Properties

Label 108.3.j.a.7.8
Level 108
Weight 3
Character 108.7
Analytic conductor 2.943
Analytic rank 0
Dimension 204
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 108.j (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.94278685509\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 7.8
Character \(\chi\) \(=\) 108.7
Dual form 108.3.j.a.31.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.59321 - 1.20900i) q^{2} +(2.60238 - 1.49253i) q^{3} +(1.07665 + 3.85238i) q^{4} +(-0.890579 - 5.05073i) q^{5} +(-5.95060 - 0.768354i) q^{6} +(0.0265129 - 0.0315969i) q^{7} +(2.94218 - 7.43932i) q^{8} +(4.54473 - 7.76823i) q^{9} +O(q^{10})\) \(q+(-1.59321 - 1.20900i) q^{2} +(2.60238 - 1.49253i) q^{3} +(1.07665 + 3.85238i) q^{4} +(-0.890579 - 5.05073i) q^{5} +(-5.95060 - 0.768354i) q^{6} +(0.0265129 - 0.0315969i) q^{7} +(2.94218 - 7.43932i) q^{8} +(4.54473 - 7.76823i) q^{9} +(-4.68743 + 9.12359i) q^{10} +(4.18050 + 0.737135i) q^{11} +(8.55163 + 8.41841i) q^{12} +(-1.91152 - 0.695736i) q^{13} +(-0.0804412 + 0.0182865i) q^{14} +(-9.85597 - 11.8147i) q^{15} +(-13.6816 + 8.29533i) q^{16} +(-15.1353 - 26.2152i) q^{17} +(-16.6325 + 6.88189i) q^{18} +(-5.91027 - 3.41230i) q^{19} +(18.4985 - 8.86872i) q^{20} +(0.0218374 - 0.121798i) q^{21} +(-5.76923 - 6.22863i) q^{22} +(25.3540 + 30.2157i) q^{23} +(-3.44673 - 23.7512i) q^{24} +(-1.22440 + 0.445645i) q^{25} +(2.20431 + 3.41948i) q^{26} +(0.232786 - 26.9990i) q^{27} +(0.150268 + 0.0681190i) q^{28} +(-20.7044 + 7.53578i) q^{29} +(1.41874 + 30.7391i) q^{30} +(25.1859 + 30.0153i) q^{31} +(31.8268 + 3.32485i) q^{32} +(11.9794 - 4.32121i) q^{33} +(-7.58027 + 60.0649i) q^{34} +(-0.183199 - 0.105770i) q^{35} +(34.8193 + 9.14433i) q^{36} +(15.9508 + 27.6276i) q^{37} +(5.29086 + 12.5820i) q^{38} +(-6.01290 + 1.04243i) q^{39} +(-40.1943 - 8.23486i) q^{40} +(53.8833 + 19.6119i) q^{41} +(-0.182045 + 0.167649i) q^{42} +(40.8395 + 7.20111i) q^{43} +(1.66121 + 16.8985i) q^{44} +(-43.2827 - 16.0359i) q^{45} +(-3.86358 - 78.7930i) q^{46} +(9.40005 - 11.2025i) q^{47} +(-23.2238 + 42.0078i) q^{48} +(8.50847 + 48.2539i) q^{49} +(2.48951 + 0.770289i) q^{50} +(-78.5146 - 45.6318i) q^{51} +(0.622201 - 8.11296i) q^{52} -43.0946 q^{53} +(-33.0126 + 42.7337i) q^{54} -21.7710i q^{55} +(-0.157053 - 0.290202i) q^{56} +(-20.4737 - 0.0588402i) q^{57} +(42.0972 + 13.0254i) q^{58} +(-40.5818 + 7.15567i) q^{59} +(34.9032 - 50.6892i) q^{60} +(14.2464 + 11.9542i) q^{61} +(-3.83795 - 78.2705i) q^{62} +(-0.124958 - 0.349558i) q^{63} +(-46.6871 - 43.7757i) q^{64} +(-1.81161 + 10.2742i) q^{65} +(-24.3101 - 7.59850i) q^{66} +(16.7275 - 45.9585i) q^{67} +(84.6952 - 86.5316i) q^{68} +(111.078 + 40.7912i) q^{69} +(0.163999 + 0.390001i) q^{70} +(-111.053 + 64.1166i) q^{71} +(-44.4190 - 56.6653i) q^{72} +(63.7153 - 110.358i) q^{73} +(7.98870 - 63.3012i) q^{74} +(-2.52121 + 2.98718i) q^{75} +(6.78216 - 26.4424i) q^{76} +(0.134128 - 0.112547i) q^{77} +(10.8401 + 5.60877i) q^{78} +(1.11267 + 3.05705i) q^{79} +(54.0821 + 61.7146i) q^{80} +(-39.6909 - 70.6090i) q^{81} +(-62.1368 - 96.3907i) q^{82} +(40.0201 + 109.954i) q^{83} +(0.492724 - 0.0470081i) q^{84} +(-118.926 + 99.7911i) q^{85} +(-56.3599 - 60.8477i) q^{86} +(-42.6332 + 50.5128i) q^{87} +(17.7836 - 28.9313i) q^{88} +(-26.9272 + 46.6393i) q^{89} +(49.5711 + 77.8773i) q^{90} +(-0.0726630 + 0.0419520i) q^{91} +(-89.1050 + 130.205i) q^{92} +(110.342 + 40.5206i) q^{93} +(-28.5201 + 6.48339i) q^{94} +(-11.9710 + 32.8901i) q^{95} +(87.7878 - 38.8498i) q^{96} +(-5.60171 + 31.7689i) q^{97} +(44.7831 - 87.1654i) q^{98} +(24.7255 - 29.1250i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} + O(q^{10}) \) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} - 3q^{10} + 39q^{12} - 12q^{13} + 39q^{14} - 6q^{16} - 6q^{17} - 27q^{18} - 69q^{20} - 12q^{21} - 6q^{22} - 138q^{24} - 12q^{25} - 174q^{26} - 12q^{28} + 60q^{29} - 153q^{30} - 96q^{32} + 48q^{33} + 6q^{34} + 24q^{36} - 6q^{37} + 72q^{38} + 69q^{40} - 192q^{41} - 126q^{42} - 219q^{44} - 132q^{45} - 3q^{46} - 219q^{48} - 12q^{49} - 165q^{50} + 21q^{52} - 24q^{53} + 78q^{54} + 99q^{56} - 150q^{57} - 141q^{58} + 210q^{60} - 12q^{61} + 294q^{62} - 3q^{64} - 156q^{65} + 393q^{66} + 375q^{68} - 60q^{69} - 165q^{70} + 228q^{72} - 6q^{73} + 447q^{74} - 54q^{76} + 132q^{77} + 750q^{78} + 798q^{80} + 228q^{81} - 12q^{82} + 762q^{84} + 138q^{85} + 606q^{86} - 198q^{88} - 114q^{89} + 894q^{90} + 723q^{92} - 1020q^{93} - 357q^{94} + 474q^{96} + 168q^{97} + 510q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.59321 1.20900i −0.796606 0.604499i
\(3\) 2.60238 1.49253i 0.867459 0.497509i
\(4\) 1.07665 + 3.85238i 0.269163 + 0.963095i
\(5\) −0.890579 5.05073i −0.178116 1.01015i −0.934486 0.356001i \(-0.884140\pi\)
0.756370 0.654144i \(-0.226971\pi\)
\(6\) −5.95060 0.768354i −0.991767 0.128059i
\(7\) 0.0265129 0.0315969i 0.00378756 0.00451384i −0.764147 0.645042i \(-0.776840\pi\)
0.767935 + 0.640528i \(0.221284\pi\)
\(8\) 2.94218 7.43932i 0.367773 0.929916i
\(9\) 4.54473 7.76823i 0.504970 0.863137i
\(10\) −4.68743 + 9.12359i −0.468743 + 0.912359i
\(11\) 4.18050 + 0.737135i 0.380045 + 0.0670123i 0.360408 0.932795i \(-0.382638\pi\)
0.0196378 + 0.999807i \(0.493749\pi\)
\(12\) 8.55163 + 8.41841i 0.712636 + 0.701534i
\(13\) −1.91152 0.695736i −0.147040 0.0535182i 0.267452 0.963571i \(-0.413818\pi\)
−0.414492 + 0.910053i \(0.636041\pi\)
\(14\) −0.0804412 + 0.0182865i −0.00574580 + 0.00130618i
\(15\) −9.85597 11.8147i −0.657065 0.787645i
\(16\) −13.6816 + 8.29533i −0.855103 + 0.518458i
\(17\) −15.1353 26.2152i −0.890313 1.54207i −0.839500 0.543359i \(-0.817152\pi\)
−0.0508130 0.998708i \(-0.516181\pi\)
\(18\) −16.6325 + 6.88189i −0.924027 + 0.382327i
\(19\) −5.91027 3.41230i −0.311067 0.179595i 0.336337 0.941742i \(-0.390812\pi\)
−0.647404 + 0.762147i \(0.724145\pi\)
\(20\) 18.4985 8.86872i 0.924924 0.443436i
\(21\) 0.0218374 0.121798i 0.00103988 0.00579991i
\(22\) −5.76923 6.22863i −0.262238 0.283119i
\(23\) 25.3540 + 30.2157i 1.10235 + 1.31373i 0.945324 + 0.326133i \(0.105746\pi\)
0.157024 + 0.987595i \(0.449810\pi\)
\(24\) −3.44673 23.7512i −0.143614 0.989634i
\(25\) −1.22440 + 0.445645i −0.0489760 + 0.0178258i
\(26\) 2.20431 + 3.41948i 0.0847813 + 0.131518i
\(27\) 0.232786 26.9990i 0.00862169 0.999963i
\(28\) 0.150268 + 0.0681190i 0.00536672 + 0.00243282i
\(29\) −20.7044 + 7.53578i −0.713944 + 0.259854i −0.673353 0.739321i \(-0.735146\pi\)
−0.0405915 + 0.999176i \(0.512924\pi\)
\(30\) 1.41874 + 30.7391i 0.0472912 + 1.02464i
\(31\) 25.1859 + 30.0153i 0.812447 + 0.968237i 0.999901 0.0140364i \(-0.00446809\pi\)
−0.187454 + 0.982273i \(0.560024\pi\)
\(32\) 31.8268 + 3.32485i 0.994588 + 0.103902i
\(33\) 11.9794 4.32121i 0.363013 0.130946i
\(34\) −7.58027 + 60.0649i −0.222949 + 1.76661i
\(35\) −0.183199 0.105770i −0.00523426 0.00302200i
\(36\) 34.8193 + 9.14433i 0.967202 + 0.254009i
\(37\) 15.9508 + 27.6276i 0.431103 + 0.746693i 0.996969 0.0778047i \(-0.0247911\pi\)
−0.565865 + 0.824498i \(0.691458\pi\)
\(38\) 5.29086 + 12.5820i 0.139233 + 0.331106i
\(39\) −6.01290 + 1.04243i −0.154177 + 0.0267289i
\(40\) −40.1943 8.23486i −1.00486 0.205871i
\(41\) 53.8833 + 19.6119i 1.31423 + 0.478340i 0.901604 0.432562i \(-0.142390\pi\)
0.412623 + 0.910902i \(0.364613\pi\)
\(42\) −0.182045 + 0.167649i −0.00433441 + 0.00399164i
\(43\) 40.8395 + 7.20111i 0.949756 + 0.167468i 0.627004 0.779016i \(-0.284281\pi\)
0.322752 + 0.946484i \(0.395392\pi\)
\(44\) 1.66121 + 16.8985i 0.0377549 + 0.384057i
\(45\) −43.2827 16.0359i −0.961837 0.356354i
\(46\) −3.86358 78.7930i −0.0839908 1.71289i
\(47\) 9.40005 11.2025i 0.200001 0.238352i −0.656717 0.754137i \(-0.728055\pi\)
0.856718 + 0.515785i \(0.172500\pi\)
\(48\) −23.2238 + 42.0078i −0.483829 + 0.875163i
\(49\) 8.50847 + 48.2539i 0.173642 + 0.984774i
\(50\) 2.48951 + 0.770289i 0.0497902 + 0.0154058i
\(51\) −78.5146 45.6318i −1.53950 0.894741i
\(52\) 0.622201 8.11296i 0.0119654 0.156019i
\(53\) −43.0946 −0.813105 −0.406553 0.913627i \(-0.633269\pi\)
−0.406553 + 0.913627i \(0.633269\pi\)
\(54\) −33.0126 + 42.7337i −0.611344 + 0.791365i
\(55\) 21.7710i 0.395837i
\(56\) −0.157053 0.290202i −0.00280453 0.00518218i
\(57\) −20.4737 0.0588402i −0.359188 0.00103228i
\(58\) 42.0972 + 13.0254i 0.725814 + 0.224577i
\(59\) −40.5818 + 7.15567i −0.687828 + 0.121283i −0.506629 0.862164i \(-0.669109\pi\)
−0.181199 + 0.983447i \(0.557998\pi\)
\(60\) 34.9032 50.6892i 0.581720 0.844820i
\(61\) 14.2464 + 11.9542i 0.233548 + 0.195970i 0.752050 0.659107i \(-0.229065\pi\)
−0.518501 + 0.855077i \(0.673510\pi\)
\(62\) −3.83795 78.2705i −0.0619025 1.26243i
\(63\) −0.124958 0.349558i −0.00198346 0.00554853i
\(64\) −46.6871 43.7757i −0.729486 0.683996i
\(65\) −1.81161 + 10.2742i −0.0278710 + 0.158064i
\(66\) −24.3101 7.59850i −0.368335 0.115129i
\(67\) 16.7275 45.9585i 0.249664 0.685948i −0.750034 0.661399i \(-0.769963\pi\)
0.999699 0.0245484i \(-0.00781479\pi\)
\(68\) 84.6952 86.5316i 1.24552 1.27252i
\(69\) 111.078 + 40.7912i 1.60983 + 0.591176i
\(70\) 0.163999 + 0.390001i 0.00234285 + 0.00557144i
\(71\) −111.053 + 64.1166i −1.56413 + 0.903051i −0.567298 + 0.823512i \(0.692011\pi\)
−0.996832 + 0.0795386i \(0.974655\pi\)
\(72\) −44.4190 56.6653i −0.616931 0.787018i
\(73\) 63.7153 110.358i 0.872813 1.51176i 0.0137383 0.999906i \(-0.495627\pi\)
0.859075 0.511851i \(-0.171040\pi\)
\(74\) 7.98870 63.3012i 0.107955 0.855422i
\(75\) −2.52121 + 2.98718i −0.0336161 + 0.0398291i
\(76\) 6.78216 26.4424i 0.0892390 0.347927i
\(77\) 0.134128 0.112547i 0.00174193 0.00146165i
\(78\) 10.8401 + 5.60877i 0.138976 + 0.0719073i
\(79\) 1.11267 + 3.05705i 0.0140845 + 0.0386968i 0.946536 0.322599i \(-0.104557\pi\)
−0.932451 + 0.361296i \(0.882334\pi\)
\(80\) 54.0821 + 61.7146i 0.676026 + 0.771433i
\(81\) −39.6909 70.6090i −0.490012 0.871716i
\(82\) −62.1368 96.3907i −0.757766 1.17550i
\(83\) 40.0201 + 109.954i 0.482169 + 1.32475i 0.907629 + 0.419772i \(0.137890\pi\)
−0.425460 + 0.904977i \(0.639888\pi\)
\(84\) 0.492724 0.0470081i 0.00586576 0.000559620i
\(85\) −118.926 + 99.7911i −1.39913 + 1.17401i
\(86\) −56.3599 60.8477i −0.655347 0.707532i
\(87\) −42.6332 + 50.5128i −0.490037 + 0.580607i
\(88\) 17.7836 28.9313i 0.202086 0.328765i
\(89\) −26.9272 + 46.6393i −0.302553 + 0.524037i −0.976714 0.214548i \(-0.931172\pi\)
0.674160 + 0.738585i \(0.264506\pi\)
\(90\) 49.5711 + 77.8773i 0.550790 + 0.865303i
\(91\) −0.0726630 + 0.0419520i −0.000798495 + 0.000461011i
\(92\) −89.1050 + 130.205i −0.968533 + 1.41527i
\(93\) 110.342 + 40.5206i 1.18647 + 0.435706i
\(94\) −28.5201 + 6.48339i −0.303406 + 0.0689723i
\(95\) −11.9710 + 32.8901i −0.126011 + 0.346211i
\(96\) 87.7878 38.8498i 0.914456 0.404686i
\(97\) −5.60171 + 31.7689i −0.0577496 + 0.327514i −0.999972 0.00747351i \(-0.997621\pi\)
0.942222 + 0.334988i \(0.108732\pi\)
\(98\) 44.7831 87.1654i 0.456970 0.889443i
\(99\) 24.7255 29.1250i 0.249752 0.294192i
\(100\) −3.03504 4.23705i −0.0303504 0.0423705i
\(101\) −105.877 88.8411i −1.04828 0.879615i −0.0553723 0.998466i \(-0.517635\pi\)
−0.992912 + 0.118851i \(0.962079\pi\)
\(102\) 69.9217 + 167.625i 0.685507 + 1.64338i
\(103\) −70.1342 + 12.3665i −0.680914 + 0.120064i −0.503398 0.864054i \(-0.667917\pi\)
−0.177516 + 0.984118i \(0.556806\pi\)
\(104\) −10.7999 + 12.1734i −0.103845 + 0.117052i
\(105\) −0.634617 0.00182385i −0.00604397 1.73700e-5i
\(106\) 68.6588 + 52.1012i 0.647725 + 0.491521i
\(107\) 106.755i 0.997712i −0.866685 0.498856i \(-0.833754\pi\)
0.866685 0.498856i \(-0.166246\pi\)
\(108\) 104.261 28.1717i 0.965380 0.260849i
\(109\) 53.1106 0.487253 0.243627 0.969869i \(-0.421663\pi\)
0.243627 + 0.969869i \(0.421663\pi\)
\(110\) −26.3211 + 34.6859i −0.239283 + 0.315326i
\(111\) 82.7451 + 48.0905i 0.745451 + 0.433248i
\(112\) −0.100634 + 0.652230i −0.000898517 + 0.00582349i
\(113\) 22.6559 + 128.488i 0.200494 + 1.13706i 0.904374 + 0.426740i \(0.140338\pi\)
−0.703880 + 0.710319i \(0.748551\pi\)
\(114\) 32.5478 + 24.8464i 0.285507 + 0.217951i
\(115\) 130.032 154.966i 1.13071 1.34753i
\(116\) −51.3221 71.6477i −0.442432 0.617653i
\(117\) −14.0920 + 11.6872i −0.120444 + 0.0998906i
\(118\) 73.3067 + 37.6628i 0.621243 + 0.319177i
\(119\) −1.22960 0.216811i −0.0103328 0.00182194i
\(120\) −116.891 + 38.5608i −0.974094 + 0.321340i
\(121\) −96.7696 35.2213i −0.799749 0.291085i
\(122\) −8.24503 36.2695i −0.0675822 0.297291i
\(123\) 169.496 29.3847i 1.37802 0.238900i
\(124\) −88.5141 + 129.342i −0.713823 + 1.04308i
\(125\) −60.7668 105.251i −0.486134 0.842009i
\(126\) −0.223530 + 0.707993i −0.00177405 + 0.00561899i
\(127\) 90.4208 + 52.2045i 0.711975 + 0.411059i 0.811792 0.583947i \(-0.198492\pi\)
−0.0998168 + 0.995006i \(0.531826\pi\)
\(128\) 21.4577 + 126.189i 0.167639 + 0.985849i
\(129\) 117.028 42.2141i 0.907191 0.327241i
\(130\) 15.3077 14.1787i 0.117752 0.109067i
\(131\) −87.8938 104.748i −0.670945 0.799601i 0.317968 0.948102i \(-0.397000\pi\)
−0.988912 + 0.148501i \(0.952555\pi\)
\(132\) 29.5446 + 41.4969i 0.223823 + 0.314370i
\(133\) −0.264516 + 0.0962761i −0.00198884 + 0.000723880i
\(134\) −82.2142 + 52.9981i −0.613539 + 0.395508i
\(135\) −136.572 + 22.8690i −1.01164 + 0.169400i
\(136\) −239.554 + 35.4668i −1.76143 + 0.260785i
\(137\) 100.206 36.4722i 0.731434 0.266220i 0.0506624 0.998716i \(-0.483867\pi\)
0.680772 + 0.732496i \(0.261645\pi\)
\(138\) −127.655 199.283i −0.925038 1.44408i
\(139\) −55.0613 65.6195i −0.396124 0.472083i 0.530710 0.847554i \(-0.321925\pi\)
−0.926834 + 0.375471i \(0.877481\pi\)
\(140\) 0.210225 0.819629i 0.00150161 0.00585449i
\(141\) 7.74237 43.1831i 0.0549104 0.306263i
\(142\) 254.448 + 32.1117i 1.79189 + 0.226139i
\(143\) −7.47826 4.31757i −0.0522955 0.0301928i
\(144\) 2.26075 + 143.982i 0.0156996 + 0.999877i
\(145\) 56.5001 + 97.8610i 0.389656 + 0.674903i
\(146\) −234.935 + 98.7924i −1.60914 + 0.676660i
\(147\) 94.1625 + 112.876i 0.640561 + 0.767862i
\(148\) −89.2587 + 91.1939i −0.603099 + 0.616175i
\(149\) 147.356 + 53.6331i 0.988965 + 0.359954i 0.785319 0.619091i \(-0.212499\pi\)
0.203646 + 0.979045i \(0.434721\pi\)
\(150\) 7.62832 1.71108i 0.0508555 0.0114072i
\(151\) 24.6643 + 4.34897i 0.163339 + 0.0288011i 0.254720 0.967015i \(-0.418017\pi\)
−0.0913803 + 0.995816i \(0.529128\pi\)
\(152\) −42.7743 + 33.9288i −0.281410 + 0.223216i
\(153\) −272.431 1.56592i −1.78060 0.0102347i
\(154\) −0.349764 + 0.0171505i −0.00227120 + 0.000111367i
\(155\) 129.169 153.938i 0.833350 0.993148i
\(156\) −10.4896 22.0416i −0.0672411 0.141293i
\(157\) −19.7195 111.835i −0.125602 0.712324i −0.980949 0.194268i \(-0.937767\pi\)
0.855347 0.518056i \(-0.173344\pi\)
\(158\) 1.92324 6.21574i 0.0121724 0.0393402i
\(159\) −112.148 + 64.3198i −0.705335 + 0.404527i
\(160\) −11.5514 163.710i −0.0721961 1.02318i
\(161\) 1.62693 0.0101052
\(162\) −22.1300 + 160.481i −0.136605 + 0.990626i
\(163\) 228.549i 1.40214i 0.713091 + 0.701072i \(0.247295\pi\)
−0.713091 + 0.701072i \(0.752705\pi\)
\(164\) −17.5391 + 228.694i −0.106945 + 1.39448i
\(165\) −32.4939 56.6564i −0.196933 0.343372i
\(166\) 69.1739 223.565i 0.416710 1.34677i
\(167\) −15.9992 + 2.82109i −0.0958035 + 0.0168927i −0.221344 0.975196i \(-0.571044\pi\)
0.125541 + 0.992088i \(0.459933\pi\)
\(168\) −0.841846 0.520808i −0.00501099 0.00310005i
\(169\) −126.292 105.971i −0.747288 0.627049i
\(170\) 310.122 15.2067i 1.82425 0.0894511i
\(171\) −53.3681 + 30.4044i −0.312094 + 0.177804i
\(172\) 16.2285 + 165.082i 0.0943516 + 0.959781i
\(173\) 16.7323 94.8933i 0.0967182 0.548516i −0.897489 0.441037i \(-0.854611\pi\)
0.994207 0.107480i \(-0.0342781\pi\)
\(174\) 128.994 28.9341i 0.741343 0.166288i
\(175\) −0.0183814 + 0.0505025i −0.000105037 + 0.000288586i
\(176\) −63.3109 + 24.5934i −0.359721 + 0.139735i
\(177\) −94.9292 + 79.1913i −0.536323 + 0.447408i
\(178\) 99.2876 41.7514i 0.557795 0.234558i
\(179\) 198.630 114.679i 1.10967 0.640666i 0.170923 0.985284i \(-0.445325\pi\)
0.938743 + 0.344619i \(0.111992\pi\)
\(180\) 15.1762 184.006i 0.0843122 1.02226i
\(181\) 154.487 267.580i 0.853522 1.47834i −0.0244878 0.999700i \(-0.507795\pi\)
0.878010 0.478643i \(-0.158871\pi\)
\(182\) 0.166488 + 0.0210109i 0.000914767 + 0.000115445i
\(183\) 54.9165 + 9.84609i 0.300090 + 0.0538037i
\(184\) 299.381 99.7165i 1.62707 0.541937i
\(185\) 125.334 105.168i 0.677482 0.568475i
\(186\) −126.809 197.961i −0.681767 1.06431i
\(187\) −43.9491 120.749i −0.235022 0.645718i
\(188\) 53.2770 + 24.1513i 0.283388 + 0.128465i
\(189\) −0.846912 0.723177i −0.00448101 0.00382633i
\(190\) 58.8364 37.9280i 0.309665 0.199621i
\(191\) 76.7399 + 210.841i 0.401779 + 1.10388i 0.961406 + 0.275135i \(0.0887224\pi\)
−0.559626 + 0.828745i \(0.689055\pi\)
\(192\) −186.834 44.2391i −0.973093 0.230412i
\(193\) −130.384 + 109.405i −0.675564 + 0.566865i −0.914706 0.404119i \(-0.867578\pi\)
0.239142 + 0.970984i \(0.423134\pi\)
\(194\) 47.3332 43.8421i 0.243986 0.225990i
\(195\) 10.6200 + 29.4412i 0.0544615 + 0.150980i
\(196\) −176.732 + 84.7304i −0.901692 + 0.432298i
\(197\) −100.143 + 173.453i −0.508341 + 0.880473i 0.491612 + 0.870814i \(0.336408\pi\)
−0.999953 + 0.00965858i \(0.996926\pi\)
\(198\) −74.6050 + 16.5093i −0.376793 + 0.0833805i
\(199\) −230.445 + 133.047i −1.15801 + 0.668579i −0.950827 0.309722i \(-0.899764\pi\)
−0.207186 + 0.978301i \(0.566431\pi\)
\(200\) −0.287110 + 10.4199i −0.00143555 + 0.0520994i
\(201\) −25.0630 144.568i −0.124691 0.719242i
\(202\) 61.2754 + 269.547i 0.303344 + 1.33439i
\(203\) −0.310826 + 0.853989i −0.00153117 + 0.00420684i
\(204\) 91.2582 351.598i 0.447344 1.72352i
\(205\) 51.0671 289.616i 0.249108 1.41276i
\(206\) 126.690 + 65.0895i 0.614999 + 0.315968i
\(207\) 349.950 59.6337i 1.69058 0.288085i
\(208\) 31.9241 6.33787i 0.153481 0.0304705i
\(209\) −22.1926 18.6218i −0.106184 0.0890994i
\(210\) 1.00887 + 0.770156i 0.00480417 + 0.00366741i
\(211\) −393.246 + 69.3398i −1.86372 + 0.328625i −0.988032 0.154247i \(-0.950705\pi\)
−0.875691 + 0.482872i \(0.839594\pi\)
\(212\) −46.3978 166.017i −0.218858 0.783097i
\(213\) −193.307 + 332.606i −0.907542 + 1.56153i
\(214\) −129.067 + 170.084i −0.603116 + 0.794784i
\(215\) 212.682i 0.989220i
\(216\) −200.169 81.1678i −0.926710 0.375777i
\(217\) 1.61614 0.00744765
\(218\) −84.6165 64.2106i −0.388149 0.294544i
\(219\) 1.09868 382.290i 0.00501680 1.74562i
\(220\) 83.8703 23.4398i 0.381229 0.106545i
\(221\) 10.6926 + 60.6410i 0.0483830 + 0.274394i
\(222\) −73.6892 176.657i −0.331933 0.795752i
\(223\) −178.190 + 212.358i −0.799056 + 0.952278i −0.999625 0.0274016i \(-0.991277\pi\)
0.200568 + 0.979680i \(0.435721\pi\)
\(224\) 0.948876 0.917475i 0.00423605 0.00409587i
\(225\) −2.10268 + 11.5368i −0.00934526 + 0.0512745i
\(226\) 119.246 232.099i 0.527636 1.02699i
\(227\) −157.783 27.8214i −0.695079 0.122561i −0.185064 0.982727i \(-0.559249\pi\)
−0.510015 + 0.860165i \(0.670360\pi\)
\(228\) −21.8163 78.9358i −0.0956857 0.346209i
\(229\) 391.957 + 142.661i 1.71160 + 0.622972i 0.997060 0.0766226i \(-0.0244136\pi\)
0.714540 + 0.699594i \(0.246636\pi\)
\(230\) −394.521 + 89.6853i −1.71531 + 0.389936i
\(231\) 0.181073 0.493080i 0.000783866 0.00213455i
\(232\) −4.85498 + 176.198i −0.0209267 + 0.759475i
\(233\) 113.470 + 196.537i 0.486998 + 0.843505i 0.999888 0.0149492i \(-0.00475865\pi\)
−0.512890 + 0.858454i \(0.671425\pi\)
\(234\) 36.5813 1.58303i 0.156330 0.00676510i
\(235\) −64.9525 37.5003i −0.276394 0.159576i
\(236\) −71.2588 148.632i −0.301944 0.629799i
\(237\) 7.45832 + 6.29489i 0.0314697 + 0.0265607i
\(238\) 1.69689 + 1.83201i 0.00712977 + 0.00769751i
\(239\) 100.927 + 120.281i 0.422290 + 0.503266i 0.934682 0.355486i \(-0.115685\pi\)
−0.512391 + 0.858752i \(0.671240\pi\)
\(240\) 232.853 + 79.8857i 0.970219 + 0.332857i
\(241\) −113.715 + 41.3887i −0.471845 + 0.171737i −0.566988 0.823726i \(-0.691891\pi\)
0.0951430 + 0.995464i \(0.469669\pi\)
\(242\) 111.592 + 173.109i 0.461124 + 0.715327i
\(243\) −208.677 124.511i −0.858751 0.512392i
\(244\) −30.7136 + 67.7532i −0.125875 + 0.277677i
\(245\) 236.140 85.9479i 0.963836 0.350808i
\(246\) −305.569 158.104i −1.24215 0.642700i
\(247\) 8.92354 + 10.6347i 0.0361277 + 0.0430553i
\(248\) 297.395 99.0552i 1.19917 0.399416i
\(249\) 268.257 + 226.411i 1.07734 + 0.909282i
\(250\) −30.4340 + 241.154i −0.121736 + 0.964617i
\(251\) 3.42052 + 1.97484i 0.0136276 + 0.00786788i 0.506798 0.862065i \(-0.330829\pi\)
−0.493171 + 0.869933i \(0.664162\pi\)
\(252\) 1.21209 0.857736i 0.00480989 0.00340372i
\(253\) 83.7194 + 145.006i 0.330907 + 0.573147i
\(254\) −80.9445 192.491i −0.318679 0.757840i
\(255\) −160.550 + 437.195i −0.629609 + 1.71449i
\(256\) 118.375 226.988i 0.462402 0.886670i
\(257\) 70.1778 + 25.5426i 0.273065 + 0.0993876i 0.474923 0.880027i \(-0.342476\pi\)
−0.201858 + 0.979415i \(0.564698\pi\)
\(258\) −237.486 74.2301i −0.920490 0.287713i
\(259\) 1.29585 + 0.228493i 0.00500328 + 0.000882213i
\(260\) −41.5305 + 4.08267i −0.159733 + 0.0157026i
\(261\) −35.5560 + 195.085i −0.136230 + 0.747450i
\(262\) 13.3937 + 273.149i 0.0511210 + 1.04255i
\(263\) 258.741 308.356i 0.983807 1.17246i −0.00121067 0.999999i \(-0.500385\pi\)
0.985017 0.172456i \(-0.0551702\pi\)
\(264\) 3.09881 101.833i 0.0117379 0.385730i
\(265\) 38.3791 + 217.659i 0.144827 + 0.821354i
\(266\) 0.537828 + 0.166411i 0.00202191 + 0.000625606i
\(267\) −0.464321 + 161.563i −0.00173903 + 0.605104i
\(268\) 195.059 + 14.9595i 0.727833 + 0.0558191i
\(269\) −256.494 −0.953508 −0.476754 0.879037i \(-0.658187\pi\)
−0.476754 + 0.879037i \(0.658187\pi\)
\(270\) 245.237 + 128.680i 0.908284 + 0.476592i
\(271\) 98.1325i 0.362112i −0.983473 0.181056i \(-0.942048\pi\)
0.983473 0.181056i \(-0.0579516\pi\)
\(272\) 424.540 + 233.114i 1.56081 + 0.857036i
\(273\) −0.126482 + 0.217627i −0.000463304 + 0.000797167i
\(274\) −203.745 63.0415i −0.743595 0.230078i
\(275\) −5.44710 + 0.960471i −0.0198076 + 0.00349262i
\(276\) −37.5503 + 471.834i −0.136052 + 1.70954i
\(277\) −240.716 201.985i −0.869011 0.729187i 0.0948788 0.995489i \(-0.469754\pi\)
−0.963890 + 0.266302i \(0.914198\pi\)
\(278\) 8.39053 + 171.115i 0.0301818 + 0.615521i
\(279\) 347.629 59.2382i 1.24598 0.212323i
\(280\) −1.32586 + 1.05168i −0.00473522 + 0.00375601i
\(281\) 13.7932 78.2252i 0.0490862 0.278381i −0.950379 0.311096i \(-0.899304\pi\)
0.999465 + 0.0327143i \(0.0104151\pi\)
\(282\) −64.5435 + 59.4393i −0.228877 + 0.210778i
\(283\) 49.7122 136.583i 0.175661 0.482626i −0.820349 0.571863i \(-0.806221\pi\)
0.996010 + 0.0892374i \(0.0284430\pi\)
\(284\) −366.567 358.788i −1.29073 1.26334i
\(285\) 17.9363 + 103.459i 0.0629343 + 0.363016i
\(286\) 6.69452 + 15.9200i 0.0234074 + 0.0556644i
\(287\) 2.04828 1.18257i 0.00713686 0.00412047i
\(288\) 170.472 232.128i 0.591918 0.805998i
\(289\) −313.656 + 543.268i −1.08532 + 1.87982i
\(290\) 28.2971 224.222i 0.0975761 0.773178i
\(291\) 32.8382 + 91.0353i 0.112846 + 0.312836i
\(292\) 493.741 + 126.638i 1.69089 + 0.433693i
\(293\) −91.9061 + 77.1184i −0.313673 + 0.263203i −0.786008 0.618216i \(-0.787856\pi\)
0.472335 + 0.881419i \(0.343411\pi\)
\(294\) −13.5544 293.677i −0.0461034 0.998902i
\(295\) 72.2827 + 198.595i 0.245026 + 0.673204i
\(296\) 252.461 37.3778i 0.852910 0.126276i
\(297\) 20.8751 112.698i 0.0702864 0.379454i
\(298\) −169.927 263.602i −0.570224 0.884570i
\(299\) −27.4425 75.3977i −0.0917810 0.252166i
\(300\) −14.2222 6.49650i −0.0474074 0.0216550i
\(301\) 1.31031 1.09948i 0.00435318 0.00365275i
\(302\) −34.0375 36.7479i −0.112707 0.121682i
\(303\) −408.129 73.1742i −1.34696 0.241499i
\(304\) 109.168 2.34182i 0.359106 0.00770335i
\(305\) 47.6897 82.6010i 0.156360 0.270823i
\(306\) 432.148 + 331.864i 1.41225 + 1.08452i
\(307\) 177.597 102.536i 0.578491 0.333992i −0.182042 0.983291i \(-0.558271\pi\)
0.760534 + 0.649299i \(0.224937\pi\)
\(308\) 0.577983 + 0.395539i 0.00187657 + 0.00128422i
\(309\) −164.058 + 136.860i −0.530932 + 0.442911i
\(310\) −391.905 + 89.0905i −1.26421 + 0.287389i
\(311\) −83.6144 + 229.729i −0.268857 + 0.738677i 0.729638 + 0.683833i \(0.239688\pi\)
−0.998495 + 0.0548442i \(0.982534\pi\)
\(312\) −9.93610 + 47.7989i −0.0318465 + 0.153202i
\(313\) 23.7303 134.581i 0.0758156 0.429971i −0.923148 0.384446i \(-0.874393\pi\)
0.998963 0.0455257i \(-0.0144963\pi\)
\(314\) −103.791 + 202.017i −0.330544 + 0.643368i
\(315\) −1.65424 + 0.942437i −0.00525154 + 0.00299186i
\(316\) −10.5789 + 7.57781i −0.0334777 + 0.0239804i
\(317\) −108.274 90.8524i −0.341557 0.286601i 0.455832 0.890066i \(-0.349342\pi\)
−0.797389 + 0.603465i \(0.793786\pi\)
\(318\) 256.439 + 33.1119i 0.806410 + 0.104125i
\(319\) −92.1095 + 16.2414i −0.288745 + 0.0509135i
\(320\) −179.521 + 274.790i −0.561002 + 0.858718i
\(321\) −159.335 277.817i −0.496371 0.865474i
\(322\) −2.59205 1.96696i −0.00804983 0.00610856i
\(323\) 206.585i 0.639581i
\(324\) 229.279 228.926i 0.707652 0.706561i
\(325\) 2.65051 0.00815543
\(326\) 276.316 364.128i 0.847594 1.11696i
\(327\) 138.214 79.2690i 0.422672 0.242413i
\(328\) 304.434 343.154i 0.928153 1.04620i
\(329\) −0.104742 0.594024i −0.000318366 0.00180554i
\(330\) −16.7279 + 129.551i −0.0506905 + 0.392578i
\(331\) 97.6833 116.414i 0.295116 0.351705i −0.598029 0.801474i \(-0.704049\pi\)
0.893145 + 0.449769i \(0.148494\pi\)
\(332\) −380.498 + 272.555i −1.14608 + 0.820948i
\(333\) 287.110 + 1.65029i 0.862193 + 0.00495582i
\(334\) 28.9008 + 14.8484i 0.0865293 + 0.0444562i
\(335\) −247.021 43.5565i −0.737376 0.130019i
\(336\) 0.711584 + 1.84755i 0.00211781 + 0.00549865i
\(337\) 119.675 + 43.5582i 0.355119 + 0.129253i 0.513418 0.858138i \(-0.328379\pi\)
−0.158299 + 0.987391i \(0.550601\pi\)
\(338\) 73.0904 + 321.521i 0.216244 + 0.951246i
\(339\) 250.730 + 300.559i 0.739618 + 0.886604i
\(340\) −512.475 350.709i −1.50728 1.03150i
\(341\) 83.1641 + 144.045i 0.243883 + 0.422418i
\(342\) 121.786 + 16.0812i 0.356098 + 0.0470210i
\(343\) 3.50057 + 2.02106i 0.0102058 + 0.00589229i
\(344\) 173.729 282.631i 0.505025 0.821603i
\(345\) 107.101 597.355i 0.310437 1.73146i
\(346\) −141.384 + 130.956i −0.408624 + 0.378485i
\(347\) 19.4708 + 23.2044i 0.0561119 + 0.0668715i 0.793370 0.608739i \(-0.208324\pi\)
−0.737258 + 0.675611i \(0.763880\pi\)
\(348\) −240.495 109.855i −0.691079 0.315675i
\(349\) 162.407 59.1115i 0.465351 0.169374i −0.0986944 0.995118i \(-0.531467\pi\)
0.564045 + 0.825744i \(0.309244\pi\)
\(350\) 0.0903429 0.0582381i 0.000258123 0.000166395i
\(351\) −19.2292 + 51.4472i −0.0547839 + 0.146573i
\(352\) 130.601 + 37.3602i 0.371026 + 0.106137i
\(353\) 364.507 132.670i 1.03260 0.375835i 0.230528 0.973066i \(-0.425955\pi\)
0.802069 + 0.597231i \(0.203733\pi\)
\(354\) 246.984 11.3993i 0.697696 0.0322015i
\(355\) 422.737 + 503.799i 1.19081 + 1.41915i
\(356\) −208.664 53.5196i −0.586133 0.150336i
\(357\) −3.52347 + 1.27098i −0.00986967 + 0.00356018i
\(358\) −455.107 57.4351i −1.27125 0.160433i
\(359\) −494.326 285.399i −1.37695 0.794983i −0.385160 0.922850i \(-0.625854\pi\)
−0.991791 + 0.127866i \(0.959187\pi\)
\(360\) −246.642 + 274.813i −0.685117 + 0.763370i
\(361\) −157.212 272.300i −0.435492 0.754294i
\(362\) −569.635 + 239.537i −1.57358 + 0.661704i
\(363\) −304.400 + 52.7723i −0.838566 + 0.145378i
\(364\) −0.239848 0.234758i −0.000658923 0.000644939i
\(365\) −614.133 223.526i −1.68256 0.612400i
\(366\) −75.5898 82.0809i −0.206530 0.224265i
\(367\) −77.7710 13.7131i −0.211910 0.0373655i 0.0666852 0.997774i \(-0.478758\pi\)
−0.278595 + 0.960409i \(0.589869\pi\)
\(368\) −597.534 203.081i −1.62373 0.551851i
\(369\) 397.235 329.447i 1.07652 0.892811i
\(370\) −326.832 + 16.0260i −0.883329 + 0.0433136i
\(371\) −1.14256 + 1.36165i −0.00307968 + 0.00367022i
\(372\) −37.3013 + 468.705i −0.100272 + 1.25996i
\(373\) −102.883 583.480i −0.275827 1.56429i −0.736324 0.676629i \(-0.763440\pi\)
0.460498 0.887661i \(-0.347671\pi\)
\(374\) −75.9652 + 245.513i −0.203116 + 0.656453i
\(375\) −315.228 183.207i −0.840609 0.488552i
\(376\) −55.6827 102.890i −0.148092 0.273644i
\(377\) 44.8198 0.118885
\(378\) 0.474990 + 2.17609i 0.00125659 + 0.00575685i
\(379\) 93.1184i 0.245695i −0.992426 0.122847i \(-0.960797\pi\)
0.992426 0.122847i \(-0.0392026\pi\)
\(380\) −139.594 10.7057i −0.367352 0.0281730i
\(381\) 313.226 + 0.900192i 0.822115 + 0.00236271i
\(382\) 132.643 428.693i 0.347234 1.12223i
\(383\) 185.774 32.7570i 0.485051 0.0855275i 0.0742251 0.997242i \(-0.476352\pi\)
0.410825 + 0.911714i \(0.365241\pi\)
\(384\) 244.181 + 296.364i 0.635888 + 0.771781i
\(385\) −0.687896 0.577214i −0.00178674 0.00149926i
\(386\) 340.000 16.6717i 0.880828 0.0431910i
\(387\) 241.544 284.524i 0.624145 0.735203i
\(388\) −128.417 + 12.6241i −0.330971 + 0.0325363i
\(389\) −27.7003 + 157.096i −0.0712091 + 0.403847i 0.928280 + 0.371882i \(0.121288\pi\)
−0.999489 + 0.0319646i \(0.989824\pi\)
\(390\) 18.6744 59.7455i 0.0478831 0.153194i
\(391\) 408.369 1121.98i 1.04442 2.86952i
\(392\) 384.010 + 78.6746i 0.979617 + 0.200701i
\(393\) −385.071 141.409i −0.979825 0.359820i
\(394\) 369.254 155.275i 0.937192 0.394098i
\(395\) 14.4494 8.34236i 0.0365807 0.0211199i
\(396\) 138.821 + 63.8944i 0.350559 + 0.161349i
\(397\) 58.9618 102.125i 0.148518 0.257241i −0.782162 0.623075i \(-0.785883\pi\)
0.930680 + 0.365834i \(0.119216\pi\)
\(398\) 528.001 + 66.6344i 1.32664 + 0.167423i
\(399\) −0.544676 + 0.645344i −0.00136510 + 0.00161740i
\(400\) 13.0550 16.2540i 0.0326376 0.0406349i
\(401\) −104.236 + 87.4644i −0.259940 + 0.218116i −0.763439 0.645881i \(-0.776490\pi\)
0.503498 + 0.863996i \(0.332046\pi\)
\(402\) −134.851 + 260.628i −0.335451 + 0.648328i
\(403\) −27.2605 74.8977i −0.0676440 0.185850i
\(404\) 228.257 503.528i 0.564994 1.24636i
\(405\) −321.279 + 263.351i −0.793281 + 0.650249i
\(406\) 1.52768 0.984797i 0.00376277 0.00242561i
\(407\) 46.3171 + 127.255i 0.113801 + 0.312667i
\(408\) −570.474 + 449.839i −1.39822 + 1.10255i
\(409\) −98.1152 + 82.3284i −0.239890 + 0.201292i −0.754804 0.655950i \(-0.772268\pi\)
0.514914 + 0.857242i \(0.327824\pi\)
\(410\) −431.506 + 399.680i −1.05245 + 0.974828i
\(411\) 206.339 244.475i 0.502042 0.594830i
\(412\) −123.151 256.869i −0.298909 0.623468i
\(413\) −0.849846 + 1.47198i −0.00205774 + 0.00356411i
\(414\) −629.641 328.079i −1.52087 0.792462i
\(415\) 519.708 300.053i 1.25231 0.723020i
\(416\) −58.5243 28.4986i −0.140684 0.0685062i
\(417\) −241.229 88.5861i −0.578487 0.212437i
\(418\) 12.8438 + 56.4992i 0.0307268 + 0.135165i
\(419\) −139.827 + 384.171i −0.333716 + 0.916876i 0.653421 + 0.756995i \(0.273333\pi\)
−0.987136 + 0.159881i \(0.948889\pi\)
\(420\) −0.676235 2.44675i −0.00161008 0.00582559i
\(421\) −26.5187 + 150.395i −0.0629897 + 0.357233i 0.936979 + 0.349384i \(0.113609\pi\)
−0.999969 + 0.00784813i \(0.997502\pi\)
\(422\) 710.355 + 364.960i 1.68331 + 0.864834i
\(423\) −44.3033 123.934i −0.104736 0.292989i
\(424\) −126.792 + 320.595i −0.299038 + 0.756119i
\(425\) 30.2143 + 25.3528i 0.0710925 + 0.0596537i
\(426\) 710.098 296.204i 1.66690 0.695315i
\(427\) 0.755429 0.133203i 0.00176916 0.000311950i
\(428\) 411.262 114.938i 0.960892 0.268547i
\(429\) −25.9053 0.0744504i −0.0603854 0.000173544i
\(430\) −257.132 + 338.848i −0.597982 + 0.788019i
\(431\) 640.109i 1.48517i 0.669751 + 0.742585i \(0.266401\pi\)
−0.669751 + 0.742585i \(0.733599\pi\)
\(432\) 220.781 + 371.322i 0.511067 + 0.859541i
\(433\) 343.700 0.793765 0.396883 0.917869i \(-0.370092\pi\)
0.396883 + 0.917869i \(0.370092\pi\)
\(434\) −2.57486 1.95391i −0.00593285 0.00450210i
\(435\) 293.095 + 170.343i 0.673781 + 0.391594i
\(436\) 57.1815 + 204.602i 0.131150 + 0.469271i
\(437\) −46.7440 265.099i −0.106966 0.606633i
\(438\) −463.939 + 607.742i −1.05922 + 1.38754i
\(439\) −58.0596 + 69.1928i −0.132254 + 0.157615i −0.828107 0.560570i \(-0.810582\pi\)
0.695853 + 0.718184i \(0.255027\pi\)
\(440\) −161.962 64.0544i −0.368095 0.145578i
\(441\) 413.516 + 153.205i 0.937679 + 0.347404i
\(442\) 56.2791 109.541i 0.127328 0.247831i
\(443\) −288.931 50.9464i −0.652215 0.115003i −0.162256 0.986749i \(-0.551877\pi\)
−0.489959 + 0.871746i \(0.662988\pi\)
\(444\) −96.1753 + 370.542i −0.216611 + 0.834554i
\(445\) 259.543 + 94.4660i 0.583243 + 0.212283i
\(446\) 540.634 122.901i 1.21218 0.275562i
\(447\) 463.524 80.3589i 1.03697 0.179774i
\(448\) −2.62099 + 0.314544i −0.00585042 + 0.000702108i
\(449\) 63.8556 + 110.601i 0.142217 + 0.246328i 0.928331 0.371754i \(-0.121243\pi\)
−0.786114 + 0.618082i \(0.787910\pi\)
\(450\) 17.2979 15.8384i 0.0384398 0.0351963i
\(451\) 210.803 + 121.707i 0.467411 + 0.269860i
\(452\) −470.591 + 225.615i −1.04113 + 0.499149i
\(453\) 70.6766 25.4944i 0.156019 0.0562790i
\(454\) 217.746 + 235.085i 0.479616 + 0.517807i
\(455\) 0.276600 + 0.329640i 0.000607913 + 0.000724483i
\(456\) −60.6751 + 152.137i −0.133059 + 0.333634i
\(457\) −394.951 + 143.750i −0.864225 + 0.314552i −0.735826 0.677170i \(-0.763206\pi\)
−0.128399 + 0.991723i \(0.540984\pi\)
\(458\) −451.994 701.163i −0.986886 1.53092i
\(459\) −711.306 + 402.536i −1.54969 + 0.876985i
\(460\) 736.985 + 334.087i 1.60214 + 0.726277i
\(461\) −648.376 + 235.990i −1.40646 + 0.511908i −0.930088 0.367338i \(-0.880269\pi\)
−0.476368 + 0.879246i \(0.658047\pi\)
\(462\) −0.884620 + 0.566664i −0.00191476 + 0.00122655i
\(463\) 354.216 + 422.138i 0.765045 + 0.911745i 0.998156 0.0607054i \(-0.0193350\pi\)
−0.233111 + 0.972450i \(0.574891\pi\)
\(464\) 220.758 274.852i 0.475772 0.592352i
\(465\) 106.391 593.393i 0.228797 1.27611i
\(466\) 56.8297 450.310i 0.121952 0.966331i
\(467\) 535.942 + 309.426i 1.14763 + 0.662583i 0.948308 0.317351i \(-0.102793\pi\)
0.199320 + 0.979934i \(0.436127\pi\)
\(468\) −60.1957 41.7046i −0.128623 0.0891124i
\(469\) −1.00865 1.74703i −0.00215064 0.00372501i
\(470\) 58.1453 + 138.273i 0.123713 + 0.294199i
\(471\) −218.234 261.604i −0.463342 0.555424i
\(472\) −66.1659 + 322.955i −0.140182 + 0.684226i
\(473\) 165.421 + 60.2084i 0.349728 + 0.127291i
\(474\) −4.27218 19.0462i −0.00901305 0.0401818i
\(475\) 8.75720 + 1.54413i 0.0184362 + 0.00325080i
\(476\) −0.488608 4.97031i −0.00102649 0.0104418i
\(477\) −195.853 + 334.769i −0.410593 + 0.701821i
\(478\) −15.3798 313.653i −0.0321754 0.656179i
\(479\) −205.959 + 245.453i −0.429977 + 0.512427i −0.936916 0.349555i \(-0.886333\pi\)
0.506938 + 0.861982i \(0.330777\pi\)
\(480\) −274.402 408.793i −0.571671 0.851652i
\(481\) −11.2688 63.9084i −0.0234278 0.132866i
\(482\) 231.210 + 71.5396i 0.479690 + 0.148422i
\(483\) 4.23389 2.42824i 0.00876581 0.00502741i
\(484\) 31.4986 410.714i 0.0650797 0.848583i
\(485\) 165.445 0.341123
\(486\) 181.932 + 450.662i 0.374346 + 0.927289i
\(487\) 5.24750i 0.0107752i 0.999985 + 0.00538758i \(0.00171493\pi\)
−0.999985 + 0.00538758i \(0.998285\pi\)
\(488\) 130.847 70.8125i 0.268129 0.145108i
\(489\) 341.116 + 594.772i 0.697579 + 1.21630i
\(490\) −480.132 148.559i −0.979861 0.303182i
\(491\) −593.831 + 104.708i −1.20943 + 0.213255i −0.741771 0.670653i \(-0.766014\pi\)
−0.467660 + 0.883908i \(0.654903\pi\)
\(492\) 295.689 + 621.326i 0.600994 + 1.26286i
\(493\) 510.919 + 428.712i 1.03635 + 0.869598i
\(494\) −1.35982 27.7318i −0.00275266 0.0561373i
\(495\) −169.123 98.9434i −0.341662 0.199886i
\(496\) −593.571 201.734i −1.19672 0.406722i
\(497\) −0.918461 + 5.20885i −0.00184801 + 0.0104806i
\(498\) −153.660 685.043i −0.308553 1.37559i
\(499\) −1.99347 + 5.47702i −0.00399494 + 0.0109760i −0.941674 0.336526i \(-0.890748\pi\)
0.937679 + 0.347502i \(0.112970\pi\)
\(500\) 340.043 347.415i 0.680085 0.694831i
\(501\) −37.4254 + 31.2208i −0.0747013 + 0.0623169i
\(502\) −3.06204 7.28174i −0.00609968 0.0145055i
\(503\) 103.706 59.8746i 0.206175 0.119035i −0.393358 0.919386i \(-0.628687\pi\)
0.599532 + 0.800350i \(0.295353\pi\)
\(504\) −2.96812 0.0988601i −0.00588913 0.000196151i
\(505\) −354.421 + 613.875i −0.701823 + 1.21559i
\(506\) 41.9294 332.242i 0.0828644 0.656605i
\(507\) −486.823 87.2834i −0.960204 0.172157i
\(508\) −103.760 + 404.541i −0.204252 + 0.796341i
\(509\) −280.047 + 234.987i −0.550190 + 0.461664i −0.875005 0.484113i \(-0.839142\pi\)
0.324816 + 0.945777i \(0.394698\pi\)
\(510\) 784.358 502.439i 1.53796 0.985175i
\(511\) −1.79769 4.93912i −0.00351799 0.00966560i
\(512\) −463.024 + 218.524i −0.904343 + 0.426805i
\(513\) −93.5044 + 158.777i −0.182270 + 0.309507i
\(514\) −80.9271 125.540i −0.157446 0.244240i
\(515\) 124.920 + 343.215i 0.242563 + 0.666437i
\(516\) 288.622 + 405.385i 0.559346 + 0.785629i
\(517\) 47.5547 39.9031i 0.0919820 0.0771821i
\(518\) −1.78832 1.93072i −0.00345235 0.00372725i
\(519\) −98.0873 271.922i −0.188993 0.523934i
\(520\) 71.1028 + 43.7057i 0.136736 + 0.0840494i
\(521\) 109.267 189.256i 0.209726 0.363255i −0.741903 0.670508i \(-0.766076\pi\)
0.951628 + 0.307253i \(0.0994096\pi\)
\(522\) 292.505 267.824i 0.560354 0.513073i
\(523\) −696.524 + 402.138i −1.33179 + 0.768907i −0.985573 0.169250i \(-0.945866\pi\)
−0.346212 + 0.938156i \(0.612532\pi\)
\(524\) 308.897 451.377i 0.589498 0.861406i
\(525\) 0.0275410 + 0.158861i 5.24591e−5 + 0.000302593i
\(526\) −785.031 + 178.459i −1.49245 + 0.339275i
\(527\) 405.661 1114.54i 0.769754 2.11488i
\(528\) −128.052 + 158.495i −0.242524 + 0.300179i
\(529\) −178.305 + 1011.22i −0.337060 + 1.91156i
\(530\) 202.003 393.177i 0.381138 0.741844i
\(531\) −128.846 + 347.770i −0.242649 + 0.654934i
\(532\) −0.655683 0.915361i −0.00123249 0.00172060i
\(533\) −89.3543 74.9772i −0.167644 0.140670i
\(534\) 196.069 256.842i 0.367170 0.480978i
\(535\) −539.192 + 95.0740i −1.00783 + 0.177708i
\(536\) −292.685 259.660i −0.546053 0.484440i
\(537\) 345.749 594.899i 0.643852 1.10782i
\(538\) 408.649 + 310.100i 0.759571 + 0.576395i
\(539\) 207.997i 0.385895i
\(540\) −235.140 501.505i −0.435445 0.928712i
\(541\) −172.884 −0.319563 −0.159782 0.987152i \(-0.551079\pi\)
−0.159782 + 0.987152i \(0.551079\pi\)
\(542\) −118.642 + 156.346i −0.218897 + 0.288461i
\(543\) 2.66391 926.921i 0.00490592 1.70704i
\(544\) −394.547 884.667i −0.725271 1.62623i
\(545\) −47.2992 268.247i −0.0867875 0.492197i
\(546\) 0.464623 0.193809i 0.000850957 0.000354961i
\(547\) 164.443 195.975i 0.300627 0.358273i −0.594491 0.804102i \(-0.702647\pi\)
0.895118 + 0.445829i \(0.147091\pi\)
\(548\) 248.392 + 346.766i 0.453270 + 0.632784i
\(549\) 157.609 56.3412i 0.287084 0.102625i
\(550\) 9.83959 + 5.05530i 0.0178902 + 0.00919145i
\(551\) 148.083 + 26.1110i 0.268753 + 0.0473884i
\(552\) 630.272 706.334i 1.14180 1.27959i
\(553\) 0.126093 + 0.0458942i 0.000228017 + 8.29913e-5i
\(554\) 139.313 + 612.829i 0.251467 + 1.10619i
\(555\) 169.201 460.751i 0.304866 0.830182i
\(556\) 193.509 282.766i 0.348038 0.508572i
\(557\) −177.380 307.231i −0.318456 0.551582i 0.661710 0.749760i \(-0.269831\pi\)
−0.980166 + 0.198178i \(0.936498\pi\)
\(558\) −625.466 325.904i −1.12091 0.584057i
\(559\) −73.0554 42.1786i −0.130690 0.0754536i
\(560\) 3.38386 0.0725887i 0.00604261 0.000129623i
\(561\) −294.594 248.640i −0.525122 0.443208i
\(562\) −116.550 + 107.953i −0.207384 + 0.192088i
\(563\) −7.92579 9.44559i −0.0140778 0.0167773i 0.758960 0.651138i \(-0.225708\pi\)
−0.773037 + 0.634360i \(0.781264\pi\)
\(564\) 174.693 16.6665i 0.309740 0.0295506i
\(565\) 628.780 228.857i 1.11288 0.405057i
\(566\) −244.331 + 157.504i −0.431680 + 0.278276i
\(567\) −3.28334 0.617941i −0.00579073 0.00108984i
\(568\) 150.245 + 1014.80i 0.264516 + 1.78663i
\(569\) −168.484 + 61.3233i −0.296106 + 0.107774i −0.485801 0.874069i \(-0.661472\pi\)
0.189695 + 0.981843i \(0.439250\pi\)
\(570\) 96.5059 186.518i 0.169309 0.327224i
\(571\) 254.026 + 302.737i 0.444880 + 0.530187i 0.941154 0.337979i \(-0.109743\pi\)
−0.496274 + 0.868166i \(0.665299\pi\)
\(572\) 8.58146 33.4576i 0.0150026 0.0584923i
\(573\) 514.392 + 434.151i 0.897717 + 0.757681i
\(574\) −4.69307 0.592272i −0.00817608 0.00103183i
\(575\) −44.5089 25.6972i −0.0774068 0.0446908i
\(576\) −552.240 + 163.728i −0.958750 + 0.284250i
\(577\) −344.513 596.713i −0.597075 1.03417i −0.993250 0.115990i \(-0.962996\pi\)
0.396175 0.918175i \(-0.370337\pi\)
\(578\) 1156.53 486.332i 2.00092 0.841405i
\(579\) −176.018 + 479.314i −0.304003 + 0.827832i
\(580\) −316.167 + 323.022i −0.545115 + 0.556934i
\(581\) 4.53526 + 1.65070i 0.00780595 + 0.00284113i
\(582\) 57.7433 184.740i 0.0992153 0.317422i
\(583\) −180.157 31.7665i −0.309017 0.0544880i
\(584\) −633.528 798.693i −1.08481 1.36763i
\(585\) 71.5789 + 60.7664i 0.122357 + 0.103874i
\(586\) 239.662 11.7517i 0.408979 0.0200541i
\(587\) −207.235 + 246.973i −0.353040 + 0.420737i −0.913113 0.407706i \(-0.866329\pi\)
0.560073 + 0.828443i \(0.310773\pi\)
\(588\) −333.460 + 484.277i −0.567109 + 0.823601i
\(589\) −46.4340 263.340i −0.0788353 0.447097i
\(590\) 124.939 403.794i 0.211762 0.684396i
\(591\) −1.72683 + 600.857i −0.00292187 + 1.01668i
\(592\) −447.414 245.674i −0.755767 0.414990i
\(593\) 469.564 0.791846 0.395923 0.918284i \(-0.370425\pi\)
0.395923 + 0.918284i \(0.370425\pi\)
\(594\) −169.510 + 154.313i −0.285370 + 0.259787i
\(595\) 6.40345i 0.0107621i
\(596\) −47.9644 + 625.414i −0.0804772 + 1.04935i
\(597\) −401.127 + 690.184i −0.671905 + 1.15609i
\(598\) −47.4339 + 153.302i −0.0793208 + 0.256359i
\(599\) 527.632 93.0357i 0.880854 0.155318i 0.285112 0.958494i \(-0.407969\pi\)
0.595742 + 0.803176i \(0.296858\pi\)
\(600\) 14.8048 + 27.5449i 0.0246746 + 0.0459082i
\(601\) 647.757 + 543.533i 1.07780 + 0.904381i 0.995736 0.0922465i \(-0.0294048\pi\)
0.0820627 + 0.996627i \(0.473849\pi\)
\(602\) −3.41686 + 0.167544i −0.00567585 + 0.000278313i
\(603\) −280.994 338.812i −0.465994 0.561877i
\(604\) 9.80089 + 99.6984i 0.0162266 + 0.165064i
\(605\) −91.7119 + 520.124i −0.151590 + 0.859709i
\(606\) 561.769 + 610.009i 0.927011 + 1.00662i
\(607\) −138.471 + 380.445i −0.228123 + 0.626763i −0.999959 0.00905875i \(-0.997116\pi\)
0.771836 + 0.635822i \(0.219339\pi\)
\(608\) −176.760 128.253i −0.290723 0.210943i
\(609\) 0.465714 + 2.68632i 0.000764719 + 0.00441103i
\(610\) −175.844 + 73.9442i −0.288269 + 0.121220i
\(611\) −25.7624 + 14.8739i −0.0421643 + 0.0243436i
\(612\) −287.281 1051.19i −0.469413 1.71764i
\(613\) 62.6459 108.506i 0.102196 0.177008i −0.810393 0.585886i \(-0.800747\pi\)
0.912589 + 0.408878i \(0.134080\pi\)
\(614\) −406.915 51.3532i −0.662727 0.0836371i
\(615\) −299.364 829.909i −0.486770 1.34944i
\(616\) −0.442644 1.32896i −0.000718578 0.00215740i
\(617\) 221.013 185.452i 0.358205 0.300570i −0.445870 0.895098i \(-0.647105\pi\)
0.804075 + 0.594528i \(0.202661\pi\)
\(618\) 426.842 19.7005i 0.690683 0.0318778i
\(619\) 122.807 + 337.411i 0.198397 + 0.545090i 0.998499 0.0547735i \(-0.0174437\pi\)
−0.800102 + 0.599864i \(0.795221\pi\)
\(620\) 732.098 + 331.872i 1.18080 + 0.535277i
\(621\) 821.696 677.499i 1.32318 1.09098i
\(622\) 410.957 264.917i 0.660702 0.425911i
\(623\) 0.759737 + 2.08736i 0.00121948 + 0.00335050i
\(624\) 73.6191 64.1411i 0.117979 0.102790i
\(625\) −502.431 + 421.589i −0.803889 + 0.674543i
\(626\) −200.516 + 185.726i −0.320312 + 0.296687i
\(627\) −85.5469 15.3379i −0.136438 0.0244623i
\(628\) 409.599 196.374i 0.652228 0.312698i
\(629\) 482.842 836.307i 0.767634 1.32958i
\(630\) 3.77495 + 0.498464i 0.00599199 + 0.000791212i
\(631\) 874.059 504.638i 1.38520 0.799743i 0.392427 0.919783i \(-0.371636\pi\)
0.992769 + 0.120040i \(0.0383023\pi\)
\(632\) 26.0161 + 0.716849i 0.0411646 + 0.00113425i
\(633\) −919.881 + 767.378i −1.45321 + 1.21229i
\(634\) 62.6626 + 275.650i 0.0988369 + 0.434779i
\(635\) 183.144 503.183i 0.288415 0.792415i
\(636\) −368.529 362.788i −0.579448 0.570421i
\(637\) 17.3079 98.1580i 0.0271710 0.154094i
\(638\) 166.386 + 85.4842i 0.260793 + 0.133988i
\(639\) −6.63357 + 1154.08i −0.0103812 + 1.80607i
\(640\) 618.234 220.758i 0.965991 0.344935i
\(641\) 610.695 + 512.434i 0.952722 + 0.799429i 0.979754 0.200206i \(-0.0641611\pi\)
−0.0270317 + 0.999635i \(0.508606\pi\)
\(642\) −82.0258 + 635.258i −0.127766 + 0.989498i
\(643\) −696.625 + 122.834i −1.08340 + 0.191032i −0.686717 0.726925i \(-0.740949\pi\)
−0.396680 + 0.917957i \(0.629838\pi\)
\(644\) 1.75164 + 6.26755i 0.00271993 + 0.00973223i
\(645\) −317.434 553.479i −0.492146 0.858108i
\(646\) 249.761 329.133i 0.386626 0.509495i
\(647\) 595.093i 0.919774i −0.887978 0.459887i \(-0.847890\pi\)
0.887978 0.459887i \(-0.152110\pi\)
\(648\) −642.061 + 87.5292i −0.990835 + 0.135076i
\(649\) −174.927 −0.269533
\(650\) −4.22283 3.20447i −0.00649667 0.00492995i
\(651\) 4.20581 2.41213i 0.00646053 0.00370528i
\(652\) −880.459 + 246.068i −1.35040 + 0.377405i
\(653\) −128.322 727.750i −0.196511 1.11447i −0.910250 0.414060i \(-0.864111\pi\)
0.713738 0.700412i \(-0.247001\pi\)
\(654\) −316.040 40.8077i −0.483241 0.0623971i
\(655\) −450.776 + 537.214i −0.688207 + 0.820173i
\(656\) −899.900 + 178.657i −1.37180 + 0.272342i
\(657\) −567.720 996.503i −0.864109 1.51675i
\(658\) −0.551297 + 1.07304i −0.000837837 + 0.00163076i
\(659\) 225.185 + 39.7062i 0.341707 + 0.0602522i 0.341869 0.939748i \(-0.388940\pi\)
−0.000161354 1.00000i \(0.500051\pi\)
\(660\) 183.278 186.178i 0.277693 0.282088i
\(661\) 247.564 + 90.1059i 0.374529 + 0.136318i 0.522425 0.852686i \(-0.325028\pi\)
−0.147895 + 0.989003i \(0.547250\pi\)
\(662\) −296.375 + 67.3741i −0.447697 + 0.101774i
\(663\) 118.335 + 141.852i 0.178484 + 0.213954i
\(664\) 935.731 + 25.7832i 1.40923 + 0.0388302i
\(665\) 0.721837 + 1.25026i 0.00108547 + 0.00188009i
\(666\) −455.432 349.745i −0.683832 0.525142i
\(667\) −752.638 434.536i −1.12839 0.651478i
\(668\) −28.0934 58.5976i −0.0420560 0.0877210i
\(669\) −146.766 + 818.588i −0.219381 + 1.22360i
\(670\) 340.897 + 368.042i 0.508802 + 0.549317i
\(671\) 50.7454 + 60.4760i 0.0756265 + 0.0901282i
\(672\) 1.09998 3.80384i 0.00163687 0.00566048i
\(673\) 262.025 95.3693i 0.389339 0.141708i −0.139931 0.990161i \(-0.544688\pi\)
0.529270 + 0.848453i \(0.322466\pi\)
\(674\) −138.006 214.084i −0.204757 0.317632i
\(675\) 11.7469 + 33.1613i 0.0174029 + 0.0491278i
\(676\) 272.270 600.617i 0.402766 0.888487i
\(677\) −213.983 + 77.8835i −0.316076 + 0.115042i −0.495186 0.868787i \(-0.664900\pi\)
0.179111 + 0.983829i \(0.442678\pi\)
\(678\) −36.0919 781.987i −0.0532328 1.15337i
\(679\) 0.855279 + 1.01928i 0.00125962 + 0.00150115i
\(680\) 392.475 + 1178.34i 0.577169 + 1.73285i
\(681\) −452.135 + 163.094i −0.663928 + 0.239491i
\(682\) 41.6513 330.039i 0.0610723 0.483928i
\(683\) 662.983 + 382.773i 0.970692 + 0.560429i 0.899447 0.437030i \(-0.143969\pi\)
0.0712449 + 0.997459i \(0.477303\pi\)
\(684\) −174.588 172.859i −0.255246 0.252718i
\(685\) −273.453 473.634i −0.399201 0.691437i
\(686\) −3.13370 7.45216i −0.00456808 0.0108632i
\(687\) 1232.94 213.749i 1.79468 0.311135i
\(688\) −618.487 + 240.254i −0.898964 + 0.349207i
\(689\) 82.3761 + 29.9825i 0.119559 + 0.0435159i
\(690\) −892.835 + 822.228i −1.29396 + 1.19164i
\(691\) 460.568 + 81.2105i 0.666523 + 0.117526i 0.496665 0.867942i \(-0.334558\pi\)
0.169858 + 0.985468i \(0.445669\pi\)
\(692\) 383.580 37.7080i 0.554306 0.0544913i
\(693\) −0.264715 1.55344i −0.000381985 0.00224161i
\(694\) −2.96706 60.5097i −0.00427531 0.0871898i
\(695\) −282.390 + 336.539i −0.406316 + 0.484229i
\(696\) 250.346 + 465.780i 0.359693 + 0.669225i
\(697\) −301.412 1709.39i −0.432442 2.45250i
\(698\) −330.215 102.173i −0.473088 0.146380i
\(699\) 588.629 + 342.105i 0.842102 + 0.489420i
\(700\) −0.214345 0.0164386i −0.000306207 2.34837e-5i
\(701\) −88.4726 −0.126209 −0.0631046 0.998007i \(-0.520100\pi\)
−0.0631046 + 0.998007i \(0.520100\pi\)
\(702\) 92.8356 58.7183i 0.132244 0.0836442i
\(703\) 217.716i 0.309695i
\(704\) −162.907 217.419i −0.231402 0.308834i
\(705\) −225.001 0.646640i −0.319150 0.000917219i
\(706\) −741.134 229.317i −1.04976 0.324811i
\(707\) −5.61420 + 0.989935i −0.00794088 + 0.00140019i
\(708\) −407.280 280.442i −0.575255 0.396104i
\(709\) −0.313958 0.263442i −0.000442819 0.000371569i 0.642566 0.766230i \(-0.277870\pi\)
−0.643009 + 0.765859i \(0.722314\pi\)
\(710\) −64.4189 1313.75i −0.0907309 1.85035i
\(711\) 28.8047 + 5.24993i 0.0405129 + 0.00738386i
\(712\) 267.740 + 337.542i 0.376040 + 0.474075i
\(713\) −268.373 + 1522.02i −0.376400 + 2.13467i
\(714\) 7.15026 + 2.23492i 0.0100144 + 0.00313014i
\(715\) −15.1469 + 41.6158i −0.0211845 + 0.0582039i
\(716\) 655.643 + 641.729i 0.915702 + 0.896270i
\(717\) 442.173 + 162.378i 0.616699 + 0.226469i
\(718\) 442.519 + 1052.34i 0.616322 + 1.46565i
\(719\) −437.936 + 252.842i −0.609090 + 0.351658i −0.772609 0.634882i \(-0.781049\pi\)
0.163519 + 0.986540i \(0.447715\pi\)
\(720\) 725.202 139.646i 1.00722 0.193953i
\(721\) −1.46872 + 2.54389i −0.00203706 + 0.00352828i
\(722\) −78.7372 + 623.901i −0.109054 + 0.864129i
\(723\) −234.154 + 277.431i −0.323865 + 0.383722i
\(724\) 1197.15 + 307.054i 1.65352 + 0.424108i
\(725\) 21.9921 18.4536i 0.0303340 0.0254532i
\(726\) 548.775 + 283.941i 0.755888 + 0.391103i
\(727\) −317.879 873.365i −0.437247 1.20133i −0.941275 0.337640i \(-0.890371\pi\)
0.504028 0.863687i \(1.66815\pi\)
\(728\) 0.0983068 + 0.663995i 0.000135037 + 0.000912080i
\(729\) −728.892 12.5700i −0.999851 0.0172427i
\(730\) 708.201 + 1098.61i 0.970139 + 1.50494i
\(731\) −429.341 1179.60i −0.587334 1.61369i
\(732\) 21.1951 + 222.160i 0.0289550 + 0.303497i
\(733\) 465.367 390.489i 0.634880 0.532728i −0.267561 0.963541i \(-0.586218\pi\)
0.902441 + 0.430813i \(0.141773\pi\)
\(734\) 107.327 + 115.873i 0.146222 + 0.157865i
\(735\) 486.245 576.114i 0.661558 0.783828i
\(736\) 706.474 + 1045.97i 0.959883 + 1.42115i
\(737\) 103.807 179.799i 0.140851 0.243961i
\(738\) −1031.18 + 44.6237i −1.39726 + 0.0604657i
\(739\) −1027.02 + 592.950i −1.38974 + 0.802368i −0.993286 0.115685i \(-0.963094\pi\)
−0.396457 + 0.918053i \(0.629760\pi\)
\(740\) 540.088 + 369.606i 0.729848 + 0.499467i
\(741\) 39.0949 + 14.3568i 0.0527597 + 0.0193749i
\(742\) 3.46658 0.788047i 0.00467194 0.00106206i
\(743\) 66.6908 183.232i 0.0897589 0.246610i −0.886688 0.462368i \(-0.847000\pi\)
0.976447 + 0.215758i \(0.0692221\pi\)
\(744\) 626.092 701.649i 0.841522 0.943077i
\(745\) 139.654 792.018i 0.187455 1.06311i
\(746\) −541.511 + 1053.99i −0.725886 + 1.41286i
\(747\) 1036.03 + 188.827i 1.38692 + 0.252780i
\(748\) 417.854 299.313i 0.558628 0.400152i
\(749\) −3.37313 2.83039i −0.00450351 0.00377889i
\(750\) 280.729 + 672.998i 0.374305 + 0.897330i
\(751\) 352.727 62.1954i 0.469677 0.0828167i 0.0661997 0.997806i \(-0.478913\pi\)
0.403477 + 0.914990i \(0.367801\pi\)
\(752\) −35.6794 + 231.246i −0.0474460 + 0.307508i
\(753\) 11.8490 + 0.0340533i 0.0157357 + 4.52235e-5i
\(754\) −71.4074 54.1870i −0.0947047 0.0718660i
\(755\)