Defining parameters
Level: | \( N \) | \(=\) | \( 108 = 2^{2} \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 108.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(108))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 63 | 4 | 59 |
Cusp forms | 45 | 4 | 41 |
Eisenstein series | 18 | 0 | 18 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | Fricke | Dim |
---|---|---|---|
\(-\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(-\) | \(+\) | \(2\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(2\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(108))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | |||||||
108.4.a.a | $1$ | $6.372$ | \(\Q\) | None | \(0\) | \(0\) | \(-9\) | \(-1\) | $-$ | $+$ | \(q-9q^{5}-q^{7}-63q^{11}-28q^{13}-72q^{17}+\cdots\) | |
108.4.a.b | $1$ | $6.372$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-37\) | $-$ | $+$ | \(q-37q^{7}-19q^{13}-163q^{19}-5^{3}q^{25}+\cdots\) | |
108.4.a.c | $1$ | $6.372$ | \(\Q\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(17\) | $-$ | $-$ | \(q+17q^{7}+89q^{13}+107q^{19}-5^{3}q^{25}+\cdots\) | |
108.4.a.d | $1$ | $6.372$ | \(\Q\) | None | \(0\) | \(0\) | \(9\) | \(-1\) | $-$ | $-$ | \(q+9q^{5}-q^{7}+63q^{11}-28q^{13}+72q^{17}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(108))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(108)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 2}\)