Properties

Label 108.3.j.a.7.17
Level 108
Weight 3
Character 108.7
Analytic conductor 2.943
Analytic rank 0
Dimension 204
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 108.j (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.94278685509\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 7.17
Character \(\chi\) \(=\) 108.7
Dual form 108.3.j.a.31.17

$q$-expansion

\(f(q)\) \(=\) \(q+(0.103865 + 1.99730i) q^{2} +(0.204519 + 2.99302i) q^{3} +(-3.97842 + 0.414901i) q^{4} +(1.50670 + 8.54492i) q^{5} +(-5.95672 + 0.719357i) q^{6} +(7.53806 - 8.98351i) q^{7} +(-1.24190 - 7.90302i) q^{8} +(-8.91634 + 1.22426i) q^{9} +O(q^{10})\) \(q+(0.103865 + 1.99730i) q^{2} +(0.204519 + 2.99302i) q^{3} +(-3.97842 + 0.414901i) q^{4} +(1.50670 + 8.54492i) q^{5} +(-5.95672 + 0.719357i) q^{6} +(7.53806 - 8.98351i) q^{7} +(-1.24190 - 7.90302i) q^{8} +(-8.91634 + 1.22426i) q^{9} +(-16.9103 + 3.89685i) q^{10} +(-2.27133 - 0.400497i) q^{11} +(-2.05547 - 11.8226i) q^{12} +(-4.42594 - 1.61091i) q^{13} +(18.7257 + 14.1227i) q^{14} +(-25.2670 + 6.25718i) q^{15} +(15.6557 - 3.30130i) q^{16} +(6.77412 + 11.7331i) q^{17} +(-3.37131 - 17.6815i) q^{18} +(13.9009 + 8.02568i) q^{19} +(-9.53958 - 33.3702i) q^{20} +(28.4295 + 20.7243i) q^{21} +(0.564001 - 4.57813i) q^{22} +(-3.20904 - 3.82439i) q^{23} +(23.3999 - 5.33336i) q^{24} +(-47.2531 + 17.1987i) q^{25} +(2.75777 - 9.00726i) q^{26} +(-5.48779 - 26.4364i) q^{27} +(-26.2623 + 38.8678i) q^{28} +(34.0967 - 12.4102i) q^{29} +(-15.1218 - 49.8158i) q^{30} +(-0.283047 - 0.337322i) q^{31} +(8.21978 + 30.9263i) q^{32} +(0.734166 - 6.88006i) q^{33} +(-22.7310 + 14.7486i) q^{34} +(88.1209 + 50.8766i) q^{35} +(34.9651 - 8.57002i) q^{36} +(18.9267 + 32.7821i) q^{37} +(-14.5859 + 28.5979i) q^{38} +(3.91630 - 13.5764i) q^{39} +(65.6594 - 22.5194i) q^{40} +(2.35960 + 0.858824i) q^{41} +(-38.4398 + 58.9348i) q^{42} +(-17.5866 - 3.10099i) q^{43} +(9.20249 + 0.650970i) q^{44} +(-23.8954 - 74.3448i) q^{45} +(7.30515 - 6.80665i) q^{46} +(5.64102 - 6.72271i) q^{47} +(13.0828 + 46.1827i) q^{48} +(-15.3723 - 87.1809i) q^{49} +(-39.2590 - 92.5924i) q^{50} +(-33.7320 + 22.6747i) q^{51} +(18.2767 + 4.57256i) q^{52} -41.4639 q^{53} +(52.2315 - 13.7066i) q^{54} -20.0118i q^{55} +(-80.3584 - 48.4168i) q^{56} +(-21.1780 + 43.2471i) q^{57} +(28.3283 + 66.8123i) q^{58} +(25.5867 - 4.51163i) q^{59} +(97.9266 - 35.3770i) q^{60} +(51.1770 + 42.9426i) q^{61} +(0.644335 - 0.600365i) q^{62} +(-56.2138 + 89.3286i) q^{63} +(-60.9154 + 19.6296i) q^{64} +(7.09654 - 40.2465i) q^{65} +(13.8178 + 0.751752i) q^{66} +(32.3784 - 88.9589i) q^{67} +(-31.8184 - 43.8687i) q^{68} +(10.7902 - 10.3869i) q^{69} +(-92.4633 + 181.288i) q^{70} +(-100.208 + 57.8552i) q^{71} +(20.7486 + 68.9456i) q^{72} +(22.5335 - 39.0292i) q^{73} +(-63.5098 + 41.2073i) q^{74} +(-61.1403 - 137.912i) q^{75} +(-58.6335 - 26.1621i) q^{76} +(-20.7193 + 17.3856i) q^{77} +(27.5229 + 6.41192i) q^{78} +(-19.8334 - 54.4917i) q^{79} +(51.7978 + 128.803i) q^{80} +(78.0024 - 21.8318i) q^{81} +(-1.47025 + 4.80203i) q^{82} +(-22.8909 - 62.8923i) q^{83} +(-121.703 - 70.6545i) q^{84} +(-90.0519 + 75.5626i) q^{85} +(4.36697 - 35.4478i) q^{86} +(44.1173 + 99.5139i) q^{87} +(-0.344363 + 18.4478i) q^{88} +(54.3190 - 94.0833i) q^{89} +(146.007 - 55.4482i) q^{90} +(-47.8347 + 27.6174i) q^{91} +(14.3537 + 13.8836i) q^{92} +(0.951723 - 0.916153i) q^{93} +(14.0132 + 10.5686i) q^{94} +(-47.6343 + 130.874i) q^{95} +(-90.8819 + 30.9270i) q^{96} +(30.2853 - 171.757i) q^{97} +(172.530 - 39.7583i) q^{98} +(20.7423 + 0.790274i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} + O(q^{10}) \) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} - 3q^{10} + 39q^{12} - 12q^{13} + 39q^{14} - 6q^{16} - 6q^{17} - 27q^{18} - 69q^{20} - 12q^{21} - 6q^{22} - 138q^{24} - 12q^{25} - 174q^{26} - 12q^{28} + 60q^{29} - 153q^{30} - 96q^{32} + 48q^{33} + 6q^{34} + 24q^{36} - 6q^{37} + 72q^{38} + 69q^{40} - 192q^{41} - 126q^{42} - 219q^{44} - 132q^{45} - 3q^{46} - 219q^{48} - 12q^{49} - 165q^{50} + 21q^{52} - 24q^{53} + 78q^{54} + 99q^{56} - 150q^{57} - 141q^{58} + 210q^{60} - 12q^{61} + 294q^{62} - 3q^{64} - 156q^{65} + 393q^{66} + 375q^{68} - 60q^{69} - 165q^{70} + 228q^{72} - 6q^{73} + 447q^{74} - 54q^{76} + 132q^{77} + 750q^{78} + 798q^{80} + 228q^{81} - 12q^{82} + 762q^{84} + 138q^{85} + 606q^{86} - 198q^{88} - 114q^{89} + 894q^{90} + 723q^{92} - 1020q^{93} - 357q^{94} + 474q^{96} + 168q^{97} + 510q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.103865 + 1.99730i 0.0519327 + 0.998651i
\(3\) 0.204519 + 2.99302i 0.0681730 + 0.997674i
\(4\) −3.97842 + 0.414901i −0.994606 + 0.103725i
\(5\) 1.50670 + 8.54492i 0.301340 + 1.70898i 0.640252 + 0.768165i \(0.278830\pi\)
−0.338912 + 0.940818i \(0.610059\pi\)
\(6\) −5.95672 + 0.719357i −0.992787 + 0.119893i
\(7\) 7.53806 8.98351i 1.07687 1.28336i 0.120017 0.992772i \(-0.461705\pi\)
0.956849 0.290587i \(-0.0938505\pi\)
\(8\) −1.24190 7.90302i −0.155238 0.987877i
\(9\) −8.91634 + 1.22426i −0.990705 + 0.136029i
\(10\) −16.9103 + 3.89685i −1.69103 + 0.389685i
\(11\) −2.27133 0.400497i −0.206485 0.0364089i 0.0694489 0.997586i \(-0.477876\pi\)
−0.275934 + 0.961177i \(0.588987\pi\)
\(12\) −2.05547 11.8226i −0.171289 0.985221i
\(13\) −4.42594 1.61091i −0.340457 0.123916i 0.166133 0.986103i \(-0.446872\pi\)
−0.506590 + 0.862187i \(0.669094\pi\)
\(14\) 18.7257 + 14.1227i 1.33755 + 1.00876i
\(15\) −25.2670 + 6.25718i −1.68446 + 0.417145i
\(16\) 15.6557 3.30130i 0.978482 0.206331i
\(17\) 6.77412 + 11.7331i 0.398478 + 0.690183i 0.993538 0.113497i \(-0.0362053\pi\)
−0.595061 + 0.803681i \(0.702872\pi\)
\(18\) −3.37131 17.6815i −0.187295 0.982304i
\(19\) 13.9009 + 8.02568i 0.731626 + 0.422404i 0.819017 0.573770i \(-0.194520\pi\)
−0.0873908 + 0.996174i \(0.527853\pi\)
\(20\) −9.53958 33.3702i −0.476979 1.66851i
\(21\) 28.4295 + 20.7243i 1.35379 + 0.986870i
\(22\) 0.564001 4.57813i 0.0256364 0.208097i
\(23\) −3.20904 3.82439i −0.139524 0.166278i 0.691758 0.722130i \(-0.256837\pi\)
−0.831281 + 0.555852i \(0.812392\pi\)
\(24\) 23.3999 5.33336i 0.974996 0.222223i
\(25\) −47.2531 + 17.1987i −1.89013 + 0.687949i
\(26\) 2.75777 9.00726i 0.106068 0.346433i
\(27\) −5.48779 26.4364i −0.203252 0.979127i
\(28\) −26.2623 + 38.8678i −0.937940 + 1.38813i
\(29\) 34.0967 12.4102i 1.17575 0.427937i 0.321049 0.947063i \(-0.395965\pi\)
0.854698 + 0.519126i \(0.173742\pi\)
\(30\) −15.1218 49.8158i −0.504061 1.66053i
\(31\) −0.283047 0.337322i −0.00913054 0.0108813i 0.761460 0.648212i \(-0.224483\pi\)
−0.770590 + 0.637331i \(0.780039\pi\)
\(32\) 8.21978 + 30.9263i 0.256868 + 0.966446i
\(33\) 0.734166 6.88006i 0.0222475 0.208487i
\(34\) −22.7310 + 14.7486i −0.668558 + 0.433783i
\(35\) 88.1209 + 50.8766i 2.51774 + 1.45362i
\(36\) 34.9651 8.57002i 0.971251 0.238056i
\(37\) 18.9267 + 32.7821i 0.511533 + 0.886002i 0.999911 + 0.0133691i \(0.00425565\pi\)
−0.488377 + 0.872633i \(0.662411\pi\)
\(38\) −14.5859 + 28.5979i −0.383839 + 0.752575i
\(39\) 3.91630 13.5764i 0.100418 0.348113i
\(40\) 65.6594 22.5194i 1.64149 0.562986i
\(41\) 2.35960 + 0.858824i 0.0575512 + 0.0209469i 0.370635 0.928778i \(-0.379140\pi\)
−0.313084 + 0.949725i \(0.601362\pi\)
\(42\) −38.4398 + 58.9348i −0.915233 + 1.40321i
\(43\) −17.5866 3.10099i −0.408990 0.0721160i −0.0346317 0.999400i \(-0.511026\pi\)
−0.374358 + 0.927284i \(0.622137\pi\)
\(44\) 9.20249 + 0.650970i 0.209148 + 0.0147948i
\(45\) −23.8954 74.3448i −0.531010 1.65211i
\(46\) 7.30515 6.80665i 0.158808 0.147971i
\(47\) 5.64102 6.72271i 0.120022 0.143036i −0.702688 0.711498i \(-0.748017\pi\)
0.822710 + 0.568462i \(0.192461\pi\)
\(48\) 13.0828 + 46.1827i 0.272557 + 0.962140i
\(49\) −15.3723 87.1809i −0.313721 1.77920i
\(50\) −39.2590 92.5924i −0.785180 1.85185i
\(51\) −33.7320 + 22.6747i −0.661412 + 0.444602i
\(52\) 18.2767 + 4.57256i 0.351474 + 0.0879339i
\(53\) −41.4639 −0.782338 −0.391169 0.920319i \(-0.627929\pi\)
−0.391169 + 0.920319i \(0.627929\pi\)
\(54\) 52.2315 13.7066i 0.967250 0.253826i
\(55\) 20.0118i 0.363851i
\(56\) −80.3584 48.4168i −1.43497 0.864585i
\(57\) −21.1780 + 43.2471i −0.371545 + 0.758720i
\(58\) 28.3283 + 66.8123i 0.488419 + 1.15194i
\(59\) 25.5867 4.51163i 0.433674 0.0764684i 0.0474502 0.998874i \(-0.484890\pi\)
0.386224 + 0.922405i \(0.373779\pi\)
\(60\) 97.9266 35.3770i 1.63211 0.589617i
\(61\) 51.1770 + 42.9426i 0.838967 + 0.703977i 0.957331 0.288993i \(-0.0933206\pi\)
−0.118364 + 0.992970i \(0.537765\pi\)
\(62\) 0.644335 0.600365i 0.0103925 0.00968331i
\(63\) −56.2138 + 89.3286i −0.892282 + 1.41791i
\(64\) −60.9154 + 19.6296i −0.951802 + 0.306712i
\(65\) 7.09654 40.2465i 0.109178 0.619177i
\(66\) 13.8178 + 0.751752i 0.209361 + 0.0113902i
\(67\) 32.3784 88.9589i 0.483260 1.32775i −0.423423 0.905932i \(-0.639172\pi\)
0.906683 0.421813i \(-0.138606\pi\)
\(68\) −31.8184 43.8687i −0.467918 0.645128i
\(69\) 10.7902 10.3869i 0.156379 0.150535i
\(70\) −92.4633 + 181.288i −1.32090 + 2.58983i
\(71\) −100.208 + 57.8552i −1.41138 + 0.814862i −0.995519 0.0945652i \(-0.969854\pi\)
−0.415863 + 0.909427i \(0.636521\pi\)
\(72\) 20.7486 + 68.9456i 0.288174 + 0.957578i
\(73\) 22.5335 39.0292i 0.308678 0.534646i −0.669395 0.742906i \(-0.733447\pi\)
0.978073 + 0.208260i \(0.0667801\pi\)
\(74\) −63.5098 + 41.2073i −0.858241 + 0.556855i
\(75\) −61.1403 137.912i −0.815204 1.83883i
\(76\) −58.6335 26.1621i −0.771494 0.344238i
\(77\) −20.7193 + 17.3856i −0.269082 + 0.225787i
\(78\) 27.5229 + 6.41192i 0.352858 + 0.0822041i
\(79\) −19.8334 54.4917i −0.251055 0.689769i −0.999643 0.0267327i \(-0.991490\pi\)
0.748587 0.663036i \(1.76927\pi\)
\(80\) 51.7978 + 128.803i 0.647473 + 1.61003i
\(81\) 78.0024 21.8318i 0.962992 0.269529i
\(82\) −1.47025 + 4.80203i −0.0179299 + 0.0585614i
\(83\) −22.8909 62.8923i −0.275794 0.757738i −0.997828 0.0658799i \(-0.979015\pi\)
0.722033 0.691858i \(1.75679\pi\)
\(84\) −121.703 70.6545i −1.44885 0.841125i
\(85\) −90.0519 + 75.5626i −1.05943 + 0.888971i
\(86\) 4.36697 35.4478i 0.0507787 0.412183i
\(87\) 44.1173 + 99.5139i 0.507095 + 1.14384i
\(88\) −0.344363 + 18.4478i −0.00391322 + 0.209634i
\(89\) 54.3190 94.0833i 0.610326 1.05712i −0.380860 0.924633i \(-0.624372\pi\)
0.991185 0.132482i \(-0.0422948\pi\)
\(90\) 146.007 55.4482i 1.62230 0.616091i
\(91\) −47.8347 + 27.6174i −0.525656 + 0.303487i
\(92\) 14.3537 + 13.8836i 0.156018 + 0.150909i
\(93\) 0.951723 0.916153i 0.0102336 0.00985111i
\(94\) 14.0132 + 10.5686i 0.149076 + 0.112432i
\(95\) −47.6343 + 130.874i −0.501414 + 1.37762i
\(96\) −90.8819 + 30.9270i −0.946687 + 0.322156i
\(97\) 30.2853 171.757i 0.312220 1.77069i −0.275183 0.961392i \(-0.588738\pi\)
0.587403 0.809295i \(-0.300150\pi\)
\(98\) 172.530 39.7583i 1.76051 0.405697i
\(99\) 20.7423 + 0.790274i 0.209518 + 0.00798256i
\(100\) 180.857 88.0292i 1.80857 0.880292i
\(101\) −57.1968 47.9938i −0.566305 0.475186i 0.314112 0.949386i \(-0.398293\pi\)
−0.880417 + 0.474200i \(0.842738\pi\)
\(102\) −48.7918 65.0179i −0.478351 0.637430i
\(103\) 137.158 24.1847i 1.33163 0.234803i 0.537868 0.843029i \(-0.319230\pi\)
0.793764 + 0.608226i \(0.208119\pi\)
\(104\) −7.23447 + 36.9789i −0.0695622 + 0.355566i
\(105\) −134.252 + 274.153i −1.27859 + 2.61098i
\(106\) −4.30667 82.8160i −0.0406289 0.781283i
\(107\) 28.1004i 0.262621i −0.991341 0.131310i \(-0.958082\pi\)
0.991341 0.131310i \(-0.0419185\pi\)
\(108\) 32.8013 + 102.898i 0.303715 + 0.952763i
\(109\) 12.7869 0.117311 0.0586555 0.998278i \(-0.481319\pi\)
0.0586555 + 0.998278i \(0.481319\pi\)
\(110\) 39.9696 2.07853i 0.363360 0.0188957i
\(111\) −94.2465 + 63.3526i −0.849068 + 0.570745i
\(112\) 88.3564 165.529i 0.788897 1.47793i
\(113\) 36.5416 + 207.238i 0.323377 + 1.83396i 0.520842 + 0.853653i \(0.325618\pi\)
−0.197465 + 0.980310i \(0.563271\pi\)
\(114\) −88.5771 37.8071i −0.776992 0.331641i
\(115\) 27.8440 33.1832i 0.242122 0.288550i
\(116\) −130.502 + 63.5196i −1.12502 + 0.547583i
\(117\) 41.4354 + 8.94495i 0.354149 + 0.0764525i
\(118\) 11.6687 + 50.6358i 0.0988870 + 0.429117i
\(119\) 156.468 + 27.5896i 1.31486 + 0.231845i
\(120\) 80.8297 + 191.914i 0.673581 + 1.59929i
\(121\) −108.704 39.5651i −0.898382 0.326984i
\(122\) −80.4538 + 106.676i −0.659457 + 0.874394i
\(123\) −2.08790 + 7.23798i −0.0169748 + 0.0588453i
\(124\) 1.26603 + 1.22457i 0.0102100 + 0.00987559i
\(125\) −109.699 190.004i −0.877590 1.52003i
\(126\) −184.255 102.998i −1.46234 0.817442i
\(127\) 96.5648 + 55.7517i 0.760353 + 0.438990i 0.829422 0.558622i \(-0.188670\pi\)
−0.0690695 + 0.997612i \(0.522003\pi\)
\(128\) −45.5331 119.627i −0.355728 0.934590i
\(129\) 5.68453 53.2712i 0.0440661 0.412955i
\(130\) 81.1214 + 9.99371i 0.624011 + 0.0768747i
\(131\) −10.1474 12.0932i −0.0774612 0.0923146i 0.725922 0.687777i \(-0.241413\pi\)
−0.803383 + 0.595462i \(0.796969\pi\)
\(132\) −0.0662835 + 27.6764i −0.000502147 + 0.209670i
\(133\) 176.885 64.3807i 1.32996 0.484066i
\(134\) 181.041 + 55.4297i 1.35105 + 0.413654i
\(135\) 217.629 86.7244i 1.61206 0.642403i
\(136\) 84.3142 68.1074i 0.619958 0.500789i
\(137\) 99.8901 36.3570i 0.729125 0.265380i 0.0493306 0.998783i \(-0.484291\pi\)
0.679794 + 0.733403i \(0.262069\pi\)
\(138\) 21.8665 + 20.4724i 0.158453 + 0.148351i
\(139\) −36.3183 43.2824i −0.261283 0.311385i 0.619415 0.785064i \(-0.287370\pi\)
−0.880697 + 0.473679i \(0.842926\pi\)
\(140\) −371.691 165.847i −2.65494 1.18462i
\(141\) 21.2749 + 15.5088i 0.150886 + 0.109991i
\(142\) −125.962 194.137i −0.887059 1.36716i
\(143\) 9.40763 + 5.43150i 0.0657876 + 0.0379825i
\(144\) −135.550 + 48.6022i −0.941320 + 0.337515i
\(145\) 157.417 + 272.655i 1.08564 + 1.88038i
\(146\) 80.2935 + 40.9524i 0.549955 + 0.280496i
\(147\) 257.790 63.8399i 1.75368 0.434285i
\(148\) −88.8999 122.568i −0.600675 0.828164i
\(149\) 110.073 + 40.0635i 0.738748 + 0.268882i 0.683863 0.729610i \(-0.260299\pi\)
0.0548851 + 0.998493i \(0.482521\pi\)
\(150\) 269.102 136.440i 1.79401 0.909599i
\(151\) −244.777 43.1607i −1.62104 0.285832i −0.711884 0.702297i \(-0.752158\pi\)
−0.909152 + 0.416464i \(0.863269\pi\)
\(152\) 46.1636 119.826i 0.303708 0.788330i
\(153\) −74.7647 96.3232i −0.488658 0.629564i
\(154\) −36.8762 39.5770i −0.239456 0.256993i
\(155\) 2.45592 2.92685i 0.0158446 0.0188829i
\(156\) −9.94785 + 55.6376i −0.0637683 + 0.356651i
\(157\) 32.2061 + 182.650i 0.205134 + 1.16337i 0.897228 + 0.441567i \(0.145577\pi\)
−0.692094 + 0.721807i \(0.743312\pi\)
\(158\) 106.776 45.2730i 0.675800 0.286538i
\(159\) −8.48016 124.102i −0.0533343 0.780518i
\(160\) −251.878 + 116.834i −1.57424 + 0.730212i
\(161\) −58.5464 −0.363642
\(162\) 51.7065 + 153.527i 0.319176 + 0.947696i
\(163\) 3.07052i 0.0188375i 0.999956 + 0.00941877i \(0.00299813\pi\)
−0.999956 + 0.00941877i \(0.997002\pi\)
\(164\) −9.74381 2.43777i −0.0594135 0.0148644i
\(165\) 59.8957 4.09279i 0.363004 0.0248048i
\(166\) 123.237 52.2524i 0.742393 0.314773i
\(167\) −90.6052 + 15.9761i −0.542546 + 0.0956655i −0.438203 0.898876i \(-0.644385\pi\)
−0.104343 + 0.994541i \(0.533274\pi\)
\(168\) 128.478 250.416i 0.764748 1.49057i
\(169\) −112.468 94.3715i −0.665489 0.558411i
\(170\) −160.274 172.013i −0.942791 1.01184i
\(171\) −133.771 54.5415i −0.782285 0.318956i
\(172\) 71.2534 + 5.04036i 0.414264 + 0.0293044i
\(173\) −49.4146 + 280.244i −0.285633 + 1.61991i 0.417381 + 0.908732i \(0.362948\pi\)
−0.703014 + 0.711176i \(0.748163\pi\)
\(174\) −194.177 + 98.4516i −1.11596 + 0.565814i
\(175\) −201.692 + 554.144i −1.15253 + 3.16654i
\(176\) −36.8815 + 1.22829i −0.209554 + 0.00697891i
\(177\) 18.7364 + 75.6590i 0.105855 + 0.427452i
\(178\) 193.554 + 98.7194i 1.08738 + 0.554603i
\(179\) −37.3404 + 21.5585i −0.208606 + 0.120438i −0.600663 0.799502i \(-0.705097\pi\)
0.392058 + 0.919941i \(0.371763\pi\)
\(180\) 125.912 + 285.861i 0.699511 + 1.58812i
\(181\) −52.2292 + 90.4636i −0.288559 + 0.499799i −0.973466 0.228832i \(-0.926509\pi\)
0.684907 + 0.728630i \(0.259843\pi\)
\(182\) −60.1286 92.6718i −0.330377 0.509186i
\(183\) −118.061 + 161.956i −0.645144 + 0.885007i
\(184\) −26.2389 + 30.1107i −0.142603 + 0.163645i
\(185\) −251.603 + 211.120i −1.36002 + 1.14119i
\(186\) 1.92868 + 1.80572i 0.0103693 + 0.00970817i
\(187\) −10.6872 29.3628i −0.0571508 0.157021i
\(188\) −19.6531 + 29.0863i −0.104538 + 0.154714i
\(189\) −278.859 149.980i −1.47544 0.793543i
\(190\) −266.343 81.5468i −1.40180 0.429194i
\(191\) −86.7947 238.466i −0.454422 1.24852i −0.929582 0.368616i \(-0.879832\pi\)
0.475160 0.879900i \(1.65761\pi\)
\(192\) −71.2100 178.306i −0.370885 0.928679i
\(193\) −0.204011 + 0.171186i −0.00105705 + 0.000886973i −0.643316 0.765601i \(-0.722442\pi\)
0.642259 + 0.766488i \(0.277997\pi\)
\(194\) 346.195 + 42.6493i 1.78451 + 0.219842i
\(195\) 121.910 + 13.0089i 0.625179 + 0.0667124i
\(196\) 97.3291 + 340.465i 0.496577 + 1.73706i
\(197\) 25.6282 44.3894i 0.130093 0.225327i −0.793620 0.608414i \(-0.791806\pi\)
0.923712 + 0.383087i \(0.125139\pi\)
\(198\) 0.575993 + 41.5107i 0.00290905 + 0.209650i
\(199\) 86.0717 49.6935i 0.432521 0.249716i −0.267899 0.963447i \(-0.586329\pi\)
0.700420 + 0.713731i \(0.252996\pi\)
\(200\) 194.606 + 352.083i 0.973028 + 1.76042i
\(201\) 272.878 + 78.7154i 1.35760 + 0.391619i
\(202\) 89.9173 119.224i 0.445135 0.590218i
\(203\) 145.536 399.856i 0.716925 1.96974i
\(204\) 124.793 104.205i 0.611728 0.510809i
\(205\) −3.78337 + 21.4566i −0.0184555 + 0.104666i
\(206\) 62.5501 + 271.434i 0.303641 + 1.31764i
\(207\) 33.2950 + 30.1709i 0.160845 + 0.145753i
\(208\) −74.6094 10.6086i −0.358699 0.0510029i
\(209\) −28.3593 23.7963i −0.135690 0.113858i
\(210\) −561.510 239.668i −2.67386 1.14127i
\(211\) 100.532 17.7265i 0.476456 0.0840120i 0.0697369 0.997565i \(-0.477784\pi\)
0.406719 + 0.913553i \(0.366673\pi\)
\(212\) 164.961 17.2034i 0.778119 0.0811482i
\(213\) −193.656 288.093i −0.909184 1.35255i
\(214\) 56.1250 2.91866i 0.262267 0.0136386i
\(215\) 154.948i 0.720688i
\(216\) −202.112 + 76.2016i −0.935704 + 0.352785i
\(217\) −5.16396 −0.0237970
\(218\) 1.32811 + 25.5393i 0.00609227 + 0.117153i
\(219\) 121.424 + 59.4610i 0.554446 + 0.271512i
\(220\) 8.30291 + 79.6154i 0.0377405 + 0.361888i
\(221\) −11.0809 62.8426i −0.0501396 0.284356i
\(222\) −136.323 181.659i −0.614069 0.818282i
\(223\) −211.508 + 252.065i −0.948464 + 1.13034i 0.0428842 + 0.999080i \(0.486345\pi\)
−0.991349 + 0.131256i \(0.958099\pi\)
\(224\) 339.788 + 159.282i 1.51691 + 0.711079i
\(225\) 400.269 211.200i 1.77898 0.938666i
\(226\) −410.121 + 94.5095i −1.81469 + 0.418183i
\(227\) −339.879 59.9299i −1.49727 0.264008i −0.635812 0.771844i \(-0.719335\pi\)
−0.861454 + 0.507836i \(0.830446\pi\)
\(228\) 66.3120 180.842i 0.290842 0.793166i
\(229\) −273.587 99.5776i −1.19470 0.434837i −0.333331 0.942810i \(-0.608173\pi\)
−0.861373 + 0.507973i \(0.830395\pi\)
\(230\) 69.1689 + 52.1663i 0.300734 + 0.226810i
\(231\) −56.2729 58.4577i −0.243605 0.253064i
\(232\) −140.422 254.054i −0.605269 1.09506i
\(233\) 49.5426 + 85.8104i 0.212629 + 0.368285i 0.952537 0.304424i \(-0.0984640\pi\)
−0.739907 + 0.672709i \(0.765131\pi\)
\(234\) −13.5620 + 83.6881i −0.0579575 + 0.357641i
\(235\) 65.9443 + 38.0730i 0.280614 + 0.162013i
\(236\) −99.9231 + 28.5652i −0.423403 + 0.121039i
\(237\) 159.039 70.5063i 0.671049 0.297495i
\(238\) −38.8531 + 315.380i −0.163248 + 1.32513i
\(239\) 74.1713 + 88.3940i 0.310340 + 0.369849i 0.898559 0.438853i \(-0.144615\pi\)
−0.588219 + 0.808702i \(0.700171\pi\)
\(240\) −374.915 + 181.374i −1.56215 + 0.755727i
\(241\) 109.908 40.0034i 0.456051 0.165989i −0.103772 0.994601i \(-0.533091\pi\)
0.559823 + 0.828612i \(0.310869\pi\)
\(242\) 67.7328 221.225i 0.279888 0.914151i
\(243\) 81.2960 + 228.998i 0.334552 + 0.942377i
\(244\) −221.421 149.610i −0.907462 0.613158i
\(245\) 721.792 262.711i 2.94609 1.07229i
\(246\) −14.6733 3.41838i −0.0596475 0.0138959i
\(247\) −48.5959 57.9143i −0.196745 0.234471i
\(248\) −2.31434 + 2.65584i −0.00933203 + 0.0107090i
\(249\) 183.556 81.3756i 0.737173 0.326810i
\(250\) 368.101 238.836i 1.47240 0.955345i
\(251\) −127.608 73.6744i −0.508397 0.293523i 0.223777 0.974640i \(-0.428161\pi\)
−0.732175 + 0.681117i \(0.761495\pi\)
\(252\) 186.580 378.710i 0.740396 1.50282i
\(253\) 5.75715 + 9.97168i 0.0227555 + 0.0394138i
\(254\) −101.323 + 198.660i −0.398910 + 0.782125i
\(255\) −244.578 254.073i −0.959128 0.996366i
\(256\) 234.203 103.369i 0.914855 0.403783i
\(257\) −294.633 107.238i −1.14643 0.417267i −0.302199 0.953245i \(-0.597721\pi\)
−0.844232 + 0.535978i \(0.819943\pi\)
\(258\) 106.989 + 5.82069i 0.414686 + 0.0225608i
\(259\) 437.169 + 77.0847i 1.68791 + 0.297624i
\(260\) −11.5347 + 163.062i −0.0443644 + 0.627161i
\(261\) −288.824 + 152.396i −1.10661 + 0.583894i
\(262\) 23.0998 21.5235i 0.0881673 0.0821508i
\(263\) −131.924 + 157.221i −0.501613 + 0.597799i −0.956131 0.292938i \(-0.905367\pi\)
0.454518 + 0.890737i \(0.349811\pi\)
\(264\) −55.2850 + 2.74223i −0.209413 + 0.0103872i
\(265\) −62.4737 354.306i −0.235750 1.33700i
\(266\) 146.960 + 346.605i 0.552481 + 1.30303i
\(267\) 292.702 + 143.336i 1.09626 + 0.536839i
\(268\) −91.9059 + 367.350i −0.342932 + 1.37071i
\(269\) −270.423 −1.00529 −0.502645 0.864493i \(-0.667640\pi\)
−0.502645 + 0.864493i \(0.667640\pi\)
\(270\) 195.819 + 425.662i 0.725255 + 1.57653i
\(271\) 232.697i 0.858661i −0.903148 0.429330i \(-0.858750\pi\)
0.903148 0.429330i \(-0.141250\pi\)
\(272\) 144.788 + 161.327i 0.532310 + 0.593114i
\(273\) −92.4424 137.522i −0.338617 0.503743i
\(274\) 82.9911 + 195.734i 0.302887 + 0.714359i
\(275\) 114.216 20.1393i 0.415330 0.0732338i
\(276\) −38.6183 + 45.8003i −0.139921 + 0.165943i
\(277\) −57.6704 48.3912i −0.208196 0.174698i 0.532727 0.846287i \(-0.321167\pi\)
−0.740923 + 0.671590i \(0.765612\pi\)
\(278\) 82.6759 77.0341i 0.297395 0.277101i
\(279\) 2.93671 + 2.66116i 0.0105258 + 0.00953819i
\(280\) 292.641 759.605i 1.04515 2.71287i
\(281\) 24.3783 138.256i 0.0867556 0.492015i −0.910208 0.414151i \(-0.864079\pi\)
0.996964 0.0778647i \(-0.0248102\pi\)
\(282\) −28.7660 + 44.1032i −0.102007 + 0.156394i
\(283\) −48.0225 + 131.941i −0.169691 + 0.466221i −0.995165 0.0982185i \(-0.968686\pi\)
0.825474 + 0.564440i \(0.190908\pi\)
\(284\) 374.666 271.749i 1.31925 0.956862i
\(285\) −401.451 115.804i −1.40860 0.406331i
\(286\) −9.87121 + 19.3540i −0.0345147 + 0.0676714i
\(287\) 25.5021 14.7236i 0.0888573 0.0513018i
\(288\) −111.152 265.686i −0.385945 0.922522i
\(289\) 52.7226 91.3183i 0.182431 0.315980i
\(290\) −528.223 + 342.729i −1.82146 + 1.18182i
\(291\) 520.265 + 55.5171i 1.78785 + 0.190780i
\(292\) −73.4546 + 164.624i −0.251557 + 0.563780i
\(293\) 255.034 213.999i 0.870422 0.730371i −0.0937648 0.995594i \(-0.529890\pi\)
0.964187 + 0.265223i \(0.0854457\pi\)
\(294\) 154.283 + 508.254i 0.524772 + 1.72876i
\(295\) 77.1031 + 211.839i 0.261366 + 0.718098i
\(296\) 235.572 190.290i 0.795851 0.642873i
\(297\) 1.87689 + 62.2438i 0.00631949 + 0.209575i
\(298\) −68.5860 + 224.011i −0.230154 + 0.751715i
\(299\) 8.04230 + 22.0960i 0.0268973 + 0.0738997i
\(300\) 300.462 + 523.306i 1.00154 + 1.74435i
\(301\) −160.426 + 134.614i −0.532978 + 0.447221i
\(302\) 60.7811 493.375i 0.201262 1.63369i
\(303\) 131.949 181.007i 0.435474 0.597382i
\(304\) 244.124 + 79.7568i 0.803038 + 0.262358i
\(305\) −289.832 + 502.005i −0.950270 + 1.64592i
\(306\) 184.621 159.332i 0.603337 0.520694i
\(307\) −176.337 + 101.808i −0.574387 + 0.331622i −0.758900 0.651208i \(-0.774263\pi\)
0.184513 + 0.982830i \(0.440929\pi\)
\(308\) 75.2169 77.7636i 0.244211 0.252479i
\(309\) 100.437 + 405.571i 0.325038 + 1.31253i
\(310\) 6.10089 + 4.60121i 0.0196803 + 0.0148426i
\(311\) −63.2509 + 173.780i −0.203379 + 0.558779i −0.998887 0.0471636i \(-0.984982\pi\)
0.795508 + 0.605943i \(0.207204\pi\)
\(312\) −112.158 14.0900i −0.359481 0.0451604i
\(313\) −19.2606 + 109.232i −0.0615355 + 0.348985i 0.938458 + 0.345393i \(0.112254\pi\)
−0.999994 + 0.00359201i \(0.998857\pi\)
\(314\) −361.462 + 83.2963i −1.15115 + 0.265275i
\(315\) −848.003 345.751i −2.69207 1.09762i
\(316\) 101.514 + 208.562i 0.321248 + 0.660008i
\(317\) 104.031 + 87.2920i 0.328172 + 0.275369i 0.791955 0.610580i \(-0.209064\pi\)
−0.463783 + 0.885949i \(0.653508\pi\)
\(318\) 246.989 29.8274i 0.776695 0.0937968i
\(319\) −82.4151 + 14.5320i −0.258355 + 0.0455549i
\(320\) −259.514 490.941i −0.810981 1.53419i
\(321\) 84.1052 5.74707i 0.262010 0.0179036i
\(322\) −6.08094 116.935i −0.0188849 0.363152i
\(323\) 217.468i 0.673275i
\(324\) −301.269 + 119.219i −0.929841 + 0.367961i
\(325\) 236.845 0.728755
\(326\) −6.13275 + 0.318920i −0.0188121 + 0.000978284i
\(327\) 2.61516 + 38.2714i 0.00799743 + 0.117038i
\(328\) 3.85691 19.7145i 0.0117589 0.0601053i
\(329\) −17.8712 101.352i −0.0543196 0.308062i
\(330\) 14.3956 + 119.205i 0.0436231 + 0.361226i
\(331\) 114.419 136.359i 0.345677 0.411962i −0.564993 0.825095i \(-0.691121\pi\)
0.910670 + 0.413133i \(0.135566\pi\)
\(332\) 117.164 + 240.715i 0.352903 + 0.725044i
\(333\) −208.891 269.125i −0.627300 0.808183i
\(334\) −41.3199 179.307i −0.123712 0.536846i
\(335\) 808.931 + 142.636i 2.41472 + 0.425780i
\(336\) 513.501 + 230.599i 1.52828 + 0.686306i
\(337\) 547.261 + 199.187i 1.62392 + 0.591059i 0.984123 0.177486i \(-0.0567963\pi\)
0.639797 + 0.768544i \(0.279019\pi\)
\(338\) 176.807 234.434i 0.523097 0.693590i
\(339\) −612.794 + 151.754i −1.80765 + 0.447652i
\(340\) 326.914 337.983i 0.961511 0.994066i
\(341\) 0.507797 + 0.879530i 0.00148914 + 0.00257927i
\(342\) 95.0416 272.845i 0.277899 0.797793i
\(343\) −401.424 231.762i −1.17033 0.675692i
\(344\) −2.66635 + 142.838i −0.00775101 + 0.415227i
\(345\) 105.013 + 76.5512i 0.304385 + 0.221887i
\(346\) −564.864 69.5881i −1.63255 0.201122i
\(347\) 174.936 + 208.480i 0.504138 + 0.600808i 0.956754 0.290897i \(-0.0939538\pi\)
−0.452616 + 0.891705i \(0.649509\pi\)
\(348\) −216.806 377.604i −0.623005 1.08507i
\(349\) 239.597 87.2061i 0.686524 0.249874i 0.0248779 0.999690i \(-0.492080\pi\)
0.661646 + 0.749816i \(0.269858\pi\)
\(350\) −1127.74 345.283i −3.22212 0.986523i
\(351\) −18.2981 + 125.846i −0.0521313 + 0.358537i
\(352\) −6.28397 73.5359i −0.0178522 0.208909i
\(353\) −216.192 + 78.6876i −0.612443 + 0.222911i −0.629572 0.776942i \(-0.716770\pi\)
0.0171289 + 0.999853i \(0.494547\pi\)
\(354\) −149.168 + 45.2806i −0.421378 + 0.127911i
\(355\) −645.351 769.100i −1.81789 2.16648i
\(356\) −177.069 + 396.840i −0.497384 + 1.11472i
\(357\) −50.5755 + 473.955i −0.141668 + 1.32761i
\(358\) −46.9372 72.3408i −0.131109 0.202069i
\(359\) −513.681 296.574i −1.43087 0.826112i −0.433680 0.901067i \(-0.642785\pi\)
−0.997187 + 0.0749550i \(0.976119\pi\)
\(360\) −557.873 + 281.175i −1.54965 + 0.781042i
\(361\) −51.6768 89.5068i −0.143149 0.247941i
\(362\) −186.108 94.9214i −0.514110 0.262214i
\(363\) 96.1871 333.446i 0.264978 0.918584i
\(364\) 178.848 129.720i 0.491341 0.356374i
\(365\) 367.452 + 133.742i 1.00672 + 0.366415i
\(366\) −335.738 218.982i −0.917317 0.598313i
\(367\) 328.288 + 57.8861i 0.894519 + 0.157728i 0.601966 0.798522i \(-0.294384\pi\)
0.292553 + 0.956249i \(0.405495\pi\)
\(368\) −62.8654 49.2795i −0.170830 0.133912i
\(369\) −22.0904 4.76881i −0.0598657 0.0129236i
\(370\) −447.803 480.599i −1.21028 1.29892i
\(371\) −312.558 + 372.492i −0.842473 + 1.00402i
\(372\) −3.40624 + 4.03972i −0.00915657 + 0.0108595i
\(373\) 10.8367 + 61.4578i 0.0290527 + 0.164766i 0.995882 0.0906564i \(-0.0288965\pi\)
−0.966829 + 0.255423i \(0.917785\pi\)
\(374\) 57.5364 24.3953i 0.153841 0.0652282i
\(375\) 546.250 367.190i 1.45667 0.979174i
\(376\) −60.1353 36.2322i −0.159934 0.0963621i
\(377\) −170.902 −0.453320
\(378\) 270.591 572.543i 0.715849 1.51466i
\(379\) 341.891i 0.902088i 0.892502 + 0.451044i \(0.148948\pi\)
−0.892502 + 0.451044i \(0.851052\pi\)
\(380\) 135.210 540.437i 0.355815 1.42220i
\(381\) −147.117 + 300.423i −0.386133 + 0.788511i
\(382\) 467.274 198.124i 1.22323 0.518648i
\(383\) 173.175 30.5355i 0.452155 0.0797272i 0.0570670 0.998370i \(-0.481825\pi\)
0.395088 + 0.918643i \(0.370714\pi\)
\(384\) 348.735 160.748i 0.908164 0.418614i
\(385\) −179.776 150.850i −0.466951 0.391818i
\(386\) −0.363099 0.389692i −0.000940672 0.00100956i
\(387\) 160.604 + 6.11896i 0.414998 + 0.0158113i
\(388\) −49.2259 + 695.886i −0.126871 + 1.79352i
\(389\) 18.0397 102.308i 0.0463746 0.263003i −0.952801 0.303595i \(-0.901813\pi\)
0.999176 + 0.0405915i \(0.0129242\pi\)
\(390\) −13.3205 + 244.842i −0.0341552 + 0.627800i
\(391\) 23.1336 63.5590i 0.0591651 0.162555i
\(392\) −669.901 + 229.758i −1.70893 + 0.586117i
\(393\) 34.1199 32.8447i 0.0868191 0.0835743i
\(394\) 91.3209 + 46.5768i 0.231779 + 0.118215i
\(395\) 435.744 251.577i 1.10315 0.636904i
\(396\) −82.8496 + 5.46196i −0.209216 + 0.0137928i
\(397\) −309.052 + 535.294i −0.778469 + 1.34835i 0.154354 + 0.988016i \(0.450670\pi\)
−0.932824 + 0.360333i \(0.882663\pi\)
\(398\) 108.193 + 166.750i 0.271841 + 0.418969i
\(399\) 228.869 + 516.252i 0.573607 + 1.29386i
\(400\) −683.003 + 425.255i −1.70751 + 1.06314i
\(401\) −157.870 + 132.468i −0.393690 + 0.330345i −0.818048 0.575149i \(-0.804944\pi\)
0.424359 + 0.905494i \(0.360500\pi\)
\(402\) −128.876 + 553.195i −0.320587 + 1.37611i
\(403\) 0.709353 + 1.94893i 0.00176018 + 0.00483606i
\(404\) 247.466 + 167.209i 0.612539 + 0.413883i
\(405\) 304.077 + 633.630i 0.750808 + 1.56452i
\(406\) 813.749 + 249.148i 2.00431 + 0.613664i
\(407\) −29.8598 82.0391i −0.0733656 0.201570i
\(408\) 221.091 + 238.425i 0.541889 + 0.584375i
\(409\) −197.638 + 165.838i −0.483222 + 0.405472i −0.851590 0.524208i \(-0.824361\pi\)
0.368368 + 0.929680i \(0.379917\pi\)
\(410\) −43.2482 5.32794i −0.105483 0.0129950i
\(411\) 129.247 + 291.538i 0.314469 + 0.709337i
\(412\) −535.639 + 153.124i −1.30009 + 0.371660i
\(413\) 152.344 263.868i 0.368872 0.638905i
\(414\) −56.8021 + 69.6338i −0.137203 + 0.168198i
\(415\) 502.919 290.361i 1.21185 0.699664i
\(416\) 13.4392 150.119i 0.0323058 0.360864i
\(417\) 122.117 117.553i 0.292848 0.281903i
\(418\) 44.5828 59.1137i 0.106657 0.141420i
\(419\) −41.7733 + 114.771i −0.0996975 + 0.273917i −0.979507 0.201410i \(-0.935448\pi\)
0.879810 + 0.475326i \(0.157670\pi\)
\(420\) 420.367 1146.40i 1.00087 2.72952i
\(421\) −19.2591 + 109.224i −0.0457461 + 0.259439i −0.999100 0.0424156i \(-0.986495\pi\)
0.953354 + 0.301855i \(0.0976058\pi\)
\(422\) 45.8470 + 198.952i 0.108642 + 0.471450i
\(423\) −42.0670 + 66.8481i −0.0994491 + 0.158033i
\(424\) 51.4942 + 327.690i 0.121449 + 0.772854i
\(425\) −521.893 437.920i −1.22798 1.03040i
\(426\) 555.293 416.713i 1.30351 0.978199i
\(427\) 771.550 136.045i 1.80691 0.318607i
\(428\) 11.6589 + 111.795i 0.0272404 + 0.261204i
\(429\) −14.3325 + 29.2681i −0.0334092 + 0.0682239i
\(430\) 309.478 16.0937i 0.719716 0.0374273i
\(431\) 697.944i 1.61936i 0.586872 + 0.809679i \(0.300359\pi\)
−0.586872 + 0.809679i \(0.699641\pi\)
\(432\) −173.190 395.764i −0.400903 0.916121i
\(433\) −599.940 −1.38554 −0.692772 0.721157i \(-0.743611\pi\)
−0.692772 + 0.721157i \(0.743611\pi\)
\(434\) −0.536356 10.3140i −0.00123584 0.0237649i
\(435\) −783.866 + 526.916i −1.80199 + 1.21130i
\(436\) −50.8717 + 5.30529i −0.116678 + 0.0121681i
\(437\) −13.9152 78.9172i −0.0318426 0.180589i
\(438\) −106.150 + 248.695i −0.242351 + 0.567798i
\(439\) 501.455 597.611i 1.14227 1.36130i 0.219652 0.975578i \(-0.429508\pi\)
0.922615 0.385722i \(-0.126048\pi\)
\(440\) −158.153 + 24.8527i −0.359440 + 0.0564834i
\(441\) 243.797 + 758.515i 0.552828 + 1.71999i
\(442\) 124.365 28.6590i 0.281368 0.0648393i
\(443\) −682.883 120.411i −1.54150 0.271807i −0.662656 0.748924i \(-0.730571\pi\)
−0.878840 + 0.477117i \(0.841682\pi\)
\(444\) 348.668 291.147i 0.785287 0.655736i
\(445\) 885.776 + 322.396i 1.99051 + 0.724485i
\(446\) −525.418 396.263i −1.17807 0.888483i
\(447\) −97.3987 + 337.646i −0.217894 + 0.755360i
\(448\) −282.841 + 695.202i −0.631342 + 1.55179i
\(449\) −263.993 457.250i −0.587959 1.01837i −0.994499 0.104742i \(-0.966598\pi\)
0.406541 0.913633i \(-0.366735\pi\)
\(450\) 463.404 + 777.522i 1.02979 + 1.72783i
\(451\) −5.01548 2.89569i −0.0111208 0.00642060i
\(452\) −231.361 809.319i −0.511861 1.79053i
\(453\) 79.1195 741.448i 0.174657 1.63675i
\(454\) 84.3964 685.066i 0.185895 1.50896i
\(455\) −308.060 367.132i −0.677056 0.806884i
\(456\) 368.083 + 113.662i 0.807200 + 0.249258i
\(457\) 125.330 45.6162i 0.274244 0.0998167i −0.201237 0.979543i \(-0.564496\pi\)
0.475481 + 0.879726i \(0.342274\pi\)
\(458\) 170.470 556.779i 0.372206 1.21567i
\(459\) 273.007 243.472i 0.594786 0.530441i
\(460\) −97.0076 + 143.569i −0.210886 + 0.312107i
\(461\) −497.956 + 181.241i −1.08017 + 0.393148i −0.819969 0.572408i \(-0.806009\pi\)
−0.260196 + 0.965556i \(0.583787\pi\)
\(462\) 110.913 118.466i 0.240071 0.256419i
\(463\) 314.968 + 375.364i 0.680277 + 0.810722i 0.990143 0.140058i \(-0.0447289\pi\)
−0.309867 + 0.950780i \(0.600284\pi\)
\(464\) 492.838 306.853i 1.06215 0.661322i
\(465\) 9.26241 + 6.75202i 0.0199192 + 0.0145205i
\(466\) −166.243 + 107.864i −0.356745 + 0.231468i
\(467\) 168.249 + 97.1384i 0.360276 + 0.208005i 0.669202 0.743081i \(-0.266636\pi\)
−0.308926 + 0.951086i \(0.599970\pi\)
\(468\) −168.559 18.3952i −0.360169 0.0393060i
\(469\) −555.093 961.449i −1.18357 2.05000i
\(470\) −69.1939 + 135.665i −0.147221 + 0.288649i
\(471\) −540.088 + 133.749i −1.14668 + 0.283968i
\(472\) −67.4318 196.610i −0.142864 0.416546i
\(473\) 38.7030 + 14.0867i 0.0818246 + 0.0297817i
\(474\) 157.341 + 310.325i 0.331943 + 0.654694i
\(475\) −794.892 140.161i −1.67346 0.295076i
\(476\) −633.944 44.8442i −1.33182 0.0942106i
\(477\) 369.707 50.7626i 0.775067 0.106420i
\(478\) −168.846 + 157.324i −0.353233 + 0.329129i
\(479\) −13.8081 + 16.4559i −0.0288270 + 0.0343547i −0.780265 0.625449i \(-0.784916\pi\)
0.751438 + 0.659803i \(0.229360\pi\)
\(480\) −401.200 729.981i −0.835834 1.52079i
\(481\) −30.9596 175.581i −0.0643652 0.365033i
\(482\) 91.3144 + 215.365i 0.189449 + 0.446815i
\(483\) −11.9738 175.231i −0.0247906 0.362796i
\(484\) 448.887 + 112.305i 0.927453 + 0.232036i
\(485\) 1513.28 3.12016
\(486\) −448.934 + 186.158i −0.923732 + 0.383040i
\(487\) 669.554i 1.37485i −0.726254 0.687427i \(-0.758740\pi\)
0.726254 0.687427i \(-0.241260\pi\)
\(488\) 275.819 457.783i 0.565203 0.938080i
\(489\) −9.19012 + 0.627979i −0.0187937 + 0.00128421i
\(490\) 599.682 + 1414.35i 1.22384 + 2.88643i
\(491\) 571.962 100.852i 1.16489 0.205402i 0.442424 0.896806i \(-0.354119\pi\)
0.722468 + 0.691404i \(0.243007\pi\)
\(492\) 5.30349 29.6620i 0.0107795 0.0602886i
\(493\) 376.585 + 315.992i 0.763864 + 0.640958i
\(494\) 110.625 103.076i 0.223937 0.208656i
\(495\) 24.4996 + 178.432i 0.0494941 + 0.360469i
\(496\) −5.54490 4.34659i −0.0111792 0.00876329i
\(497\) −235.632 + 1336.34i −0.474109 + 2.68881i
\(498\) 181.597 + 358.165i 0.364652 + 0.719207i
\(499\) −164.520 + 452.016i −0.329700 + 0.905844i 0.658487 + 0.752592i \(0.271197\pi\)
−0.988187 + 0.153252i \(0.951025\pi\)
\(500\) 515.261 + 710.402i 1.03052 + 1.42080i
\(501\) −66.3474 267.916i −0.132430 0.534762i
\(502\) 133.896 262.523i 0.266725 0.522955i
\(503\) 373.012 215.359i 0.741575 0.428148i −0.0810668 0.996709i \(-0.525833\pi\)
0.822642 + 0.568560i \(0.192499\pi\)
\(504\) 775.777 + 333.321i 1.53924 + 0.661352i
\(505\) 323.925 561.054i 0.641435 1.11100i
\(506\) −19.3185 + 12.5345i −0.0381788 + 0.0247717i
\(507\) 259.454 355.918i 0.511744 0.702009i
\(508\) −407.307 181.739i −0.801786 0.357754i
\(509\) 444.761 373.199i 0.873793 0.733200i −0.0911001 0.995842i \(-0.529038\pi\)
0.964893 + 0.262642i \(0.0845939\pi\)
\(510\) 482.058 514.885i 0.945212 1.00958i
\(511\) −180.760 496.634i −0.353738 0.971887i
\(512\) 230.784 + 457.037i 0.450749 + 0.892651i
\(513\) 135.885 411.533i 0.264883 0.802209i
\(514\) 183.584 599.609i 0.357167 1.16655i
\(515\) 413.312 + 1135.57i 0.802548 + 2.20498i
\(516\) −0.513222 + 214.294i −0.000994616 + 0.415298i
\(517\) −15.5051 + 13.0103i −0.0299905 + 0.0251650i
\(518\) −108.555 + 881.164i −0.209565 + 1.70109i
\(519\) −848.882 90.5836i −1.63561 0.174535i
\(520\) −326.882 6.10188i −0.628619 0.0117344i
\(521\) 193.570 335.273i 0.371535 0.643517i −0.618267 0.785968i \(-0.712165\pi\)
0.989802 + 0.142451i \(0.0454983\pi\)
\(522\) −334.380 561.040i −0.640576 1.07479i
\(523\) 142.838 82.4674i 0.273112 0.157681i −0.357189 0.934032i \(-0.616265\pi\)
0.630301 + 0.776351i \(0.282931\pi\)
\(524\) 45.3882 + 43.9018i 0.0866187 + 0.0837820i
\(525\) −1699.81 490.335i −3.23774 0.933972i
\(526\) −327.720 247.163i −0.623043 0.469891i
\(527\) 2.04045 5.60608i 0.00387181 0.0106377i
\(528\) −11.2193 110.136i −0.0212486 0.208591i
\(529\) 87.5319 496.418i 0.165467 0.938408i
\(530\) 701.167 161.579i 1.32296 0.304866i
\(531\) −222.617 + 71.5521i −0.419241 + 0.134750i
\(532\) −677.010 + 329.523i −1.27258 + 0.619405i
\(533\) −9.05997 7.60221i −0.0169981 0.0142631i
\(534\) −255.884 + 599.502i −0.479183 + 1.12266i
\(535\) 240.116 42.3389i 0.448815 0.0791382i
\(536\) −743.255 145.409i −1.38667 0.271285i
\(537\) −72.1618 107.351i −0.134380 0.199910i
\(538\) −28.0876 540.116i −0.0522074 1.00393i
\(539\) 204.173i 0.378800i
\(540\) −829.836 + 435.321i −1.53673 + 0.806150i
\(541\) 543.641 1.00488 0.502441 0.864612i \(-0.332436\pi\)
0.502441 + 0.864612i \(0.332436\pi\)
\(542\) 464.766 24.1692i 0.857502 0.0445926i
\(543\) −281.441 137.821i −0.518308 0.253815i
\(544\) −307.180 + 305.942i −0.564669 + 0.562393i
\(545\) 19.2660 + 109.263i 0.0353504 + 0.200482i
\(546\) 265.071 198.919i 0.485478 0.364321i
\(547\) −557.244 + 664.097i −1.01873 + 1.21407i −0.0421038 + 0.999113i \(0.513406\pi\)
−0.976623 + 0.214958i \(0.931038\pi\)
\(548\) −382.321 + 186.088i −0.697666 + 0.339577i
\(549\) −508.884 320.237i −0.926930 0.583310i
\(550\) 52.0873 + 226.031i 0.0947042 + 0.410966i
\(551\) 573.574 + 101.137i 1.04097 + 0.183551i
\(552\) −95.4882 72.3754i −0.172986 0.131115i
\(553\) −639.032 232.589i −1.15557 0.420594i
\(554\) 90.6619 120.211i 0.163650 0.216988i
\(555\) −683.344 709.875i −1.23125 1.27905i
\(556\) 162.447 + 157.127i 0.292172 + 0.282603i
\(557\) 251.191 + 435.076i 0.450972 + 0.781106i 0.998447 0.0557163i \(-0.0177442\pi\)
−0.547475 + 0.836822i \(0.684411\pi\)
\(558\) −5.01011 + 6.14190i −0.00897868 + 0.0110070i
\(559\) 72.8417 + 42.0552i 0.130307 + 0.0752329i
\(560\) 1547.56 + 505.596i 2.76349 + 0.902850i
\(561\) 85.6979 37.9923i 0.152759 0.0677224i
\(562\) 278.672 + 34.3308i 0.495857 + 0.0610868i
\(563\) −34.7389 41.4002i −0.0617032 0.0735351i 0.734310 0.678814i \(-0.237506\pi\)
−0.796013 + 0.605279i \(0.793061\pi\)
\(564\) −91.0752 52.8735i −0.161481 0.0937474i
\(565\) −1715.77 + 624.490i −3.03677 + 1.10529i
\(566\) −268.513 82.2113i −0.474405 0.145250i
\(567\) 391.860 865.305i 0.691112 1.52611i
\(568\) 581.679 + 720.096i 1.02408 + 1.26777i
\(569\) 216.377 78.7548i 0.380276 0.138409i −0.144808 0.989460i \(-0.546256\pi\)
0.525083 + 0.851051i \(0.324034\pi\)
\(570\) 189.599 813.848i 0.332630 1.42780i
\(571\) −305.971 364.642i −0.535850 0.638602i 0.428402 0.903588i \(-0.359077\pi\)
−0.964252 + 0.264987i \(0.914632\pi\)
\(572\) −39.6811 17.7056i −0.0693725 0.0309538i
\(573\) 695.984 308.549i 1.21463 0.538480i
\(574\) 32.0563 + 49.4060i 0.0558472 + 0.0860732i
\(575\) 217.412 + 125.523i 0.378108 + 0.218301i
\(576\) 519.111 249.600i 0.901234 0.433333i
\(577\) −146.058 252.980i −0.253133 0.438440i 0.711253 0.702936i \(-0.248128\pi\)
−0.964387 + 0.264496i \(0.914795\pi\)
\(578\) 187.866 + 95.8182i 0.325028 + 0.165775i
\(579\) −0.554087 0.575600i −0.000956972 0.000994127i
\(580\) −739.397 1019.42i −1.27482 1.75763i
\(581\) −737.546 268.445i −1.26944 0.462039i
\(582\) −56.8469 + 1044.89i −0.0976751 + 1.79535i
\(583\) 94.1784 + 16.6062i 0.161541 + 0.0284840i
\(584\) −336.433 129.612i −0.576083 0.221939i
\(585\) −14.0031 + 367.539i −0.0239369 + 0.628273i
\(586\) 453.909 + 487.152i 0.774589 + 0.831318i
\(587\) 536.993 639.963i 0.914809 1.09023i −0.0808107 0.996729i \(-0.525751\pi\)
0.995620 0.0934972i \(-0.0298046\pi\)
\(588\) −999.112 + 360.939i −1.69917 + 0.613843i
\(589\) −1.22736 6.96072i −0.00208381 0.0118179i
\(590\) −415.098 + 176.001i −0.703556 + 0.298306i
\(591\) 138.100 + 67.6274i 0.233672 + 0.114429i
\(592\) 404.535 + 450.744i 0.683336 + 0.761391i
\(593\) −253.977 −0.428292 −0.214146 0.976802i \(-0.568697\pi\)
−0.214146 + 0.976802i \(0.568697\pi\)
\(594\) −124.125 + 10.2137i −0.208964 + 0.0171947i
\(595\) 1378.58i 2.31694i
\(596\) −454.541 113.720i −0.762653 0.190805i
\(597\) 166.337 + 247.451i 0.278621 + 0.414491i
\(598\) −43.2971 + 18.3579i −0.0724032 + 0.0306988i
\(599\) −1092.94 + 192.715i −1.82460 + 0.321727i −0.977698 0.210015i \(-0.932649\pi\)
−0.846907 + 0.531742i \(0.821538\pi\)
\(600\) −1013.99 + 654.466i −1.68999 + 1.09078i
\(601\) 303.355 + 254.545i 0.504750 + 0.423536i 0.859277 0.511510i \(-0.170914\pi\)
−0.354527 + 0.935046i \(0.615358\pi\)
\(602\) −285.527 306.438i −0.474297 0.509033i
\(603\) −179.788 + 832.828i −0.298156 + 1.38114i
\(604\) 991.732 + 70.1536i 1.64194 + 0.116148i
\(605\) 174.296 988.481i 0.288092 1.63385i
\(606\) 375.230 + 244.741i 0.619192 + 0.403863i
\(607\) −185.277 + 509.044i −0.305234 + 0.838622i 0.688335 + 0.725393i \(0.258342\pi\)
−0.993569 + 0.113230i \(0.963880\pi\)
\(608\) −133.942 + 495.872i −0.220300 + 0.815580i
\(609\) 1226.54 + 353.813i 2.01403 + 0.580974i
\(610\) −1032.76 526.742i −1.69305 0.863511i
\(611\) −35.7965 + 20.6671i −0.0585868 + 0.0338251i
\(612\) 337.410 + 352.195i 0.551324 + 0.575482i
\(613\) −343.368 + 594.730i −0.560143 + 0.970196i 0.437341 + 0.899296i \(0.355920\pi\)
−0.997483 + 0.0709000i \(0.977413\pi\)
\(614\) −221.657 341.623i −0.361004 0.556390i
\(615\) −64.9937 6.93544i −0.105681 0.0112771i
\(616\) 163.130 + 142.154i 0.264821 + 0.230769i
\(617\) 657.785 551.947i 1.06610 0.894566i 0.0714083 0.997447i \(-0.477251\pi\)
0.994694 + 0.102881i \(0.0328062\pi\)
\(618\) −799.615 + 242.727i −1.29388 + 0.392762i
\(619\) 80.2415 + 220.462i 0.129631 + 0.356158i 0.987480 0.157743i \(-0.0504219\pi\)
−0.857849 + 0.513901i \(0.828200\pi\)
\(620\) −8.55634 + 12.6632i −0.0138005 + 0.0204246i
\(621\) −83.4926 + 105.823i −0.134449 + 0.170408i
\(622\) −353.661 108.281i −0.568587 0.174086i
\(623\) −435.738 1197.18i −0.699419 1.92164i
\(624\) 16.4927 225.477i 0.0264306 0.361342i
\(625\) 495.256 415.569i 0.792410 0.664911i
\(626\) −220.171 27.1238i −0.351710 0.0433287i
\(627\) 65.4227 89.7468i 0.104342 0.143137i
\(628\) −203.911 713.296i −0.324699 1.13582i
\(629\) −256.424 + 444.139i −0.407669 + 0.706104i
\(630\) 602.490 1729.63i 0.956334 2.74544i
\(631\) −124.225 + 71.7213i −0.196870 + 0.113663i −0.595195 0.803582i \(-0.702925\pi\)
0.398325 + 0.917244i \(0.369592\pi\)
\(632\) −406.018 + 224.417i −0.642434 + 0.355090i
\(633\) 73.6166 + 297.269i 0.116298 + 0.469620i
\(634\) −163.543 + 216.847i −0.257955 + 0.342030i
\(635\) −330.900 + 909.139i −0.521102 + 1.43172i
\(636\) 85.2279 + 490.214i 0.134006 + 0.770776i
\(637\) −72.4036 + 410.621i −0.113663 + 0.644617i
\(638\) −37.5849 163.098i −0.0589105 0.255640i
\(639\) 822.660 638.537i 1.28742 0.999276i
\(640\) 953.602 569.319i 1.49000 0.889561i
\(641\) 334.138 + 280.375i 0.521276 + 0.437403i 0.865076 0.501640i \(-0.167270\pi\)
−0.343800 + 0.939043i \(0.611714\pi\)
\(642\) 20.2142 + 167.386i 0.0314864 + 0.260727i
\(643\) 1138.09 200.676i 1.76997 0.312094i 0.808809 0.588072i \(-0.200113\pi\)
0.961164 + 0.275978i \(0.0890017\pi\)
\(644\) 232.922 24.2910i 0.361681 0.0377189i
\(645\) 463.762 31.6898i 0.719012 0.0491314i
\(646\) −434.349 + 22.5874i −0.672366 + 0.0349650i
\(647\) 935.380i 1.44572i −0.690995 0.722859i \(-0.742827\pi\)
0.690995 0.722859i \(-0.257173\pi\)
\(648\) −269.409 589.341i −0.415754 0.909477i
\(649\) −59.9229 −0.0923312
\(650\) 24.6000 + 473.052i 0.0378462 + 0.727772i
\(651\) −1.05613 15.4558i −0.00162231 0.0237417i
\(652\) −1.27396 12.2158i −0.00195393 0.0187359i
\(653\) −140.779 798.399i −0.215588 1.22266i −0.879882 0.475191i \(-0.842379\pi\)
0.664294 0.747471i \(-0.268732\pi\)
\(654\) −76.1679 + 9.19834i −0.116465 + 0.0140647i
\(655\) 88.0464 104.930i 0.134422 0.160198i
\(656\) 39.7765 + 5.65575i 0.0606348 + 0.00862157i
\(657\) −153.135 + 375.584i −0.233082 + 0.571666i
\(658\) 200.575 46.2211i 0.304825 0.0702448i
\(659\) 209.650 + 36.9669i 0.318133 + 0.0560954i 0.330435 0.943829i \(-0.392805\pi\)
−0.0123016 + 0.999924i \(0.503916\pi\)
\(660\) −236.592 + 41.1336i −0.358473 + 0.0623237i
\(661\) −88.9075 32.3597i −0.134505 0.0489556i 0.273891 0.961761i \(-0.411689\pi\)
−0.408395 + 0.912805i \(0.633912\pi\)
\(662\) 284.235 + 214.366i 0.429358 + 0.323816i
\(663\) 185.823 46.0177i 0.280276 0.0694083i
\(664\) −468.610 + 259.013i −0.705738 + 0.390080i
\(665\) 816.640 + 1414.46i 1.22803 + 2.12701i
\(666\) 515.827 445.171i 0.774515 0.668425i
\(667\) −156.879 90.5741i −0.235201 0.135793i
\(668\) 353.837 101.152i 0.529697 0.151425i
\(669\) −797.693 581.494i −1.19237 0.869199i
\(670\) −200.868 + 1630.49i −0.299803 + 2.43357i
\(671\) −99.0416 118.033i −0.147603 0.175906i
\(672\) −407.240 + 1049.57i −0.606012 + 1.56186i
\(673\) −635.081 + 231.150i −0.943656 + 0.343463i −0.767609 0.640919i \(-0.778553\pi\)
−0.176048 + 0.984382i \(0.556331\pi\)
\(674\) −340.994 + 1113.73i −0.505926 + 1.65242i
\(675\) 713.988 + 1154.82i 1.05776 + 1.71085i
\(676\) 486.598 + 328.787i 0.719820 + 0.486371i
\(677\) −916.610 + 333.619i −1.35393 + 0.492790i −0.914172 0.405327i \(-0.867158\pi\)
−0.439757 + 0.898117i \(0.644935\pi\)
\(678\) −366.746 1208.17i −0.540924 1.78196i
\(679\) −1314.68 1566.78i −1.93621 2.30748i
\(680\) 709.008 + 617.841i 1.04266 + 0.908589i
\(681\) 109.860 1029.52i 0.161321 1.51178i
\(682\) −1.70394 + 1.10558i −0.00249845 + 0.00162108i
\(683\) −193.748 111.861i −0.283672 0.163778i 0.351412 0.936221i \(-0.385701\pi\)
−0.635085 + 0.772442i \(0.719035\pi\)
\(684\) 554.826 + 161.488i 0.811149 + 0.236093i
\(685\) 461.172 + 798.774i 0.673244 + 1.16609i
\(686\) 421.205 825.837i 0.614001 1.20384i
\(687\) 242.084 839.218i 0.352379 1.22157i
\(688\) −285.568 + 9.51043i −0.415069 + 0.0138233i
\(689\) 183.517 + 66.7948i 0.266353 + 0.0969445i
\(690\) −141.989 + 217.693i −0.205780 + 0.315497i
\(691\) 204.026 + 35.9752i 0.295262 + 0.0520626i 0.319317 0.947648i \(-0.396547\pi\)
−0.0240551 + 0.999711i \(0.507658\pi\)
\(692\) 80.3186 1135.43i 0.116067 1.64080i
\(693\) 163.456 180.382i 0.235867 0.260291i
\(694\) −398.228 + 371.053i −0.573816 + 0.534659i
\(695\) 315.124 375.550i 0.453416 0.540360i
\(696\) 731.671 472.246i 1.05125 0.678515i
\(697\) 5.90752 + 33.5032i 0.00847565 + 0.0480678i
\(698\) 199.063 + 469.489i 0.285190 + 0.672621i
\(699\) −246.700 + 165.832i −0.352932 + 0.237242i
\(700\) 572.501 2288.30i 0.817859 3.26900i
\(701\) −318.924 −0.454955 −0.227478 0.973783i \(-0.573048\pi\)
−0.227478 + 0.973783i \(0.573048\pi\)
\(702\) −253.254 23.4757i −0.360760 0.0334412i
\(703\) 607.600i 0.864296i
\(704\) 146.221 20.1888i 0.207700 0.0286773i
\(705\) −100.466 + 205.159i −0.142505 + 0.291006i
\(706\) −179.618 423.628i −0.254416 0.600040i
\(707\) −862.306 + 152.048i −1.21967 + 0.215060i
\(708\) −105.932 293.230i −0.149622 0.414166i
\(709\) 469.253 + 393.750i 0.661852 + 0.555360i 0.910641 0.413198i \(-0.135588\pi\)
−0.248789 + 0.968558i \(0.580033\pi\)
\(710\) 1469.09 1368.84i 2.06915 1.92795i
\(711\) 243.553 + 461.586i 0.342550 + 0.649207i
\(712\) −811.000 312.442i −1.13905 0.438823i
\(713\) −0.381741 + 2.16496i −0.000535401 + 0.00303641i
\(714\) −951.885 51.7869i −1.33317 0.0725307i
\(715\) −32.2372 + 88.5710i −0.0450870 + 0.123876i
\(716\) 139.611 101.261i 0.194988 0.141426i
\(717\) −249.396 + 240.075i −0.347832 + 0.334832i
\(718\) 538.994 1056.78i 0.750688 1.47184i
\(719\) −983.957 + 568.088i −1.36851 + 0.790108i −0.990737 0.135792i \(-0.956642\pi\)
−0.377770 + 0.925900i \(0.623309\pi\)
\(720\) −619.535 1085.04i −0.860465 1.50699i
\(721\) 816.643 1414.47i 1.13265 1.96181i
\(722\) 173.405 112.511i 0.240173 0.155832i
\(723\) 142.209 + 320.776i 0.196693 + 0.443674i
\(724\) 170.256 381.572i 0.235161 0.527034i
\(725\) −1397.73 + 1172.84i −1.92791 + 1.61771i
\(726\) 675.982 + 157.481i 0.931105 + 0.216916i
\(727\) 393.913 + 1082.27i 0.541834 + 1.48868i 0.844487 + 0.535576i \(0.179905\pi\)
−0.302653 + 0.953101i \(0.597872\pi\)
\(728\) 277.666 + 343.740i 0.381410 + 0.472171i
\(729\) −668.768 + 290.155i −0.917378 + 0.398018i
\(730\) −228.957 + 747.804i −0.313639 + 1.02439i
\(731\) −82.7492 227.352i −0.113200 0.311015i
\(732\) 402.502 693.315i 0.549867 0.947151i
\(733\) 405.935 340.620i 0.553800 0.464693i −0.322426 0.946595i \(-0.604498\pi\)
0.876225 + 0.481902i \(0.160054\pi\)
\(734\) −81.5182 + 661.703i −0.111060 + 0.901503i
\(735\) 933.919 + 2106.61i 1.27064 + 2.86613i
\(736\) 91.8965 130.679i 0.124859 0.177554i
\(737\) −109.170 + 189.088i −0.148127 + 0.256564i
\(738\) 7.23032 44.6165i 0.00979718 0.0604560i
\(739\) −1010.52 + 583.424i −1.36742 + 0.789478i −0.990597 0.136809i \(-0.956315\pi\)
−0.376819 + 0.926287i \(0.622982\pi\)
\(740\) 913.390 944.315i 1.23431 1.27610i
\(741\) 163.400 157.293i 0.220513 0.212271i
\(742\) −776.442 585.583i −1.04642 0.789195i
\(743\) 297.963 818.648i 0.401028 1.10181i −0.560751 0.827985i \(-0.689487\pi\)
0.961778 0.273829i \(-0.0882904\pi\)
\(744\) −8.42232 6.38371i −0.0113203 0.00858025i
\(745\) −176.491 + 1000.93i −0.236901 + 1.34353i
\(746\) −121.624 + 28.0274i −0.163035 + 0.0375703i
\(747\) 281.100 + 532.745i 0.376305 + 0.713179i
\(748\) 54.7009 + 112.384i 0.0731295 + 0.150246i
\(749\) −252.441 211.823i −0.337037 0.282807i
\(750\) 790.126 + 1052.89i 1.05350 + 1.40385i
\(751\) 925.603 163.209i 1.23249 0.217322i 0.480798 0.876832i \(-0.340347\pi\)
0.751696 + 0.659510i \(0.229236\pi\)
\(752\) 66.1205 123.872i 0.0879263 0.164723i
\(753\) 194.411 397.000i 0.258182 0.527225i
\(754\) −17.7508 341.342i −0.0235421 0.452708i
\(755\) 2156.62i 2.85646i