Properties

Label 108.3.j.a.31.6
Level 108
Weight 3
Character 108.31
Analytic conductor 2.943
Analytic rank 0
Dimension 204
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 108.j (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.94278685509\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 31.6
Character \(\chi\) \(=\) 108.31
Dual form 108.3.j.a.7.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.85742 - 0.741613i) q^{2} +(-2.48687 - 1.67794i) q^{3} +(2.90002 + 2.75497i) q^{4} +(1.04974 - 5.95339i) q^{5} +(3.37478 + 4.96093i) q^{6} +(-1.18627 - 1.41374i) q^{7} +(-3.34343 - 7.26784i) q^{8} +(3.36905 + 8.34563i) q^{9} +O(q^{10})\) \(q+(-1.85742 - 0.741613i) q^{2} +(-2.48687 - 1.67794i) q^{3} +(2.90002 + 2.75497i) q^{4} +(1.04974 - 5.95339i) q^{5} +(3.37478 + 4.96093i) q^{6} +(-1.18627 - 1.41374i) q^{7} +(-3.34343 - 7.26784i) q^{8} +(3.36905 + 8.34563i) q^{9} +(-6.36492 + 10.2794i) q^{10} +(-14.9684 + 2.63934i) q^{11} +(-2.58930 - 11.7173i) q^{12} +(-6.81461 + 2.48032i) q^{13} +(1.15495 + 3.50567i) q^{14} +(-12.6000 + 13.0439i) q^{15} +(0.820241 + 15.9790i) q^{16} +(2.22420 - 3.85243i) q^{17} +(-0.0685244 - 17.9999i) q^{18} +(-30.1899 + 17.4301i) q^{19} +(19.4457 - 14.3729i) q^{20} +(0.577931 + 5.50628i) q^{21} +(29.7600 + 6.19842i) q^{22} +(8.19924 - 9.77147i) q^{23} +(-3.88029 + 23.6842i) q^{24} +(-10.8485 - 3.94854i) q^{25} +(14.4970 + 0.446815i) q^{26} +(5.62504 - 26.4076i) q^{27} +(0.454613 - 7.36803i) q^{28} +(-26.3635 - 9.59554i) q^{29} +(33.0770 - 14.8837i) q^{30} +(34.0099 - 40.5314i) q^{31} +(10.3267 - 30.2879i) q^{32} +(41.6532 + 18.5524i) q^{33} +(-6.98829 + 5.50609i) q^{34} +(-9.66183 + 5.57826i) q^{35} +(-13.2217 + 33.4841i) q^{36} +(1.20543 - 2.08787i) q^{37} +(69.0017 - 9.98589i) q^{38} +(21.1089 + 5.26627i) q^{39} +(-46.7780 + 12.2754i) q^{40} +(-44.2880 + 16.1195i) q^{41} +(3.01007 - 10.6561i) q^{42} +(15.3959 - 2.71472i) q^{43} +(-50.6800 - 33.5835i) q^{44} +(53.2214 - 11.2965i) q^{45} +(-22.4761 + 12.0691i) q^{46} +(13.3190 + 15.8730i) q^{47} +(24.7719 - 41.1139i) q^{48} +(7.91733 - 44.9014i) q^{49} +(17.2220 + 15.3795i) q^{50} +(-11.9954 + 5.84843i) q^{51} +(-26.5957 - 11.5811i) q^{52} -77.1717 q^{53} +(-30.0322 + 44.8783i) q^{54} +91.8834i q^{55} +(-6.30863 + 13.3484i) q^{56} +(104.325 + 7.31023i) q^{57} +(41.8520 + 37.3745i) q^{58} +(69.2241 + 12.2061i) q^{59} +(-72.4758 + 3.11496i) q^{60} +(25.1234 - 21.0811i) q^{61} +(-93.2293 + 50.0617i) q^{62} +(7.80196 - 14.6631i) q^{63} +(-41.6429 + 48.5991i) q^{64} +(7.61269 + 43.1737i) q^{65} +(-63.6088 - 65.3501i) q^{66} +(-25.3557 - 69.6641i) q^{67} +(17.0636 - 5.04451i) q^{68} +(-36.7864 + 10.5426i) q^{69} +(22.0830 - 3.19584i) q^{70} +(-81.7673 - 47.2083i) q^{71} +(49.3904 - 52.3888i) q^{72} +(-42.1159 - 72.9468i) q^{73} +(-3.78739 + 2.98409i) q^{74} +(20.3535 + 28.0227i) q^{75} +(-135.571 - 32.6246i) q^{76} +(21.4879 + 18.0305i) q^{77} +(-35.3025 - 25.4363i) q^{78} +(0.961540 - 2.64181i) q^{79} +(95.9900 + 11.8906i) q^{80} +(-58.2990 + 56.2337i) q^{81} +(94.2158 + 2.90384i) q^{82} +(19.3208 - 53.0836i) q^{83} +(-13.4937 + 17.5605i) q^{84} +(-20.6002 - 17.2856i) q^{85} +(-30.6100 - 6.37545i) q^{86} +(49.4620 + 68.0992i) q^{87} +(69.2282 + 99.9636i) q^{88} +(55.7439 + 96.5512i) q^{89} +(-107.232 - 18.4873i) q^{90} +(11.5905 + 6.69178i) q^{91} +(50.6981 - 5.74879i) q^{92} +(-152.587 + 43.7299i) q^{93} +(-12.9674 - 39.3604i) q^{94} +(72.0767 + 198.029i) q^{95} +(-76.5024 + 57.9947i) q^{96} +(-13.0319 - 73.9076i) q^{97} +(-48.0053 + 77.5292i) q^{98} +(-72.4563 - 116.029i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} + O(q^{10}) \) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} - 3q^{10} + 39q^{12} - 12q^{13} + 39q^{14} - 6q^{16} - 6q^{17} - 27q^{18} - 69q^{20} - 12q^{21} - 6q^{22} - 138q^{24} - 12q^{25} - 174q^{26} - 12q^{28} + 60q^{29} - 153q^{30} - 96q^{32} + 48q^{33} + 6q^{34} + 24q^{36} - 6q^{37} + 72q^{38} + 69q^{40} - 192q^{41} - 126q^{42} - 219q^{44} - 132q^{45} - 3q^{46} - 219q^{48} - 12q^{49} - 165q^{50} + 21q^{52} - 24q^{53} + 78q^{54} + 99q^{56} - 150q^{57} - 141q^{58} + 210q^{60} - 12q^{61} + 294q^{62} - 3q^{64} - 156q^{65} + 393q^{66} + 375q^{68} - 60q^{69} - 165q^{70} + 228q^{72} - 6q^{73} + 447q^{74} - 54q^{76} + 132q^{77} + 750q^{78} + 798q^{80} + 228q^{81} - 12q^{82} + 762q^{84} + 138q^{85} + 606q^{86} - 198q^{88} - 114q^{89} + 894q^{90} + 723q^{92} - 1020q^{93} - 357q^{94} + 474q^{96} + 168q^{97} + 510q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.85742 0.741613i −0.928710 0.370806i
\(3\) −2.48687 1.67794i −0.828957 0.559312i
\(4\) 2.90002 + 2.75497i 0.725005 + 0.688743i
\(5\) 1.04974 5.95339i 0.209949 1.19068i −0.679512 0.733665i \(-0.737808\pi\)
0.889460 0.457013i \(-0.151081\pi\)
\(6\) 3.37478 + 4.96093i 0.562464 + 0.826822i
\(7\) −1.18627 1.41374i −0.169467 0.201963i 0.674626 0.738160i \(-0.264305\pi\)
−0.844093 + 0.536197i \(0.819861\pi\)
\(8\) −3.34343 7.26784i −0.417929 0.908480i
\(9\) 3.36905 + 8.34563i 0.374339 + 0.927292i
\(10\) −6.36492 + 10.2794i −0.636492 + 1.02794i
\(11\) −14.9684 + 2.63934i −1.36077 + 0.239940i −0.805925 0.592017i \(-0.798332\pi\)
−0.554840 + 0.831957i \(0.687221\pi\)
\(12\) −2.58930 11.7173i −0.215775 0.976443i
\(13\) −6.81461 + 2.48032i −0.524201 + 0.190794i −0.590547 0.807003i \(-0.701088\pi\)
0.0663462 + 0.997797i \(0.478866\pi\)
\(14\) 1.15495 + 3.50567i 0.0824967 + 0.250405i
\(15\) −12.6000 + 13.0439i −0.839999 + 0.869593i
\(16\) 0.820241 + 15.9790i 0.0512650 + 0.998685i
\(17\) 2.22420 3.85243i 0.130835 0.226614i −0.793163 0.609009i \(-0.791567\pi\)
0.923999 + 0.382395i \(0.124901\pi\)
\(18\) −0.0685244 17.9999i −0.00380691 0.999993i
\(19\) −30.1899 + 17.4301i −1.58894 + 0.917376i −0.595459 + 0.803385i \(0.703030\pi\)
−0.993482 + 0.113990i \(0.963637\pi\)
\(20\) 19.4457 14.3729i 0.972285 0.718646i
\(21\) 0.577931 + 5.50628i 0.0275205 + 0.262204i
\(22\) 29.7600 + 6.19842i 1.35273 + 0.281746i
\(23\) 8.19924 9.77147i 0.356489 0.424847i −0.557759 0.830003i \(-0.688339\pi\)
0.914247 + 0.405157i \(0.132783\pi\)
\(24\) −3.88029 + 23.6842i −0.161679 + 0.986843i
\(25\) −10.8485 3.94854i −0.433941 0.157942i
\(26\) 14.4970 + 0.446815i 0.557578 + 0.0171852i
\(27\) 5.62504 26.4076i 0.208335 0.978058i
\(28\) 0.454613 7.36803i 0.0162362 0.263144i
\(29\) −26.3635 9.59554i −0.909087 0.330881i −0.155199 0.987883i \(-0.549602\pi\)
−0.753888 + 0.657003i \(0.771824\pi\)
\(30\) 33.0770 14.8837i 1.10257 0.496123i
\(31\) 34.0099 40.5314i 1.09709 1.30747i 0.149225 0.988803i \(-0.452322\pi\)
0.947868 0.318662i \(-0.103233\pi\)
\(32\) 10.3267 30.2879i 0.322708 0.946498i
\(33\) 41.6532 + 18.5524i 1.26222 + 0.562193i
\(34\) −6.98829 + 5.50609i −0.205538 + 0.161944i
\(35\) −9.66183 + 5.57826i −0.276052 + 0.159379i
\(36\) −13.2217 + 33.4841i −0.367268 + 0.930115i
\(37\) 1.20543 2.08787i 0.0325793 0.0564289i −0.849276 0.527949i \(-0.822961\pi\)
0.881855 + 0.471520i \(0.156295\pi\)
\(38\) 69.0017 9.98589i 1.81583 0.262786i
\(39\) 21.1089 + 5.26627i 0.541253 + 0.135032i
\(40\) −46.7780 + 12.2754i −1.16945 + 0.306885i
\(41\) −44.2880 + 16.1195i −1.08019 + 0.393159i −0.819980 0.572392i \(-0.806015\pi\)
−0.260214 + 0.965551i \(0.583793\pi\)
\(42\) 3.01007 10.6561i 0.0716683 0.253716i
\(43\) 15.3959 2.71472i 0.358045 0.0631330i 0.00826772 0.999966i \(-0.497368\pi\)
0.349778 + 0.936833i \(0.386257\pi\)
\(44\) −50.6800 33.5835i −1.15182 0.763261i
\(45\) 53.2214 11.2965i 1.18270 0.251034i
\(46\) −22.4761 + 12.0691i −0.488610 + 0.262371i
\(47\) 13.3190 + 15.8730i 0.283383 + 0.337723i 0.888893 0.458115i \(-0.151475\pi\)
−0.605510 + 0.795838i \(0.707031\pi\)
\(48\) 24.7719 41.1139i 0.516080 0.856540i
\(49\) 7.91733 44.9014i 0.161578 0.916355i
\(50\) 17.2220 + 15.3795i 0.344440 + 0.307590i
\(51\) −11.9954 + 5.84843i −0.235205 + 0.114675i
\(52\) −26.5957 11.5811i −0.511456 0.222714i
\(53\) −77.1717 −1.45607 −0.728035 0.685540i \(-0.759566\pi\)
−0.728035 + 0.685540i \(0.759566\pi\)
\(54\) −30.0322 + 44.8783i −0.556153 + 0.831080i
\(55\) 91.8834i 1.67061i
\(56\) −6.30863 + 13.3484i −0.112654 + 0.238364i
\(57\) 104.325 + 7.31023i 1.83026 + 0.128250i
\(58\) 41.8520 + 37.3745i 0.721586 + 0.644387i
\(59\) 69.2241 + 12.2061i 1.17329 + 0.206883i 0.726121 0.687567i \(-0.241321\pi\)
0.447169 + 0.894450i \(0.352432\pi\)
\(60\) −72.4758 + 3.11496i −1.20793 + 0.0519160i
\(61\) 25.1234 21.0811i 0.411859 0.345591i −0.413197 0.910642i \(-0.635588\pi\)
0.825056 + 0.565051i \(0.191143\pi\)
\(62\) −93.2293 + 50.0617i −1.50370 + 0.807447i
\(63\) 7.80196 14.6631i 0.123841 0.232748i
\(64\) −41.6429 + 48.5991i −0.650670 + 0.759360i
\(65\) 7.61269 + 43.1737i 0.117118 + 0.664211i
\(66\) −63.6088 65.3501i −0.963769 0.990153i
\(67\) −25.3557 69.6641i −0.378443 1.03976i −0.972002 0.234973i \(-0.924500\pi\)
0.593559 0.804790i \(1.70228\pi\)
\(68\) 17.0636 5.04451i 0.250935 0.0741840i
\(69\) −36.7864 + 10.5426i −0.533136 + 0.152791i
\(70\) 22.0830 3.19584i 0.315471 0.0456548i
\(71\) −81.7673 47.2083i −1.15165 0.664906i −0.202362 0.979311i \(-0.564862\pi\)
−0.949289 + 0.314404i \(0.898195\pi\)
\(72\) 49.3904 52.3888i 0.685978 0.727622i
\(73\) −42.1159 72.9468i −0.576930 0.999272i −0.995829 0.0912391i \(-0.970917\pi\)
0.418899 0.908033i \(-0.362416\pi\)
\(74\) −3.78739 + 2.98409i −0.0511809 + 0.0403255i
\(75\) 20.3535 + 28.0227i 0.271380 + 0.373636i
\(76\) −135.571 32.6246i −1.78383 0.429271i
\(77\) 21.4879 + 18.0305i 0.279064 + 0.234163i
\(78\) −35.3025 25.4363i −0.452597 0.326106i
\(79\) 0.961540 2.64181i 0.0121714 0.0334406i −0.933458 0.358686i \(-0.883225\pi\)
0.945630 + 0.325246i \(0.105447\pi\)
\(80\) 95.9900 + 11.8906i 1.19987 + 0.148632i
\(81\) −58.2990 + 56.2337i −0.719740 + 0.694243i
\(82\) 94.2158 + 2.90384i 1.14897 + 0.0354126i
\(83\) 19.3208 53.0836i 0.232781 0.639561i −0.767217 0.641388i \(-0.778359\pi\)
0.999998 + 0.00182621i \(0.000581302\pi\)
\(84\) −13.4937 + 17.5605i −0.160639 + 0.209054i
\(85\) −20.6002 17.2856i −0.242355 0.203360i
\(86\) −30.6100 6.37545i −0.355930 0.0741332i
\(87\) 49.4620 + 68.0992i 0.568528 + 0.782749i
\(88\) 69.2282 + 99.9636i 0.786684 + 1.13595i
\(89\) 55.7439 + 96.5512i 0.626336 + 1.08485i 0.988281 + 0.152646i \(0.0487794\pi\)
−0.361945 + 0.932199i \(0.617887\pi\)
\(90\) −107.232 18.4873i −1.19147 0.205414i
\(91\) 11.5905 + 6.69178i 0.127368 + 0.0735361i
\(92\) 50.6981 5.74879i 0.551066 0.0624868i
\(93\) −152.587 + 43.7299i −1.64072 + 0.470214i
\(94\) −12.9674 39.3604i −0.137951 0.418727i
\(95\) 72.0767 + 198.029i 0.758702 + 2.08452i
\(96\) −76.5024 + 57.9947i −0.796900 + 0.604112i
\(97\) −13.0319 73.9076i −0.134350 0.761934i −0.975310 0.220838i \(-0.929121\pi\)
0.840961 0.541096i \(-0.181990\pi\)
\(98\) −48.0053 + 77.5292i −0.489850 + 0.791114i
\(99\) −72.4563 116.029i −0.731882 1.17201i
\(100\) −20.5828 41.3383i −0.205828 0.413383i
\(101\) 9.66252 8.10782i 0.0956685 0.0802754i −0.593699 0.804687i \(-0.702333\pi\)
0.689367 + 0.724412i \(0.257889\pi\)
\(102\) 26.6179 1.96702i 0.260959 0.0192845i
\(103\) 112.669 + 19.8667i 1.09388 + 0.192880i 0.691345 0.722525i \(-0.257019\pi\)
0.402533 + 0.915405i \(0.368130\pi\)
\(104\) 40.8107 + 41.2347i 0.392411 + 0.396488i
\(105\) 33.3877 + 2.33953i 0.317978 + 0.0222813i
\(106\) 143.340 + 57.2315i 1.35227 + 0.539920i
\(107\) 157.069i 1.46793i −0.679186 0.733967i \(-0.737667\pi\)
0.679186 0.733967i \(-0.262333\pi\)
\(108\) 89.0648 61.0856i 0.824674 0.565608i
\(109\) 154.468 1.41714 0.708571 0.705640i \(-0.249340\pi\)
0.708571 + 0.705640i \(0.249340\pi\)
\(110\) 68.1419 170.666i 0.619472 1.55151i
\(111\) −6.50107 + 3.16962i −0.0585682 + 0.0285552i
\(112\) 21.6171 20.1150i 0.193010 0.179598i
\(113\) 1.75642 9.96117i 0.0155436 0.0881520i −0.976049 0.217550i \(-0.930193\pi\)
0.991593 + 0.129398i \(0.0413045\pi\)
\(114\) −188.354 90.9469i −1.65223 0.797780i
\(115\) −49.5663 59.0708i −0.431011 0.513659i
\(116\) −50.0193 100.458i −0.431201 0.866018i
\(117\) −43.6586 48.5159i −0.373150 0.414666i
\(118\) −119.526 74.0093i −1.01293 0.627197i
\(119\) −8.08486 + 1.42558i −0.0679400 + 0.0119796i
\(120\) 136.928 + 47.9632i 1.14107 + 0.399693i
\(121\) 103.385 37.6290i 0.854420 0.310983i
\(122\) −62.2987 + 20.5245i −0.510645 + 0.168234i
\(123\) 137.186 + 34.2253i 1.11533 + 0.278255i
\(124\) 210.292 23.8456i 1.69591 0.192303i
\(125\) 40.6700 70.4425i 0.325360 0.563540i
\(126\) −25.3659 + 21.4496i −0.201317 + 0.170235i
\(127\) −101.657 + 58.6920i −0.800453 + 0.462141i −0.843629 0.536926i \(-0.819585\pi\)
0.0431768 + 0.999067i \(0.486252\pi\)
\(128\) 113.390 59.3860i 0.885860 0.463953i
\(129\) −42.8429 19.0823i −0.332115 0.147925i
\(130\) 17.8782 85.8374i 0.137525 0.660288i
\(131\) −126.400 + 150.637i −0.964884 + 1.14990i 0.0237735 + 0.999717i \(0.492432\pi\)
−0.988658 + 0.150187i \(0.952012\pi\)
\(132\) 69.6837 + 168.556i 0.527907 + 1.27694i
\(133\) 60.4551 + 22.0039i 0.454550 + 0.165443i
\(134\) −4.56768 + 148.200i −0.0340871 + 1.10597i
\(135\) −151.310 61.2091i −1.12081 0.453401i
\(136\) −35.4353 3.28479i −0.260554 0.0241529i
\(137\) −88.0013 32.0298i −0.642345 0.233794i 0.000250601 1.00000i \(-0.499920\pi\)
−0.642596 + 0.766206i \(0.722142\pi\)
\(138\) 76.1463 + 7.69924i 0.551784 + 0.0557916i
\(139\) 60.8206 72.4832i 0.437558 0.521462i −0.501529 0.865141i \(-0.667229\pi\)
0.939087 + 0.343679i \(0.111673\pi\)
\(140\) −43.3875 10.4410i −0.309911 0.0745787i
\(141\) −6.48880 61.8226i −0.0460199 0.438458i
\(142\) 116.866 + 148.325i 0.822999 + 1.04455i
\(143\) 95.4576 55.1125i 0.667536 0.385402i
\(144\) −130.591 + 60.6794i −0.906882 + 0.421385i
\(145\) −84.8008 + 146.879i −0.584833 + 1.01296i
\(146\) 24.1286 + 166.727i 0.165264 + 1.14196i
\(147\) −95.0311 + 98.3792i −0.646470 + 0.669247i
\(148\) 9.24781 2.73393i 0.0624852 0.0184725i
\(149\) 64.4681 23.4645i 0.432672 0.157480i −0.116497 0.993191i \(-0.537167\pi\)
0.549169 + 0.835711i \(0.314944\pi\)
\(150\) −17.0230 67.1443i −0.113487 0.447629i
\(151\) −160.992 + 28.3872i −1.06617 + 0.187995i −0.679093 0.734052i \(-0.737627\pi\)
−0.387078 + 0.922047i \(0.626516\pi\)
\(152\) 227.617 + 161.139i 1.49748 + 1.06012i
\(153\) 39.6444 + 5.58332i 0.259114 + 0.0364923i
\(154\) −26.5405 49.4260i −0.172341 0.320948i
\(155\) −205.598 245.022i −1.32644 1.58078i
\(156\) 46.7078 + 73.4267i 0.299409 + 0.470684i
\(157\) −47.4761 + 269.250i −0.302395 + 1.71497i 0.333122 + 0.942884i \(0.391898\pi\)
−0.635518 + 0.772086i \(0.719213\pi\)
\(158\) −3.74518 + 4.19386i −0.0237037 + 0.0265434i
\(159\) 191.916 + 129.489i 1.20702 + 0.814398i
\(160\) −169.476 93.2732i −1.05922 0.582958i
\(161\) −23.5409 −0.146217
\(162\) 149.989 61.2144i 0.925860 0.377867i
\(163\) 17.6410i 0.108227i −0.998535 0.0541135i \(-0.982767\pi\)
0.998535 0.0541135i \(-0.0172333\pi\)
\(164\) −172.845 75.2653i −1.05393 0.458935i
\(165\) 154.175 228.502i 0.934392 1.38486i
\(166\) −75.2544 + 84.2700i −0.453340 + 0.507650i
\(167\) 71.8336 + 12.6662i 0.430141 + 0.0758455i 0.384527 0.923114i \(-0.374364\pi\)
0.0456140 + 0.998959i \(0.485476\pi\)
\(168\) 38.0865 22.6102i 0.226705 0.134585i
\(169\) −89.1745 + 74.8263i −0.527660 + 0.442759i
\(170\) 25.4440 + 47.3840i 0.149670 + 0.278729i
\(171\) −247.177 193.230i −1.44548 1.13000i
\(172\) 52.1276 + 34.5427i 0.303067 + 0.200830i
\(173\) 32.7910 + 185.967i 0.189544 + 1.07495i 0.919977 + 0.391971i \(0.128207\pi\)
−0.730434 + 0.682983i \(0.760682\pi\)
\(174\) −41.3684 163.170i −0.237750 0.937761i
\(175\) 7.28707 + 20.0211i 0.0416404 + 0.114406i
\(176\) −54.4516 237.015i −0.309384 1.34668i
\(177\) −151.670 146.509i −0.856895 0.827732i
\(178\) −31.9362 220.677i −0.179417 1.23976i
\(179\) 75.9146 + 43.8293i 0.424104 + 0.244856i 0.696832 0.717235i \(-0.254593\pi\)
−0.272728 + 0.962091i \(0.587926\pi\)
\(180\) 185.465 + 113.863i 1.03036 + 0.632574i
\(181\) −27.2674 47.2286i −0.150649 0.260931i 0.780817 0.624759i \(-0.214803\pi\)
−0.931466 + 0.363828i \(0.881470\pi\)
\(182\) −16.5657 21.0251i −0.0910205 0.115523i
\(183\) −97.8514 + 10.2703i −0.534707 + 0.0561220i
\(184\) −98.4311 26.9205i −0.534951 0.146307i
\(185\) −11.1645 9.36813i −0.0603487 0.0506386i
\(186\) 315.850 + 31.9359i 1.69812 + 0.171698i
\(187\) −23.1249 + 63.5353i −0.123663 + 0.339761i
\(188\) −5.10423 + 82.7255i −0.0271502 + 0.440029i
\(189\) −44.0063 + 23.3742i −0.232838 + 0.123673i
\(190\) 12.9842 421.276i 0.0683379 2.21724i
\(191\) −99.4836 + 273.329i −0.520857 + 1.43104i 0.348712 + 0.937230i \(0.386619\pi\)
−0.869569 + 0.493812i \(0.835603\pi\)
\(192\) 185.107 50.9854i 0.964097 0.265549i
\(193\) −226.587 190.129i −1.17402 0.985123i −1.00000 0.000381565i \(-0.999879\pi\)
−0.174024 0.984741i \(-0.555677\pi\)
\(194\) −30.6051 + 146.942i −0.157758 + 0.757433i
\(195\) 53.5110 120.141i 0.274415 0.616108i
\(196\) 146.663 108.403i 0.748279 0.553077i
\(197\) −29.4010 50.9239i −0.149243 0.258497i 0.781705 0.623649i \(-0.214350\pi\)
−0.930948 + 0.365152i \(0.881017\pi\)
\(198\) 48.5334 + 269.249i 0.245118 + 1.35984i
\(199\) 120.558 + 69.6042i 0.605819 + 0.349770i 0.771328 0.636438i \(-0.219593\pi\)
−0.165508 + 0.986208i \(0.552926\pi\)
\(200\) 7.57398 + 92.0470i 0.0378699 + 0.460235i
\(201\) −53.8358 + 215.791i −0.267840 + 1.07359i
\(202\) −23.9602 + 7.89377i −0.118615 + 0.0390781i
\(203\) 17.7087 + 48.6541i 0.0872348 + 0.239676i
\(204\) −50.8993 16.0866i −0.249506 0.0788557i
\(205\) 49.4747 + 280.585i 0.241340 + 1.36871i
\(206\) −194.541 120.458i −0.944374 0.584747i
\(207\) 109.173 + 35.5072i 0.527404 + 0.171532i
\(208\) −45.2225 106.856i −0.217416 0.513731i
\(209\) 405.891 340.583i 1.94206 1.62958i
\(210\) −60.2800 29.1062i −0.287048 0.138601i
\(211\) −63.2035 11.1445i −0.299543 0.0528174i 0.0218570 0.999761i \(-0.493042\pi\)
−0.321400 + 0.946944i \(0.604153\pi\)
\(212\) −223.799 212.606i −1.05566 1.00286i
\(213\) 124.132 + 254.601i 0.582779 + 1.19531i
\(214\) −116.484 + 291.743i −0.544319 + 1.36328i
\(215\) 94.5078i 0.439571i
\(216\) −210.733 + 47.4101i −0.975615 + 0.219491i
\(217\) −97.6459 −0.449981
\(218\) −286.913 114.556i −1.31611 0.525485i
\(219\) −17.6635 + 252.077i −0.0806551 + 1.15104i
\(220\) −253.136 + 266.464i −1.15062 + 1.21120i
\(221\) −5.60183 + 31.7696i −0.0253477 + 0.143754i
\(222\) 14.4259 1.06605i 0.0649813 0.00480201i
\(223\) −40.5997 48.3849i −0.182062 0.216973i 0.667293 0.744795i \(-0.267453\pi\)
−0.849354 + 0.527823i \(0.823008\pi\)
\(224\) −55.0696 + 21.3305i −0.245846 + 0.0952252i
\(225\) −3.59622 103.841i −0.0159832 0.461514i
\(226\) −10.6498 + 17.1995i −0.0471228 + 0.0761040i
\(227\) −223.183 + 39.3532i −0.983184 + 0.173362i −0.642058 0.766656i \(-0.721919\pi\)
−0.341126 + 0.940018i \(0.610808\pi\)
\(228\) 282.405 + 308.613i 1.23862 + 1.35356i
\(229\) 200.458 72.9608i 0.875363 0.318606i 0.135026 0.990842i \(-0.456888\pi\)
0.740337 + 0.672236i \(0.234666\pi\)
\(230\) 48.2577 + 146.478i 0.209816 + 0.636862i
\(231\) −23.1837 80.8950i −0.100362 0.350195i
\(232\) 18.4059 + 223.688i 0.0793357 + 0.964172i
\(233\) 106.877 185.117i 0.458701 0.794494i −0.540191 0.841542i \(-0.681648\pi\)
0.998893 + 0.0470483i \(0.0149815\pi\)
\(234\) 45.1123 + 122.492i 0.192788 + 0.523471i
\(235\) 108.480 62.6307i 0.461615 0.266514i
\(236\) 167.124 + 226.108i 0.708152 + 0.958087i
\(237\) −6.82402 + 4.95644i −0.0287933 + 0.0209132i
\(238\) 16.0742 + 3.34794i 0.0675387 + 0.0140670i
\(239\) 193.541 230.653i 0.809795 0.965076i −0.190066 0.981771i \(-0.560870\pi\)
0.999861 + 0.0166953i \(0.00531451\pi\)
\(240\) −218.763 190.635i −0.911512 0.794315i
\(241\) −132.174 48.1075i −0.548441 0.199616i 0.0529129 0.998599i \(-0.483149\pi\)
−0.601354 + 0.798983i \(0.705372\pi\)
\(242\) −219.935 6.77864i −0.908823 0.0280109i
\(243\) 239.339 42.0240i 0.984933 0.172938i
\(244\) 130.936 + 8.07887i 0.536624 + 0.0331101i
\(245\) −259.004 94.2699i −1.05716 0.384775i
\(246\) −229.430 165.310i −0.932643 0.671991i
\(247\) 162.500 193.660i 0.657895 0.784049i
\(248\) −408.286 111.664i −1.64631 0.450259i
\(249\) −137.119 + 99.5929i −0.550680 + 0.399971i
\(250\) −127.782 + 100.680i −0.511129 + 0.402720i
\(251\) 230.389 133.015i 0.917885 0.529941i 0.0349254 0.999390i \(-0.488881\pi\)
0.882960 + 0.469449i \(0.155547\pi\)
\(252\) 63.0224 21.0292i 0.250089 0.0834494i
\(253\) −96.9395 + 167.904i −0.383160 + 0.663652i
\(254\) 232.347 33.6252i 0.914753 0.132383i
\(255\) 22.2258 + 77.5529i 0.0871601 + 0.304129i
\(256\) −254.654 + 26.2132i −0.994744 + 0.102395i
\(257\) 314.780 114.571i 1.22482 0.445800i 0.353003 0.935622i \(-0.385161\pi\)
0.871822 + 0.489823i \(0.162938\pi\)
\(258\) 65.4255 + 67.2166i 0.253587 + 0.260530i
\(259\) −4.38168 + 0.772609i −0.0169177 + 0.00298304i
\(260\) −96.8655 + 146.177i −0.372560 + 0.562221i
\(261\) −8.73934 252.348i −0.0334841 0.966850i
\(262\) 346.492 186.057i 1.32249 0.710142i
\(263\) 134.835 + 160.690i 0.512679 + 0.610987i 0.958834 0.283969i \(-0.0916512\pi\)
−0.446154 + 0.894956i \(0.647207\pi\)
\(264\) −4.42893 364.757i −0.0167763 1.38166i
\(265\) −81.0104 + 459.433i −0.305700 + 1.73371i
\(266\) −95.9722 85.7047i −0.360798 0.322198i
\(267\) 23.3791 333.645i 0.0875621 1.24961i
\(268\) 118.391 271.882i 0.441757 1.01448i
\(269\) 244.709 0.909697 0.454849 0.890569i \(-0.349693\pi\)
0.454849 + 0.890569i \(0.349693\pi\)
\(270\) 235.652 + 225.904i 0.872785 + 0.836682i
\(271\) 431.195i 1.59113i 0.605870 + 0.795563i \(0.292825\pi\)
−0.605870 + 0.795563i \(0.707175\pi\)
\(272\) 63.3823 + 32.3805i 0.233023 + 0.119046i
\(273\) −17.5957 36.0897i −0.0644531 0.132197i
\(274\) 139.702 + 124.756i 0.509860 + 0.455313i
\(275\) 172.807 + 30.4705i 0.628389 + 0.110802i
\(276\) −135.726 70.7718i −0.491760 0.256419i
\(277\) 24.8240 20.8298i 0.0896175 0.0751980i −0.596878 0.802332i \(-0.703592\pi\)
0.686496 + 0.727134i \(0.259148\pi\)
\(278\) −166.724 + 89.5264i −0.599726 + 0.322037i
\(279\) 452.841 + 147.281i 1.62309 + 0.527890i
\(280\) 72.8456 + 51.5701i 0.260163 + 0.184179i
\(281\) 22.5038 + 127.625i 0.0800847 + 0.454183i 0.998309 + 0.0581231i \(0.0185116\pi\)
−0.918225 + 0.396060i \(0.870377\pi\)
\(282\) −33.7960 + 119.643i −0.119844 + 0.424265i
\(283\) 30.9916 + 85.1487i 0.109511 + 0.300879i 0.982328 0.187169i \(-0.0599313\pi\)
−0.872817 + 0.488048i \(0.837709\pi\)
\(284\) −107.069 362.172i −0.377003 1.27525i
\(285\) 153.035 613.413i 0.536965 2.15233i
\(286\) −218.177 + 31.5744i −0.762857 + 0.110400i
\(287\) 75.3264 + 43.4897i 0.262461 + 0.151532i
\(288\) 287.563 15.8592i 0.998483 0.0550666i
\(289\) 134.606 + 233.144i 0.465764 + 0.806727i
\(290\) 266.438 209.927i 0.918753 0.723887i
\(291\) −91.6036 + 205.665i −0.314789 + 0.706754i
\(292\) 78.8297 327.576i 0.269965 1.12183i
\(293\) −198.471 166.537i −0.677376 0.568386i 0.237862 0.971299i \(-0.423553\pi\)
−0.915238 + 0.402913i \(0.867998\pi\)
\(294\) 249.472 112.255i 0.848545 0.381821i
\(295\) 145.335 399.305i 0.492661 1.35357i
\(296\) −19.2046 1.78023i −0.0648804 0.00601429i
\(297\) −14.4995 + 410.126i −0.0488198 + 1.38089i
\(298\) −137.146 4.22699i −0.460221 0.0141845i
\(299\) −31.6383 + 86.9255i −0.105814 + 0.290721i
\(300\) −18.1762 + 137.340i −0.0605872 + 0.457799i
\(301\) −22.1017 18.5455i −0.0734275 0.0616130i
\(302\) 320.082 + 66.6667i 1.05987 + 0.220751i
\(303\) −37.6338 + 3.94999i −0.124204 + 0.0130363i
\(304\) −303.278 468.106i −0.997627 1.53982i
\(305\) −99.1305 171.699i −0.325018 0.562948i
\(306\) −69.4957 39.7714i −0.227110 0.129972i
\(307\) 144.159 + 83.2302i 0.469573 + 0.271108i 0.716061 0.698038i \(-0.245943\pi\)
−0.246488 + 0.969146i \(0.579277\pi\)
\(308\) 12.6419 + 111.488i 0.0410450 + 0.361973i
\(309\) −246.859 238.458i −0.798897 0.771709i
\(310\) 200.170 + 607.582i 0.645709 + 1.95994i
\(311\) −120.701 331.622i −0.388105 1.06631i −0.967854 0.251514i \(-0.919071\pi\)
0.579749 0.814795i \(1.69685\pi\)
\(312\) −32.3018 171.023i −0.103531 0.548152i
\(313\) −17.1825 97.4466i −0.0548961 0.311331i 0.944979 0.327131i \(-0.106082\pi\)
−0.999875 + 0.0157996i \(0.994971\pi\)
\(314\) 287.863 464.902i 0.916760 1.48058i
\(315\) −79.1053 61.8406i −0.251128 0.196319i
\(316\) 10.0666 5.01229i 0.0318563 0.0158617i
\(317\) −109.898 + 92.2151i −0.346681 + 0.290899i −0.799455 0.600725i \(-0.794879\pi\)
0.452775 + 0.891625i \(0.350434\pi\)
\(318\) −260.438 382.843i −0.818987 1.20391i
\(319\) 419.946 + 74.0478i 1.31645 + 0.232125i
\(320\) 245.615 + 298.933i 0.767546 + 0.934165i
\(321\) −263.552 + 390.610i −0.821033 + 1.21685i
\(322\) 43.7253 + 17.4582i 0.135793 + 0.0542180i
\(323\) 155.073i 0.480101i
\(324\) −323.991 + 2.46686i −0.999971 + 0.00761377i
\(325\) 83.7222 0.257607
\(326\) −13.0828 + 32.7668i −0.0401313 + 0.100512i
\(327\) −384.143 259.188i −1.17475 0.792625i
\(328\) 265.228 + 267.983i 0.808621 + 0.817022i
\(329\) 6.64036 37.6593i 0.0201835 0.114466i
\(330\) −455.827 + 310.087i −1.38129 + 0.939657i
\(331\) −353.872 421.728i −1.06910 1.27410i −0.959978 0.280075i \(-0.909641\pi\)
−0.109121 0.994028i \(1.46520\pi\)
\(332\) 202.275 100.715i 0.609261 0.303359i
\(333\) 21.4858 + 3.02594i 0.0645218 + 0.00908692i
\(334\) −124.032 76.7992i −0.371353 0.229938i
\(335\) −441.354 + 77.8227i −1.31748 + 0.232307i
\(336\) −87.5106 + 13.7512i −0.260448 + 0.0409262i
\(337\) 207.435 75.5002i 0.615534 0.224036i −0.0153886 0.999882i \(-0.504899\pi\)
0.630923 + 0.775845i \(0.282676\pi\)
\(338\) 221.127 72.8509i 0.654221 0.215535i
\(339\) −21.0822 + 21.8250i −0.0621895 + 0.0643805i
\(340\) −12.1196 106.882i −0.0356458 0.314358i
\(341\) −402.098 + 696.455i −1.17917 + 2.04239i
\(342\) 315.809 + 542.220i 0.923418 + 1.58544i
\(343\) −151.186 + 87.2872i −0.440775 + 0.254482i
\(344\) −71.2055 102.819i −0.206993 0.298892i
\(345\) 24.1478 + 230.070i 0.0699938 + 0.666871i
\(346\) 77.0089 369.737i 0.222569 1.06861i
\(347\) −3.78870 + 4.51520i −0.0109184 + 0.0130121i −0.771476 0.636258i \(-0.780481\pi\)
0.760558 + 0.649270i \(0.224926\pi\)
\(348\) −44.1708 + 333.755i −0.126927 + 0.959067i
\(349\) 101.678 + 37.0077i 0.291341 + 0.106039i 0.483556 0.875313i \(-0.339345\pi\)
−0.192215 + 0.981353i \(0.561567\pi\)
\(350\) 1.31272 42.5917i 0.00375064 0.121691i
\(351\) 27.1666 + 193.909i 0.0773978 + 0.552448i
\(352\) −74.6339 + 480.618i −0.212028 + 1.36539i
\(353\) 97.3695 + 35.4396i 0.275834 + 0.100395i 0.476233 0.879319i \(-0.342002\pi\)
−0.200399 + 0.979714i \(0.564224\pi\)
\(354\) 173.063 + 384.609i 0.488878 + 1.08647i
\(355\) −366.884 + 437.235i −1.03348 + 1.23165i
\(356\) −104.338 + 433.573i −0.293083 + 1.21790i
\(357\) 22.4980 + 10.0207i 0.0630197 + 0.0280691i
\(358\) −108.501 137.709i −0.303075 0.384661i
\(359\) −45.6398 + 26.3501i −0.127130 + 0.0733987i −0.562217 0.826990i \(-0.690051\pi\)
0.435086 + 0.900389i \(0.356718\pi\)
\(360\) −260.043 349.035i −0.722343 0.969542i
\(361\) 427.119 739.793i 1.18316 2.04929i
\(362\) 15.6218 + 107.945i 0.0431540 + 0.298191i
\(363\) −320.244 79.8947i −0.882214 0.220096i
\(364\) 15.1770 + 51.3378i 0.0416951 + 0.141038i
\(365\) −478.492 + 174.157i −1.31094 + 0.477142i
\(366\) 189.368 + 53.4915i 0.517398 + 0.146152i
\(367\) −515.305 + 90.8621i −1.40410 + 0.247581i −0.823827 0.566841i \(-0.808165\pi\)
−0.580273 + 0.814422i \(0.697054\pi\)
\(368\) 162.863 + 123.000i 0.442563 + 0.334240i
\(369\) −283.736 315.303i −0.768932 0.854481i
\(370\) 13.7897 + 25.6803i 0.0372693 + 0.0694062i
\(371\) 91.5465 + 109.101i 0.246756 + 0.294072i
\(372\) −562.981 293.557i −1.51339 0.789131i
\(373\) 49.7399 282.089i 0.133351 0.756271i −0.842643 0.538473i \(-0.819001\pi\)
0.975994 0.217798i \(-0.0698875\pi\)
\(374\) 90.0713 100.862i 0.240832 0.269684i
\(375\) −219.339 + 106.940i −0.584904 + 0.285172i
\(376\) 70.8310 149.871i 0.188380 0.398592i
\(377\) 203.457 0.539674
\(378\) 99.0728 10.7800i 0.262097 0.0285185i
\(379\) 341.343i 0.900640i −0.892867 0.450320i \(-0.851310\pi\)
0.892867 0.450320i \(-0.148690\pi\)
\(380\) −336.541 + 772.858i −0.885635 + 2.03384i
\(381\) 351.290 + 24.6155i 0.922022 + 0.0646076i
\(382\) 387.487 433.909i 1.01436 1.13589i
\(383\) −398.644 70.2917i −1.04085 0.183529i −0.373002 0.927831i \(-0.621671\pi\)
−0.667844 + 0.744301i \(0.732783\pi\)
\(384\) −381.632 42.5762i −0.993834 0.110875i
\(385\) 129.899 108.999i 0.337401 0.283113i
\(386\) 279.865 + 521.189i 0.725038 + 1.35023i
\(387\) 74.5258 + 119.343i 0.192573 + 0.308379i
\(388\) 165.821 250.236i 0.427373 0.644938i
\(389\) 54.3292 + 308.116i 0.139664 + 0.792073i 0.971498 + 0.237049i \(0.0761801\pi\)
−0.831834 + 0.555025i \(0.812709\pi\)
\(390\) −188.491 + 183.468i −0.483309 + 0.470431i
\(391\) −19.4072 53.3208i −0.0496347 0.136370i
\(392\) −352.807 + 92.5830i −0.900018 + 0.236181i
\(393\) 567.100 162.525i 1.44300 0.413549i
\(394\) 16.8441 + 116.391i 0.0427515 + 0.295409i
\(395\) −14.7183 8.49764i −0.0372616 0.0215130i
\(396\) 109.531 536.101i 0.276594 1.35379i
\(397\) −44.9130 77.7916i −0.113131 0.195949i 0.803900 0.594764i \(-0.202755\pi\)
−0.917031 + 0.398816i \(0.869421\pi\)
\(398\) −172.308 218.692i −0.432934 0.549477i
\(399\) −113.423 156.161i −0.284268 0.391380i
\(400\) 54.1952 176.587i 0.135488 0.441467i
\(401\) 346.432 + 290.691i 0.863919 + 0.724914i 0.962809 0.270184i \(-0.0870846\pi\)
−0.0988896 + 0.995098i \(0.531529\pi\)
\(402\) 260.029 360.889i 0.646838 0.897734i
\(403\) −131.234 + 360.561i −0.325642 + 0.894693i
\(404\) 50.3583 + 3.10715i 0.124649 + 0.00769096i
\(405\) 273.582 + 406.107i 0.675511 + 1.00273i
\(406\) 3.19011 103.504i 0.00785742 0.254936i
\(407\) −12.5328 + 34.4337i −0.0307932 + 0.0846036i
\(408\) 82.6114 + 67.6271i 0.202479 + 0.165753i
\(409\) −446.217 374.421i −1.09100 0.915454i −0.0942086 0.995552i \(-0.530032\pi\)
−0.996787 + 0.0800985i \(0.974477\pi\)
\(410\) 116.190 557.855i 0.283390 1.36062i
\(411\) 165.104 + 227.315i 0.401712 + 0.553077i
\(412\) 272.012 + 368.015i 0.660222 + 0.893240i
\(413\) −64.8623 112.345i −0.157052 0.272021i
\(414\) −176.447 146.916i −0.426201 0.354869i
\(415\) −295.745 170.749i −0.712639 0.411442i
\(416\) 4.75142 + 232.014i 0.0114217 + 0.557726i
\(417\) −272.875 + 78.2032i −0.654377 + 0.187538i
\(418\) −1006.49 + 331.592i −2.40787 + 0.793282i
\(419\) −1.24630 3.42418i −0.00297447 0.00817228i 0.938197 0.346103i \(-0.112495\pi\)
−0.941171 + 0.337931i \(0.890273\pi\)
\(420\) 90.3797 + 98.7669i 0.215190 + 0.235159i
\(421\) −99.6390 565.081i −0.236672 1.34223i −0.839063 0.544034i \(-0.816896\pi\)
0.602391 0.798201i \(-0.294215\pi\)
\(422\) 109.131 + 67.5725i 0.258603 + 0.160124i
\(423\) −87.5976 + 164.633i −0.207086 + 0.389202i
\(424\) 258.018 + 560.871i 0.608534 + 1.32281i
\(425\) −39.3408 + 33.0109i −0.0925667 + 0.0776726i
\(426\) −41.7496 564.960i −0.0980037 1.32620i
\(427\) −59.6064 10.5102i −0.139593 0.0246141i
\(428\) 432.721 455.503i 1.01103 1.06426i
\(429\) −329.866 23.1143i −0.768919 0.0538794i
\(430\) −70.0882 + 175.541i −0.162996 + 0.408234i
\(431\) 216.274i 0.501796i −0.968013 0.250898i \(-0.919274\pi\)
0.968013 0.250898i \(-0.0807259\pi\)
\(432\) 426.579 + 68.2217i 0.987452 + 0.157921i
\(433\) −714.916 −1.65108 −0.825538 0.564346i \(-0.809128\pi\)
−0.825538 + 0.564346i \(0.809128\pi\)
\(434\) 181.370 + 72.4155i 0.417902 + 0.166856i
\(435\) 457.343 222.980i 1.05136 0.512597i
\(436\) 447.962 + 425.556i 1.02743 + 0.976047i
\(437\) −77.2160 + 437.913i −0.176696 + 1.00209i
\(438\) 219.752 455.114i 0.501717 1.03907i
\(439\) 253.060 + 301.585i 0.576446 + 0.686982i 0.972941 0.231055i \(-0.0742178\pi\)
−0.396494 + 0.918037i \(0.629773\pi\)
\(440\) 667.794 307.206i 1.51771 0.698196i
\(441\) 401.404 85.2002i 0.910214 0.193198i
\(442\) 33.9657 54.8551i 0.0768454 0.124106i
\(443\) 470.103 82.8918i 1.06118 0.187115i 0.384300 0.923208i \(-0.374443\pi\)
0.676880 + 0.736093i \(0.263332\pi\)
\(444\) −27.5855 8.71830i −0.0621294 0.0196358i
\(445\) 633.323 230.511i 1.42320 0.518002i
\(446\) 39.5279 + 119.980i 0.0886276 + 0.269014i
\(447\) −199.696 49.8203i −0.446746 0.111455i
\(448\) 118.106 + 1.22069i 0.263630 + 0.00272476i
\(449\) 38.7598 67.1339i 0.0863247 0.149519i −0.819630 0.572893i \(-0.805821\pi\)
0.905955 + 0.423374i \(0.139154\pi\)
\(450\) −70.3298 + 195.543i −0.156289 + 0.434539i
\(451\) 620.376 358.174i 1.37556 0.794178i
\(452\) 32.5364 24.0487i 0.0719833 0.0532051i
\(453\) 447.998 + 199.539i 0.988958 + 0.440483i
\(454\) 443.729 + 92.4199i 0.977377 + 0.203568i
\(455\) 52.0058 61.9781i 0.114298 0.136216i
\(456\) −295.674 782.658i −0.648408 1.71636i
\(457\) 101.275 + 36.8611i 0.221608 + 0.0806589i 0.450438 0.892808i \(-0.351268\pi\)
−0.228830 + 0.973466i \(0.573490\pi\)
\(458\) −426.444 13.1435i −0.931100 0.0286975i
\(459\) −89.2221 80.4058i −0.194384 0.175176i
\(460\) 18.9952 307.860i 0.0412940 0.669261i
\(461\) −488.366 177.751i −1.05936 0.385577i −0.247174 0.968971i \(-0.579502\pi\)
−0.812189 + 0.583395i \(0.801724\pi\)
\(462\) −16.9310 + 167.449i −0.0366472 + 0.362444i
\(463\) 41.3504 49.2795i 0.0893097 0.106435i −0.719539 0.694452i \(-0.755647\pi\)
0.808849 + 0.588017i \(0.200091\pi\)
\(464\) 131.702 429.132i 0.283841 0.924854i
\(465\) 100.164 + 954.317i 0.215406 + 2.05229i
\(466\) −335.801 + 264.579i −0.720604 + 0.567765i
\(467\) −355.370 + 205.173i −0.760963 + 0.439342i −0.829641 0.558297i \(-0.811455\pi\)
0.0686786 + 0.997639i \(0.478122\pi\)
\(468\) 7.04921 260.975i 0.0150624 0.557640i
\(469\) −68.4085 + 118.487i −0.145860 + 0.252637i
\(470\) −247.940 + 35.8817i −0.527532 + 0.0763441i
\(471\) 569.852 589.929i 1.20988 1.25250i
\(472\) −142.734 543.920i −0.302403 1.15237i
\(473\) −223.288 + 81.2702i −0.472068 + 0.171819i
\(474\) 16.3508 4.14541i 0.0344954 0.00874558i
\(475\) 396.339 69.8853i 0.834399 0.147127i
\(476\) −27.3737 18.1394i −0.0575077 0.0381079i
\(477\) −259.995 644.046i −0.545064 1.35020i
\(478\) −530.542 + 284.887i −1.10992 + 0.595999i
\(479\) 307.209 + 366.118i 0.641355 + 0.764337i 0.984584 0.174915i \(-0.0559650\pi\)
−0.343228 + 0.939252i \(0.611521\pi\)
\(480\) 264.957 + 516.328i 0.551994 + 1.07568i
\(481\) −3.03598 + 17.2179i −0.00631180 + 0.0357960i
\(482\) 209.826 + 187.378i 0.435323 + 0.388751i
\(483\) 58.5431 + 39.5001i 0.121207 + 0.0817807i
\(484\) 403.485 + 175.697i 0.833646 + 0.363011i
\(485\) −453.681 −0.935424
\(486\) −475.718 99.4404i −0.978844 0.204610i
\(487\) 752.283i 1.54473i −0.635180 0.772365i \(-0.719074\pi\)
0.635180 0.772365i \(-0.280926\pi\)
\(488\) −237.212 112.110i −0.486090 0.229733i
\(489\) −29.6005 + 43.8709i −0.0605327 + 0.0897155i
\(490\) 411.168 + 367.180i 0.839119 + 0.749346i
\(491\) −36.7623 6.48218i −0.0748723 0.0132020i 0.136087 0.990697i \(-0.456547\pi\)
−0.210959 + 0.977495i \(0.567659\pi\)
\(492\) 303.552 + 477.198i 0.616976 + 0.969914i
\(493\) −95.6040 + 80.2213i −0.193923 + 0.162721i
\(494\) −445.452 + 239.196i −0.901724 + 0.484203i
\(495\) −766.825 + 309.560i −1.54914 + 0.625374i
\(496\) 675.546 + 510.197i 1.36199 + 1.02862i
\(497\) 30.2577 + 171.600i 0.0608806 + 0.345271i
\(498\) 328.548 83.2963i 0.659734 0.167262i
\(499\) 229.552 + 630.690i 0.460024 + 1.26391i 0.925467 + 0.378829i \(0.123673\pi\)
−0.465442 + 0.885078i \(0.654105\pi\)
\(500\) 312.011 92.2399i 0.624022 0.184480i
\(501\) −157.388 152.031i −0.314147 0.303456i
\(502\) −526.575 + 76.2057i −1.04895 + 0.151804i
\(503\) 99.4014 + 57.3894i 0.197617 + 0.114094i 0.595544 0.803323i \(-0.296937\pi\)
−0.397926 + 0.917417i \(0.630270\pi\)
\(504\) −132.655 7.67809i −0.263204 0.0152343i
\(505\) −38.1258 66.0358i −0.0754966 0.130764i
\(506\) 304.577 239.977i 0.601931 0.474263i
\(507\) 347.319 36.4541i 0.685048 0.0719016i
\(508\) −456.504 109.856i −0.898629 0.216251i
\(509\) −149.473 125.422i −0.293659 0.246410i 0.484040 0.875046i \(-0.339169\pi\)
−0.777699 + 0.628636i \(0.783613\pi\)
\(510\) 16.2315 160.531i 0.0318265 0.314767i
\(511\) −53.1672 + 146.076i −0.104045 + 0.285862i
\(512\) 492.440 + 140.166i 0.961798 + 0.273762i
\(513\) 290.468 + 895.286i 0.566215 + 1.74520i
\(514\) −669.646 20.6392i −1.30281 0.0401541i
\(515\) 236.548 649.910i 0.459316 1.26196i
\(516\) −71.6740 173.370i −0.138903 0.335988i
\(517\) −241.259 202.440i −0.466652 0.391567i
\(518\) 8.71160 + 1.81445i 0.0168178 + 0.00350280i
\(519\) 230.494 517.498i 0.444112 0.997105i
\(520\) 288.327 199.676i 0.554475 0.383993i
\(521\) −84.2253 145.882i −0.161661 0.280005i 0.773804 0.633426i \(-0.218352\pi\)
−0.935464 + 0.353421i \(0.885018\pi\)
\(522\) −170.912 + 475.197i −0.327417 + 0.910340i
\(523\) 131.568 + 75.9606i 0.251563 + 0.145240i 0.620480 0.784222i \(-0.286938\pi\)
−0.368917 + 0.929462i \(0.620271\pi\)
\(524\) −781.564 + 88.6235i −1.49153 + 0.169129i
\(525\) 15.4721 62.0171i 0.0294706 0.118128i
\(526\) −131.275 398.463i −0.249572 0.757535i
\(527\) −80.4996 221.171i −0.152751 0.419679i
\(528\) −262.282 + 680.792i −0.496747 + 1.28938i
\(529\) 63.6057 + 360.726i 0.120238 + 0.681902i
\(530\) 491.192 793.281i 0.926777 1.49676i
\(531\) 131.352 + 618.841i 0.247368 + 1.16543i
\(532\) 114.701 + 230.364i 0.215603 + 0.433015i
\(533\) 261.824 219.696i 0.491227 0.412188i
\(534\) −290.860 + 602.381i −0.544682 + 1.12805i
\(535\) −935.091 164.882i −1.74783 0.308190i
\(536\) −421.533 + 417.198i −0.786441 + 0.778355i
\(537\) −115.247 236.378i −0.214613 0.440182i
\(538\) −454.527 181.479i −0.844845 0.337322i
\(539\) 693.000i 1.28571i
\(540\) −270.171 594.362i −0.500317 1.10067i
\(541\) 661.494 1.22272 0.611362 0.791351i \(-0.290622\pi\)
0.611362 + 0.791351i \(0.290622\pi\)
\(542\) 319.780 800.911i 0.590000 1.47770i
\(543\) −11.4360 + 163.204i −0.0210608 + 0.300561i
\(544\) −93.7137 107.149i −0.172268 0.196966i
\(545\) 162.152 919.610i 0.297527 1.68736i
\(546\) 5.91800 + 80.0830i 0.0108388 + 0.146672i
\(547\) 424.901 + 506.378i 0.776785 + 0.925737i 0.998783 0.0493105i \(-0.0157024\pi\)
−0.221998 + 0.975047i \(0.571258\pi\)
\(548\) −166.964 335.328i −0.304679 0.611913i
\(549\) 260.577 + 138.647i 0.474639 + 0.252545i
\(550\) −298.378 184.752i −0.542505 0.335913i
\(551\) 963.163 169.832i 1.74803 0.308224i
\(552\) 199.615 + 232.109i 0.361621 + 0.420487i
\(553\) −4.87549 + 1.77453i −0.00881643 + 0.00320892i
\(554\) −61.5564 + 20.2799i −0.111113 + 0.0366064i
\(555\) 12.0455 + 42.0307i 0.0217037 + 0.0757309i
\(556\) 376.070 42.6436i 0.676386 0.0766971i
\(557\) −3.82123 + 6.61856i −0.00686037 + 0.0118825i −0.869435 0.494047i \(-0.835517\pi\)
0.862575 + 0.505929i \(0.168850\pi\)
\(558\) −731.891 609.396i −1.31163 1.09211i
\(559\) −98.1841 + 56.6866i −0.175642 + 0.101407i
\(560\) −97.0599 149.811i −0.173321 0.267519i
\(561\) 164.117 119.202i 0.292544 0.212481i
\(562\) 52.8496 253.743i 0.0940385 0.451500i
\(563\) −256.786 + 306.025i −0.456103 + 0.543562i −0.944263 0.329192i \(-0.893224\pi\)
0.488160 + 0.872754i \(0.337668\pi\)
\(564\) 151.502 197.163i 0.268620 0.349580i
\(565\) −57.4589 20.9133i −0.101697 0.0370148i
\(566\) 5.58295 181.141i 0.00986388 0.320036i
\(567\) 148.658 + 15.7113i 0.262184 + 0.0277095i
\(568\) −69.7192 + 752.109i −0.122745 + 1.32414i
\(569\) −262.682 95.6085i −0.461656 0.168029i 0.100713 0.994916i \(-0.467888\pi\)
−0.562369 + 0.826887i \(0.690110\pi\)
\(570\) −739.166 + 1025.87i −1.29678 + 1.79978i
\(571\) −221.416 + 263.873i −0.387768 + 0.462124i −0.924250 0.381788i \(-0.875309\pi\)
0.536482 + 0.843912i \(0.319753\pi\)
\(572\) 428.663 + 103.156i 0.749410 + 0.180342i
\(573\) 706.032 512.807i 1.23217 0.894951i
\(574\) −107.660 136.642i −0.187561 0.238052i
\(575\) −127.533 + 73.6311i −0.221796 + 0.128054i
\(576\) −545.887 183.803i −0.947720 0.319103i
\(577\) 157.192 272.264i 0.272429 0.471861i −0.697054 0.717018i \(-0.745506\pi\)
0.969483 + 0.245158i \(0.0788397\pi\)
\(578\) −77.1169 532.872i −0.133420 0.921924i
\(579\) 244.468 + 853.024i 0.422224 + 1.47327i
\(580\) −650.573 + 192.329i −1.12168 + 0.331602i
\(581\) −97.9663 + 35.6568i −0.168617 + 0.0613715i
\(582\) 322.671 314.073i 0.554417 0.539644i
\(583\) 1155.14 203.682i 1.98137 0.349369i
\(584\) −389.354 + 549.984i −0.666702 + 0.941754i
\(585\) −334.664 + 208.987i −0.572075 + 0.357243i
\(586\) 245.138 + 456.518i 0.418325 + 0.779041i
\(587\) −503.505 600.054i −0.857761 1.02224i −0.999477 0.0323320i \(-0.989707\pi\)
0.141717 0.989907i \(1.54526\pi\)
\(588\) −546.624 + 23.4936i −0.929633 + 0.0399550i
\(589\) −320.287 + 1816.44i −0.543780 + 3.08393i
\(590\) −566.078 + 633.894i −0.959453 + 1.07440i
\(591\) −12.3308 + 175.974i −0.0208643 + 0.297757i
\(592\) 34.3507 + 17.5490i 0.0580249 + 0.0296436i
\(593\) 490.712 0.827508 0.413754 0.910389i \(-0.364217\pi\)
0.413754 + 0.910389i \(0.364217\pi\)
\(594\) 331.086 751.023i 0.557384 1.26435i
\(595\) 49.6288i 0.0834097i
\(596\) 251.603 + 109.560i 0.422152 + 0.183826i
\(597\) −183.021 375.386i −0.306568 0.628787i
\(598\) 123.231 137.994i 0.206071 0.230759i
\(599\) −384.673 67.8282i −0.642192 0.113236i −0.156937 0.987609i \(-0.550162\pi\)
−0.485255 + 0.874373i \(0.661273\pi\)
\(600\) 135.614 241.618i 0.226023 0.402696i
\(601\) 65.4818 54.9458i 0.108955 0.0914239i −0.586683 0.809817i \(-0.699566\pi\)
0.695638 + 0.718393i \(0.255122\pi\)
\(602\) 27.2985 + 50.8377i 0.0453464 + 0.0844480i
\(603\) 495.966 446.311i 0.822498 0.740151i
\(604\) −545.086 361.205i −0.902460 0.598021i
\(605\) −115.492 654.990i −0.190897 1.08263i
\(606\) 72.8312 + 20.5729i 0.120184 + 0.0339488i
\(607\) −273.102 750.341i −0.449921 1.23615i −0.932779 0.360449i \(-0.882624\pi\)
0.482858 0.875699i \(1.66040\pi\)
\(608\) 216.162 + 1094.39i 0.355530 + 1.79998i
\(609\) 37.5994 150.711i 0.0617396 0.247472i
\(610\) 56.7928 + 392.434i 0.0931029 + 0.643334i
\(611\) −130.134 75.1329i −0.212985 0.122967i
\(612\) 99.5878 + 125.411i 0.162725 + 0.204920i
\(613\) 393.511 + 681.581i 0.641943 + 1.11188i 0.984999 + 0.172563i \(0.0552047\pi\)
−0.343056 + 0.939315i \(0.611462\pi\)
\(614\) −206.039 261.504i −0.335569 0.425902i
\(615\) 347.766 780.793i 0.565474 1.26958i
\(616\) 59.1994 216.455i 0.0961029 0.351388i
\(617\) 19.2072 + 16.1168i 0.0311300 + 0.0261212i 0.658220 0.752826i \(-0.271310\pi\)
−0.627090 + 0.778947i \(0.715754\pi\)
\(618\) 281.678 + 625.991i 0.455790 + 1.01293i
\(619\) 10.7828 29.6256i 0.0174198 0.0478604i −0.930678 0.365839i \(-0.880782\pi\)
0.948098 + 0.317979i \(0.103004\pi\)
\(620\) 78.7909 1276.98i 0.127082 2.05965i
\(621\) −211.920 271.487i −0.341256 0.437177i
\(622\) −21.7435 + 705.475i −0.0349574 + 1.13420i
\(623\) 70.3712 193.343i 0.112955 0.310342i
\(624\) −66.8351 + 341.618i −0.107108 + 0.547464i
\(625\) −597.773 501.591i −0.956437 0.802546i
\(626\) −40.3526 + 193.742i −0.0644610 + 0.309492i
\(627\) −1580.88 + 165.926i −2.52133 + 0.264635i
\(628\) −879.459 + 650.036i −1.40041 + 1.03509i
\(629\) −5.36225 9.28770i −0.00852505 0.0147658i
\(630\) 101.070 + 173.529i 0.160429 + 0.275444i
\(631\) −632.428 365.132i −1.00226 0.578657i −0.0933456 0.995634i \(-0.529756\pi\)
−0.908917 + 0.416977i \(0.863089\pi\)
\(632\) −22.4151 + 1.84440i −0.0354669 + 0.00291835i
\(633\) 138.479 + 133.766i 0.218766 + 0.211321i
\(634\) 272.514 89.7807i 0.429833 0.141610i
\(635\) 242.702 + 666.818i 0.382208 + 1.05011i
\(636\) 199.821 + 904.245i 0.314184 + 1.42177i
\(637\) 57.4162 + 325.623i 0.0901353 + 0.511183i
\(638\) −725.102 448.975i −1.13652 0.703723i
\(639\) 118.505 841.446i 0.185454 1.31682i
\(640\) −234.517 737.395i −0.366433 1.15218i
\(641\) −529.614 + 444.399i −0.826230 + 0.693290i −0.954422 0.298460i \(-0.903527\pi\)
0.128192 + 0.991749i \(0.459083\pi\)
\(642\) 779.208 530.074i 1.21372 0.825660i
\(643\) −584.297 103.027i −0.908704 0.160229i −0.300289 0.953848i \(-0.597083\pi\)
−0.608415 + 0.793619i \(0.708194\pi\)
\(644\) −68.2690 64.8545i −0.106008 0.100706i
\(645\) −158.578 + 235.029i −0.245858 + 0.364385i
\(646\) 115.004 288.035i 0.178025 0.445875i
\(647\) 159.465i 0.246468i 0.992378 + 0.123234i \(0.0393266\pi\)
−0.992378 + 0.123234i \(0.960673\pi\)
\(648\) 603.616 + 235.694i 0.931506 + 0.363725i
\(649\) −1068.39 −1.64621
\(650\) −155.507 62.0894i −0.239242 0.0955222i
\(651\) 242.833 + 163.844i 0.373015 + 0.251680i
\(652\) 48.6005 51.1593i 0.0745406 0.0784651i
\(653\) −11.3776 + 64.5255i −0.0174236 + 0.0988139i −0.992279 0.124023i \(-0.960420\pi\)
0.974856 + 0.222836i \(0.0715316\pi\)
\(654\) 521.298 + 766.307i 0.797091 + 1.17172i
\(655\) 764.116 + 910.637i 1.16659 + 1.39029i
\(656\) −293.900 694.454i −0.448018 1.05862i
\(657\) 466.896 597.245i 0.710649 0.909049i
\(658\) −40.2626 + 65.0246i −0.0611893 + 0.0988216i
\(659\) 808.587 142.576i 1.22699 0.216352i 0.477658 0.878546i \(-0.341486\pi\)
0.749332 + 0.662194i \(0.230375\pi\)
\(660\) 1076.63 237.914i 1.63125 0.360476i
\(661\) 851.333 309.860i 1.28795 0.468774i 0.394894 0.918727i \(-0.370781\pi\)
0.893053 + 0.449952i \(0.148559\pi\)
\(662\) 344.530 + 1045.76i 0.520438 + 1.57970i
\(663\) 67.2384 69.6073i 0.101415 0.104988i
\(664\) −450.401 + 37.0607i −0.678315 + 0.0558143i
\(665\) 194.460 336.814i 0.292421 0.506487i
\(666\) −37.6640 21.5546i −0.0565525 0.0323642i
\(667\) −309.923 + 178.934i −0.464653 + 0.268267i
\(668\) 173.424 + 234.632i 0.259617 + 0.351245i
\(669\) 19.7795 + 188.451i 0.0295658 + 0.281690i
\(670\) 877.495 + 182.765i 1.30969 + 0.272783i
\(671\) −320.418 + 381.859i −0.477523 + 0.569090i
\(672\) 172.742 + 39.3572i 0.257057 + 0.0585673i
\(673\) −849.317 309.126i −1.26199 0.459325i −0.377551 0.925989i \(-0.623234\pi\)
−0.884435 + 0.466663i \(0.845456\pi\)
\(674\) −441.286 13.6009i −0.654727 0.0201794i
\(675\) −165.295 + 264.272i −0.244881 + 0.391515i
\(676\) −464.752 28.6756i −0.687504 0.0424195i
\(677\) 1025.28 + 373.172i 1.51445 + 0.551214i 0.959754 0.280840i \(-0.0906132\pi\)
0.554694 + 0.832055i \(0.312835\pi\)
\(678\) 55.3442 24.9033i 0.0816287 0.0367306i
\(679\) −89.0269 + 106.098i −0.131115 + 0.156256i
\(680\) −56.7536 + 207.512i −0.0834612 + 0.305165i
\(681\) 621.059 + 276.621i 0.911981 + 0.406198i
\(682\) 1263.37 995.408i 1.85244 1.45954i
\(683\) −550.865 + 318.042i −0.806538 + 0.465655i −0.845752 0.533576i \(-0.820848\pi\)
0.0392143 + 0.999231i \(0.487515\pi\)
\(684\) −184.473 1241.34i −0.269697 1.81482i
\(685\) −283.065 + 490.282i −0.413233 + 0.715741i
\(686\) 345.549 50.0076i 0.503716 0.0728974i
\(687\) −620.937 154.912i −0.903839 0.225491i
\(688\) 56.0068 + 243.785i 0.0814052 + 0.354338i
\(689\) 525.895 191.410i 0.763273 0.277809i
\(690\) 125.770 445.246i 0.182276 0.645284i
\(691\) 645.060 113.741i 0.933516 0.164604i 0.313853 0.949472i \(-0.398380\pi\)
0.619663 + 0.784868i \(0.287269\pi\)
\(692\) −417.240 + 629.647i −0.602948 + 0.909895i
\(693\) −78.0820 + 240.076i −0.112672 + 0.346430i
\(694\) 10.3857 5.57687i 0.0149650 0.00803584i
\(695\) −367.674 438.177i −0.529028 0.630471i
\(696\) 329.561 587.167i 0.473507 0.843630i
\(697\) −36.4061 + 206.469i −0.0522326 + 0.296226i
\(698\) −161.413 144.144i −0.231251 0.206511i
\(699\) −576.405 + 281.029i −0.824614 + 0.402044i
\(700\) −34.0248 + 78.1372i −0.0486069 + 0.111625i
\(701\) −349.923 −0.499177 −0.249589 0.968352i \(-0.580295\pi\)
−0.249589 + 0.968352i \(0.580295\pi\)
\(702\) 93.3456 380.318i 0.132971 0.541763i
\(703\) 84.0434i 0.119550i
\(704\) 495.059 837.361i 0.703209 1.18943i
\(705\) −374.865 26.2674i −0.531724 0.0372588i
\(706\) −154.574 138.037i −0.218943 0.195519i
\(707\) −22.9247 4.04225i −0.0324254 0.00571746i
\(708\) −36.2198 842.726i −0.0511579 1.19029i
\(709\) 139.215 116.815i 0.196353 0.164760i −0.539310 0.842107i \(-0.681315\pi\)
0.735664 + 0.677347i \(0.236870\pi\)
\(710\) 1005.72 540.044i 1.41650 0.760625i
\(711\) 25.2870 0.875743i 0.0355655 0.00123171i
\(712\) 515.343 727.950i 0.723796 1.02240i
\(713\) −117.196 664.654i −0.164371 0.932193i
\(714\) −34.3568 35.2974i −0.0481188 0.0494361i
\(715\) −227.900 626.150i −0.318741 0.875734i
\(716\) 99.4053 + 336.248i 0.138834 + 0.469621i
\(717\) −868.333 + 248.855i −1.21106 + 0.347078i
\(718\) 104.314 15.0962i 0.145284 0.0210254i
\(719\) 74.8435 + 43.2109i 0.104094 + 0.0600987i 0.551143 0.834411i \(-0.314192\pi\)
−0.447049 + 0.894509i \(0.647525\pi\)
\(720\) 224.161 + 841.156i 0.311335 + 1.16827i
\(721\) −105.570 182.853i −0.146422 0.253610i
\(722\) −1341.98 + 1057.35i −1.85870 + 1.46447i
\(723\) 247.979 + 341.417i 0.342986 + 0.472223i
\(724\) 51.0374 212.085i 0.0704936 0.292935i
\(725\) 248.117 + 208.195i 0.342230 + 0.287165i
\(726\) 535.576 + 385.895i 0.737708 + 0.531536i
\(727\) −115.949 + 318.567i −0.159490 + 0.438194i −0.993538 0.113497i \(-0.963795\pi\)
0.834049 + 0.551691i \(0.186017\pi\)
\(728\) 9.88269 106.611i 0.0135751 0.146444i
\(729\) −665.718 297.087i −0.913193 0.407527i
\(730\) 1017.92 + 31.3733i 1.39441 + 0.0429772i
\(731\) 23.7854 65.3499i 0.0325382 0.0893980i
\(732\) −312.066 239.794i −0.426319 0.327587i
\(733\) −307.759 258.240i −0.419862 0.352306i 0.408249 0.912871i \(-0.366140\pi\)
−0.828110 + 0.560565i \(0.810584\pi\)
\(734\) 1024.52 + 213.387i 1.39581 + 0.290719i
\(735\) 485.931 + 669.030i 0.661131 + 0.910245i
\(736\) −211.287 349.245i −0.287075 0.474518i
\(737\) 563.402 + 975.840i 0.764453 + 1.32407i
\(738\) 293.184 + 796.073i 0.397268 + 1.07869i
\(739\) −472.153 272.598i −0.638908 0.368874i 0.145286 0.989390i \(-0.453590\pi\)
−0.784194 + 0.620516i \(0.786923\pi\)
\(740\) −6.56834 57.9257i −0.00887613 0.0782780i
\(741\) −729.066 + 208.943i −0.983895 + 0.281974i
\(742\) −89.1297 270.538i −0.120121 0.364607i
\(743\) −468.474 1287.12i −0.630517 1.73233i −0.679646 0.733540i \(-0.737867\pi\)
0.0491289 0.998792i \(1.51564\pi\)
\(744\) 827.988 + 962.772i 1.11289 + 1.29405i
\(745\) −72.0181 408.435i −0.0966686 0.548235i
\(746\) −301.589 + 487.070i −0.404275 + 0.652909i
\(747\) 508.109 17.5969i 0.680199 0.0235567i
\(748\) −242.101 + 120.545i −0.323664 + 0.161156i
\(749\) −222.055 + 186.326i −0.296468 + 0.248767i
\(750\) 486.713 35.9672i 0.648950 0.0479563i
\(751\) 292.724 + 51.6151i 0.389779 + 0.0687285i 0.365103 0.930967i \(-0.381034\pi\)
0.0246753 + 0.999696i \(0.492145\pi\)
\(752\) −242.709 + 225.844i −0.322751 + 0.300324i
\(753\) −796.139 55.7868i −1.05729 0.0740861i
\(754\) −377.905 150.886i −0.501201 0.200115i
\(755\) 988.246i 1.30894i
\(756\) −192.014 53.4507i −0.253987 0.0707019i