 2 1 432.4.a.c 1
24.f even 2 1 1728.4.a.z 1
24.h odd 2 1 1728.4.a.y 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
108.4.a.a 1 3.b odd 2 1
108.4.a.d yes 1 1.a even 1 1 trivial
324.4.e.b 2 9.c even 3 2
324.4.e.g 2 9.d odd 6 2
432.4.a.c 1 12.b even 2 1
432.4.a.l 1 4.b odd 2 1
1728.4.a.g 1 8.b even 2 1
1728.4.a.h 1 8.d odd 2 1
1728.4.a.y 1 24.h odd 2 1
1728.4.a.z 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(108))\):

\( T_{5} - 9 \) Copy content Toggle raw display
\( T_{7} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 9 \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T - 63 \) Copy content Toggle raw display
$13$ \( T + 28 \) Copy content Toggle raw display
$17$ \( T - 72 \) Copy content Toggle raw display
$19$ \( T - 98 \) Copy content Toggle raw display
$23$ \( T - 126 \) Copy content Toggle raw display
$29$ \( T + 126 \) Copy content Toggle raw display
$31$ \( T + 259 \) Copy content Toggle raw display
$37$ \( T - 386 \) Copy content Toggle raw display
$41$ \( T + 450 \) Copy content Toggle raw display
$43$ \( T + 34 \) Copy content Toggle raw display
$47$ \( T + 54 \) Copy content Toggle raw display
$53$ \( T + 693 \) Copy content Toggle raw display
$59$ \( T - 180 \) Copy content Toggle raw display
$61$ \( T + 280 \) Copy content Toggle raw display
$67$ \( T + 586 \) Copy content Toggle raw display
$71$ \( T - 504 \) Copy content Toggle raw display
$73$ \( T - 161 \) Copy content Toggle raw display
$79$ \( T - 440 \) Copy content Toggle raw display
$83$ \( T - 999 \) Copy content Toggle raw display
$89$ \( T - 882 \) Copy content Toggle raw display
$97$ \( T + 721 \) Copy content Toggle raw display
show more
show less