Properties

Label 108.4
Level 108
Weight 4
Dimension 432
Nonzero newspaces 6
Newform subspaces 11
Sturm bound 2592
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 11 \)
Sturm bound: \(2592\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(108))\).

Total New Old
Modular forms 1047 464 583
Cusp forms 897 432 465
Eisenstein series 150 32 118

Trace form

\( 432 q - 3 q^{2} - 13 q^{4} - 6 q^{6} - 28 q^{7} - 9 q^{8} - 60 q^{9} + 43 q^{10} - 138 q^{11} - 123 q^{12} - 24 q^{13} + 147 q^{14} + 234 q^{15} + 131 q^{16} + 408 q^{17} + 351 q^{18} + 170 q^{19} + 459 q^{20}+ \cdots - 5076 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(108))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
108.4.a \(\chi_{108}(1, \cdot)\) 108.4.a.a 1 1
108.4.a.b 1
108.4.a.c 1
108.4.a.d 1
108.4.b \(\chi_{108}(107, \cdot)\) 108.4.b.a 12 1
108.4.b.b 12
108.4.e \(\chi_{108}(37, \cdot)\) 108.4.e.a 6 2
108.4.h \(\chi_{108}(35, \cdot)\) 108.4.h.a 8 2
108.4.h.b 24
108.4.i \(\chi_{108}(13, \cdot)\) 108.4.i.a 54 6
108.4.l \(\chi_{108}(11, \cdot)\) 108.4.l.a 312 6

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(108))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(108)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 2}\)