Properties

Label 108.3.j.a.31.3
Level 108
Weight 3
Character 108.31
Analytic conductor 2.943
Analytic rank 0
Dimension 204
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 108.j (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.94278685509\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 31.3
Character \(\chi\) \(=\) 108.31
Dual form 108.3.j.a.7.3

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.91270 + 0.584441i) q^{2} +(2.24560 - 1.98929i) q^{3} +(3.31686 - 2.23572i) q^{4} +(0.641948 - 3.64067i) q^{5} +(-3.13254 + 5.11734i) q^{6} +(-2.33709 - 2.78523i) q^{7} +(-5.03752 + 6.21478i) q^{8} +(1.08543 - 8.93431i) q^{9} +O(q^{10})\) \(q+(-1.91270 + 0.584441i) q^{2} +(2.24560 - 1.98929i) q^{3} +(3.31686 - 2.23572i) q^{4} +(0.641948 - 3.64067i) q^{5} +(-3.13254 + 5.11734i) q^{6} +(-2.33709 - 2.78523i) q^{7} +(-5.03752 + 6.21478i) q^{8} +(1.08543 - 8.93431i) q^{9} +(0.899899 + 7.33869i) q^{10} +(-15.6847 + 2.76563i) q^{11} +(3.00083 - 11.6187i) q^{12} +(13.1438 - 4.78396i) q^{13} +(6.09796 + 3.96143i) q^{14} +(-5.80079 - 9.45250i) q^{15} +(6.00310 - 14.8311i) q^{16} +(4.98573 - 8.63554i) q^{17} +(3.14546 + 17.7230i) q^{18} +(14.6667 - 8.46782i) q^{19} +(-6.01027 - 13.5108i) q^{20} +(-10.7888 - 1.60537i) q^{21} +(28.3838 - 14.4566i) q^{22} +(-0.374408 + 0.446202i) q^{23} +(1.05077 + 23.9770i) q^{24} +(10.6500 + 3.87627i) q^{25} +(-22.3443 + 16.8321i) q^{26} +(-15.3355 - 22.2221i) q^{27} +(-13.9788 - 4.01315i) q^{28} +(16.6023 + 6.04274i) q^{29} +(16.6196 + 14.6896i) q^{30} +(-18.3535 + 21.8729i) q^{31} +(-2.81422 + 31.8760i) q^{32} +(-29.7199 + 37.4119i) q^{33} +(-4.48926 + 19.4311i) q^{34} +(-11.6404 + 6.72059i) q^{35} +(-16.3744 - 32.0606i) q^{36} +(-31.7620 + 55.0133i) q^{37} +(-23.1041 + 24.7682i) q^{38} +(19.9990 - 36.8897i) q^{39} +(19.3921 + 22.3295i) q^{40} +(59.2116 - 21.5512i) q^{41} +(21.5740 - 3.23483i) q^{42} +(1.70662 - 0.300923i) q^{43} +(-45.8407 + 44.2398i) q^{44} +(-31.8300 - 9.68705i) q^{45} +(0.455352 - 1.07227i) q^{46} +(51.7208 + 61.6385i) q^{47} +(-16.0229 - 45.2467i) q^{48} +(6.21322 - 35.2369i) q^{49} +(-22.6357 - 1.18988i) q^{50} +(-5.98266 - 29.3100i) q^{51} +(32.9006 - 45.2536i) q^{52} -66.4040 q^{53} +(42.3198 + 33.5416i) q^{54} +58.8781i q^{55} +(29.0827 - 0.493825i) q^{56} +(16.0905 - 48.1917i) q^{57} +(-35.2869 - 1.85491i) q^{58} +(65.4349 + 11.5379i) q^{59} +(-40.3736 - 18.3836i) q^{60} +(5.43023 - 4.55650i) q^{61} +(22.3215 - 52.5629i) q^{62} +(-27.4209 + 17.8571i) q^{63} +(-13.2469 - 62.6141i) q^{64} +(-8.97915 - 50.9233i) q^{65} +(34.9802 - 88.9274i) q^{66} +(-12.7838 - 35.1231i) q^{67} +(-2.76970 - 39.7896i) q^{68} +(0.0468560 + 1.74680i) q^{69} +(18.3368 - 19.6576i) q^{70} +(12.7937 + 7.38644i) q^{71} +(50.0568 + 51.7524i) q^{72} +(66.1544 + 114.583i) q^{73} +(28.5991 - 123.787i) q^{74} +(31.6266 - 12.4813i) q^{75} +(29.7156 - 60.8772i) q^{76} +(44.3594 + 37.2220i) q^{77} +(-16.6924 + 82.2473i) q^{78} +(-24.4484 + 67.1713i) q^{79} +(-50.1416 - 31.3761i) q^{80} +(-78.6437 - 19.3952i) q^{81} +(-100.659 + 75.8267i) q^{82} +(8.25600 - 22.6832i) q^{83} +(-39.3741 + 18.7960i) q^{84} +(-28.2385 - 23.6950i) q^{85} +(-3.08838 + 1.57299i) q^{86} +(49.3029 - 19.4572i) q^{87} +(61.8241 - 111.409i) q^{88} +(-29.6464 - 51.3491i) q^{89} +(66.5429 - 0.0743228i) q^{90} +(-44.0427 - 25.4281i) q^{91} +(-0.244274 + 2.31706i) q^{92} +(2.29689 + 85.6284i) q^{93} +(-134.951 - 87.6683i) q^{94} +(-21.4132 - 58.8324i) q^{95} +(57.0911 + 77.1790i) q^{96} +(13.3273 + 75.5830i) q^{97} +(8.70984 + 71.0289i) q^{98} +(7.68436 + 143.134i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} + O(q^{10}) \) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} - 3q^{10} + 39q^{12} - 12q^{13} + 39q^{14} - 6q^{16} - 6q^{17} - 27q^{18} - 69q^{20} - 12q^{21} - 6q^{22} - 138q^{24} - 12q^{25} - 174q^{26} - 12q^{28} + 60q^{29} - 153q^{30} - 96q^{32} + 48q^{33} + 6q^{34} + 24q^{36} - 6q^{37} + 72q^{38} + 69q^{40} - 192q^{41} - 126q^{42} - 219q^{44} - 132q^{45} - 3q^{46} - 219q^{48} - 12q^{49} - 165q^{50} + 21q^{52} - 24q^{53} + 78q^{54} + 99q^{56} - 150q^{57} - 141q^{58} + 210q^{60} - 12q^{61} + 294q^{62} - 3q^{64} - 156q^{65} + 393q^{66} + 375q^{68} - 60q^{69} - 165q^{70} + 228q^{72} - 6q^{73} + 447q^{74} - 54q^{76} + 132q^{77} + 750q^{78} + 798q^{80} + 228q^{81} - 12q^{82} + 762q^{84} + 138q^{85} + 606q^{86} - 198q^{88} - 114q^{89} + 894q^{90} + 723q^{92} - 1020q^{93} - 357q^{94} + 474q^{96} + 168q^{97} + 510q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.91270 + 0.584441i −0.956351 + 0.292220i
\(3\) 2.24560 1.98929i 0.748533 0.663097i
\(4\) 3.31686 2.23572i 0.829215 0.558930i
\(5\) 0.641948 3.64067i 0.128390 0.728133i −0.850847 0.525413i \(-0.823911\pi\)
0.979237 0.202720i \(-0.0649781\pi\)
\(6\) −3.13254 + 5.11734i −0.522090 + 0.852891i
\(7\) −2.33709 2.78523i −0.333870 0.397891i 0.572825 0.819678i \(-0.305847\pi\)
−0.906695 + 0.421787i \(0.861403\pi\)
\(8\) −5.03752 + 6.21478i −0.629689 + 0.776847i
\(9\) 1.08543 8.93431i 0.120604 0.992701i
\(10\) 0.899899 + 7.33869i 0.0899899 + 0.733869i
\(11\) −15.6847 + 2.76563i −1.42588 + 0.251421i −0.832734 0.553673i \(-0.813226\pi\)
−0.593147 + 0.805094i \(0.702115\pi\)
\(12\) 3.00083 11.6187i 0.250069 0.968228i
\(13\) 13.1438 4.78396i 1.01106 0.367997i 0.217222 0.976122i \(-0.430301\pi\)
0.793841 + 0.608126i \(0.208078\pi\)
\(14\) 6.09796 + 3.96143i 0.435568 + 0.282960i
\(15\) −5.80079 9.45250i −0.386719 0.630167i
\(16\) 6.00310 14.8311i 0.375194 0.926946i
\(17\) 4.98573 8.63554i 0.293278 0.507973i −0.681305 0.732000i \(-0.738587\pi\)
0.974583 + 0.224027i \(0.0719204\pi\)
\(18\) 3.14546 + 17.7230i 0.174748 + 0.984613i
\(19\) 14.6667 8.46782i 0.771931 0.445675i −0.0616321 0.998099i \(-0.519631\pi\)
0.833563 + 0.552424i \(0.186297\pi\)
\(20\) −6.01027 13.5108i −0.300513 0.675539i
\(21\) −10.7888 1.60537i −0.513753 0.0764460i
\(22\) 28.3838 14.4566i 1.29017 0.657118i
\(23\) −0.374408 + 0.446202i −0.0162786 + 0.0194001i −0.774122 0.633036i \(-0.781808\pi\)
0.757844 + 0.652436i \(0.226253\pi\)
\(24\) 1.05077 + 23.9770i 0.0437819 + 0.999041i
\(25\) 10.6500 + 3.87627i 0.425999 + 0.155051i
\(26\) −22.3443 + 16.8321i −0.859394 + 0.647387i
\(27\) −15.3355 22.2221i −0.567982 0.823041i
\(28\) −13.9788 4.01315i −0.499243 0.143327i
\(29\) 16.6023 + 6.04274i 0.572493 + 0.208370i 0.612012 0.790848i \(-0.290360\pi\)
−0.0395190 + 0.999219i \(0.512583\pi\)
\(30\) 16.6196 + 14.6896i 0.553987 + 0.489653i
\(31\) −18.3535 + 21.8729i −0.592050 + 0.705578i −0.975999 0.217777i \(-0.930120\pi\)
0.383949 + 0.923354i \(0.374564\pi\)
\(32\) −2.81422 + 31.8760i −0.0879442 + 0.996125i
\(33\) −29.7199 + 37.4119i −0.900602 + 1.13369i
\(34\) −4.48926 + 19.4311i −0.132037 + 0.571503i
\(35\) −11.6404 + 6.72059i −0.332583 + 0.192017i
\(36\) −16.3744 32.0606i −0.454844 0.890571i
\(37\) −31.7620 + 55.0133i −0.858431 + 1.48685i 0.0149934 + 0.999888i \(0.495227\pi\)
−0.873425 + 0.486959i \(0.838106\pi\)
\(38\) −23.1041 + 24.7682i −0.608002 + 0.651795i
\(39\) 19.9990 36.8897i 0.512796 0.945891i
\(40\) 19.3921 + 22.3295i 0.484803 + 0.558237i
\(41\) 59.2116 21.5512i 1.44418 0.525640i 0.503224 0.864156i \(-0.332147\pi\)
0.940961 + 0.338516i \(0.109925\pi\)
\(42\) 21.5740 3.23483i 0.513667 0.0770198i
\(43\) 1.70662 0.300923i 0.0396888 0.00699821i −0.153769 0.988107i \(-0.549141\pi\)
0.193457 + 0.981109i \(0.438030\pi\)
\(44\) −45.8407 + 44.2398i −1.04183 + 1.00545i
\(45\) −31.8300 9.68705i −0.707334 0.215268i
\(46\) 0.455352 1.07227i 0.00989895 0.0233102i
\(47\) 51.7208 + 61.6385i 1.10044 + 1.31146i 0.946257 + 0.323415i \(0.104831\pi\)
0.154185 + 0.988042i \(0.450725\pi\)
\(48\) −16.0229 45.2467i −0.333811 0.942640i
\(49\) 6.21322 35.2369i 0.126800 0.719120i
\(50\) −22.6357 1.18988i −0.452713 0.0237976i
\(51\) −5.98266 29.3100i −0.117307 0.574707i
\(52\) 32.9006 45.2536i 0.632703 0.870262i
\(53\) −66.4040 −1.25290 −0.626452 0.779460i \(-0.715494\pi\)
−0.626452 + 0.779460i \(0.715494\pi\)
\(54\) 42.3198 + 33.5416i 0.783699 + 0.621141i
\(55\) 58.8781i 1.07051i
\(56\) 29.0827 0.493825i 0.519334 0.00881830i
\(57\) 16.0905 48.1917i 0.282290 0.845468i
\(58\) −35.2869 1.85491i −0.608394 0.0319812i
\(59\) 65.4349 + 11.5379i 1.10907 + 0.195558i 0.698035 0.716063i \(-0.254058\pi\)
0.411031 + 0.911622i \(0.365169\pi\)
\(60\) −40.3736 18.3836i −0.672893 0.306394i
\(61\) 5.43023 4.55650i 0.0890201 0.0746967i −0.597192 0.802099i \(-0.703717\pi\)
0.686212 + 0.727402i \(0.259272\pi\)
\(62\) 22.3215 52.5629i 0.360023 0.847789i
\(63\) −27.4209 + 17.8571i −0.435252 + 0.283446i
\(64\) −13.2469 62.6141i −0.206983 0.978345i
\(65\) −8.97915 50.9233i −0.138141 0.783435i
\(66\) 34.9802 88.9274i 0.530003 1.34738i
\(67\) −12.7838 35.1231i −0.190803 0.524226i 0.806995 0.590558i \(-0.201092\pi\)
−0.997798 + 0.0663325i \(0.978870\pi\)
\(68\) −2.76970 39.7896i −0.0407309 0.585141i
\(69\) 0.0468560 + 1.74680i 0.000679073 + 0.0253159i
\(70\) 18.3368 19.6576i 0.261955 0.280823i
\(71\) 12.7937 + 7.38644i 0.180193 + 0.104034i 0.587383 0.809309i \(-0.300158\pi\)
−0.407190 + 0.913343i \(0.633491\pi\)
\(72\) 50.0568 + 51.7524i 0.695234 + 0.718784i
\(73\) 66.1544 + 114.583i 0.906224 + 1.56963i 0.819265 + 0.573415i \(0.194382\pi\)
0.0869593 + 0.996212i \(0.472285\pi\)
\(74\) 28.5991 123.787i 0.386475 1.67280i
\(75\) 31.6266 12.4813i 0.421688 0.166418i
\(76\) 29.7156 60.8772i 0.390995 0.801016i
\(77\) 44.3594 + 37.2220i 0.576097 + 0.483403i
\(78\) −16.6924 + 82.2473i −0.214005 + 1.05445i
\(79\) −24.4484 + 67.1713i −0.309473 + 0.850270i 0.683287 + 0.730150i \(0.260550\pi\)
−0.992759 + 0.120119i \(0.961672\pi\)
\(80\) −50.1416 31.3761i −0.626770 0.392201i
\(81\) −78.6437 19.3952i −0.970910 0.239446i
\(82\) −100.659 + 75.8267i −1.22754 + 0.924716i
\(83\) 8.25600 22.6832i 0.0994699 0.273291i −0.879969 0.475030i \(-0.842437\pi\)
0.979439 + 0.201739i \(0.0646593\pi\)
\(84\) −39.3741 + 18.7960i −0.468739 + 0.223762i
\(85\) −28.2385 23.6950i −0.332218 0.278764i
\(86\) −3.08838 + 1.57299i −0.0359114 + 0.0182906i
\(87\) 49.3029 19.4572i 0.566700 0.223647i
\(88\) 61.8241 111.409i 0.702546 1.26601i
\(89\) −29.6464 51.3491i −0.333106 0.576957i 0.650013 0.759923i \(-0.274763\pi\)
−0.983119 + 0.182966i \(0.941430\pi\)
\(90\) 66.5429 0.0743228i 0.739365 0.000825809i
\(91\) −44.0427 25.4281i −0.483986 0.279429i
\(92\) −0.244274 + 2.31706i −0.00265516 + 0.0251854i
\(93\) 2.29689 + 85.6284i 0.0246978 + 0.920735i
\(94\) −134.951 87.6683i −1.43564 0.932641i
\(95\) −21.4132 58.8324i −0.225403 0.619289i
\(96\) 57.0911 + 77.1790i 0.594699 + 0.803948i
\(97\) 13.3273 + 75.5830i 0.137395 + 0.779206i 0.973162 + 0.230122i \(0.0739124\pi\)
−0.835767 + 0.549085i \(0.814976\pi\)
\(98\) 8.70984 + 71.0289i 0.0888760 + 0.724785i
\(99\) 7.68436 + 143.134i 0.0776198 + 1.44580i
\(100\) 43.9907 10.9533i 0.439907 0.109533i
\(101\) 64.1923 53.8638i 0.635568 0.533305i −0.267086 0.963673i \(-0.586061\pi\)
0.902653 + 0.430368i \(0.141616\pi\)
\(102\) 28.5730 + 52.5649i 0.280128 + 0.515342i
\(103\) −165.931 29.2582i −1.61098 0.284060i −0.705586 0.708624i \(-0.749316\pi\)
−0.905398 + 0.424564i \(0.860427\pi\)
\(104\) −36.4809 + 105.785i −0.350778 + 1.01716i
\(105\) −12.7705 + 38.2479i −0.121623 + 0.364266i
\(106\) 127.011 38.8092i 1.19822 0.366124i
\(107\) 19.6793i 0.183919i −0.995763 0.0919593i \(-0.970687\pi\)
0.995763 0.0919593i \(-0.0293130\pi\)
\(108\) −100.548 39.4217i −0.931001 0.365016i
\(109\) −98.5660 −0.904275 −0.452137 0.891948i \(-0.649338\pi\)
−0.452137 + 0.891948i \(0.649338\pi\)
\(110\) −34.4108 112.616i −0.312825 1.02378i
\(111\) 38.1130 + 186.722i 0.343360 + 1.68218i
\(112\) −55.3380 + 17.9417i −0.494089 + 0.160193i
\(113\) −29.2796 + 166.053i −0.259112 + 1.46950i 0.526182 + 0.850372i \(0.323623\pi\)
−0.785294 + 0.619123i \(0.787488\pi\)
\(114\) −2.61125 + 101.580i −0.0229057 + 0.891055i
\(115\) 1.38412 + 1.64953i 0.0120358 + 0.0143437i
\(116\) 68.5774 17.0752i 0.591184 0.147200i
\(117\) −28.4746 122.623i −0.243373 1.04806i
\(118\) −131.901 + 16.1742i −1.11780 + 0.137069i
\(119\) −35.7041 + 6.29560i −0.300035 + 0.0529042i
\(120\) 87.9667 + 11.5665i 0.733056 + 0.0963873i
\(121\) 124.658 45.3718i 1.03023 0.374973i
\(122\) −7.72340 + 11.8889i −0.0633066 + 0.0974498i
\(123\) 90.0937 166.185i 0.732469 1.35109i
\(124\) −11.9744 + 113.583i −0.0965676 + 0.915990i
\(125\) 67.1593 116.323i 0.537274 0.930586i
\(126\) 42.0116 50.1812i 0.333425 0.398263i
\(127\) 174.605 100.808i 1.37484 0.793765i 0.383308 0.923621i \(-0.374785\pi\)
0.991533 + 0.129856i \(0.0414515\pi\)
\(128\) 61.9315 + 112.020i 0.483840 + 0.875156i
\(129\) 3.23376 4.07072i 0.0250679 0.0315559i
\(130\) 46.9361 + 92.1533i 0.361047 + 0.708871i
\(131\) 143.553 171.080i 1.09582 1.30595i 0.147355 0.989084i \(-0.452924\pi\)
0.948469 0.316869i \(-0.102631\pi\)
\(132\) −14.9339 + 190.535i −0.113136 + 1.44345i
\(133\) −57.8622 21.0601i −0.435054 0.158347i
\(134\) 44.9789 + 59.7087i 0.335664 + 0.445587i
\(135\) −90.7479 + 41.5660i −0.672207 + 0.307896i
\(136\) 28.5523 + 74.4869i 0.209943 + 0.547698i
\(137\) −186.707 67.9558i −1.36282 0.496027i −0.445898 0.895084i \(-0.647116\pi\)
−0.916926 + 0.399056i \(0.869338\pi\)
\(138\) −1.11052 3.31372i −0.00804725 0.0240124i
\(139\) 89.3311 106.461i 0.642670 0.765904i −0.342120 0.939656i \(-0.611145\pi\)
0.984789 + 0.173753i \(0.0555893\pi\)
\(140\) −23.5842 + 48.3159i −0.168458 + 0.345114i
\(141\) 238.761 + 35.5275i 1.69334 + 0.251968i
\(142\) −28.7875 6.65091i −0.202729 0.0468374i
\(143\) −192.926 + 111.386i −1.34913 + 0.778922i
\(144\) −125.990 69.7317i −0.874931 0.484248i
\(145\) 32.6574 56.5643i 0.225224 0.390099i
\(146\) −193.500 180.499i −1.32535 1.23630i
\(147\) −56.1441 91.4879i −0.381933 0.622366i
\(148\) 17.6446 + 253.482i 0.119220 + 1.71272i
\(149\) 1.60561 0.584395i 0.0107759 0.00392211i −0.336627 0.941638i \(-0.609286\pi\)
0.347402 + 0.937716i \(0.387064\pi\)
\(150\) −53.1976 + 42.3570i −0.354651 + 0.282380i
\(151\) −110.653 + 19.5112i −0.732803 + 0.129213i −0.527584 0.849503i \(-0.676902\pi\)
−0.205220 + 0.978716i \(0.565791\pi\)
\(152\) −21.2581 + 133.807i −0.139856 + 0.880309i
\(153\) −71.7409 53.9174i −0.468895 0.352401i
\(154\) −106.600 45.2691i −0.692211 0.293955i
\(155\) 67.8499 + 80.8604i 0.437741 + 0.521680i
\(156\) −16.1412 167.070i −0.103469 1.07096i
\(157\) 0.528130 2.99517i 0.00336389 0.0190775i −0.983080 0.183179i \(-0.941361\pi\)
0.986443 + 0.164101i \(0.0524724\pi\)
\(158\) 7.50478 142.767i 0.0474986 0.903590i
\(159\) −149.117 + 132.097i −0.937841 + 0.830798i
\(160\) 114.243 + 30.7083i 0.714021 + 0.191927i
\(161\) 2.11780 0.0131540
\(162\) 161.757 8.86540i 0.998501 0.0547247i
\(163\) 39.7924i 0.244125i −0.992522 0.122063i \(-0.961049\pi\)
0.992522 0.122063i \(-0.0389509\pi\)
\(164\) 148.214 203.863i 0.903742 1.24307i
\(165\) 117.126 + 132.217i 0.709853 + 0.801313i
\(166\) −2.53430 + 48.2113i −0.0152669 + 0.290430i
\(167\) −19.4582 3.43101i −0.116516 0.0205449i 0.115086 0.993356i \(-0.463286\pi\)
−0.231602 + 0.972811i \(0.574397\pi\)
\(168\) 64.3258 58.9630i 0.382892 0.350970i
\(169\) 20.4120 17.1277i 0.120781 0.101347i
\(170\) 67.8602 + 28.8176i 0.399178 + 0.169516i
\(171\) −59.7344 140.228i −0.349324 0.820046i
\(172\) 4.98783 4.81364i 0.0289990 0.0279863i
\(173\) 23.9690 + 135.935i 0.138549 + 0.785752i 0.972322 + 0.233645i \(0.0750652\pi\)
−0.833773 + 0.552108i \(0.813824\pi\)
\(174\) −82.9301 + 66.0305i −0.476610 + 0.379486i
\(175\) −14.0936 38.7218i −0.0805348 0.221268i
\(176\) −53.1392 + 249.224i −0.301927 + 1.41605i
\(177\) 169.893 104.260i 0.959847 0.589037i
\(178\) 86.7153 + 80.8890i 0.487165 + 0.454433i
\(179\) −159.768 92.2423i −0.892560 0.515320i −0.0177813 0.999842i \(-0.505660\pi\)
−0.874779 + 0.484522i \(0.838994\pi\)
\(180\) −127.233 + 39.0325i −0.706852 + 0.216847i
\(181\) −46.0525 79.7652i −0.254434 0.440692i 0.710308 0.703891i \(-0.248556\pi\)
−0.964742 + 0.263199i \(0.915222\pi\)
\(182\) 99.1017 + 22.8960i 0.544515 + 0.125802i
\(183\) 3.12990 21.0344i 0.0171033 0.114942i
\(184\) −0.886959 4.57461i −0.00482043 0.0248620i
\(185\) 179.896 + 150.950i 0.972409 + 0.815948i
\(186\) −54.4380 162.439i −0.292677 0.873329i
\(187\) −54.3169 + 149.235i −0.290465 + 0.798046i
\(188\) 309.357 + 88.8127i 1.64552 + 0.472408i
\(189\) −26.0534 + 94.6480i −0.137848 + 0.500783i
\(190\) 75.3412 + 100.014i 0.396533 + 0.526390i
\(191\) 20.4959 56.3120i 0.107308 0.294827i −0.874404 0.485199i \(-0.838747\pi\)
0.981712 + 0.190372i \(0.0609693\pi\)
\(192\) −154.305 114.254i −0.803671 0.595074i
\(193\) −215.518 180.841i −1.11667 0.937000i −0.118241 0.992985i \(-0.537726\pi\)
−0.998432 + 0.0559849i \(0.982170\pi\)
\(194\) −69.6650 136.779i −0.359098 0.705045i
\(195\) −121.465 96.4911i −0.622897 0.494826i
\(196\) −58.1715 130.767i −0.296794 0.667178i
\(197\) 15.1511 + 26.2425i 0.0769093 + 0.133211i 0.901915 0.431914i \(-0.142161\pi\)
−0.825006 + 0.565124i \(0.808828\pi\)
\(198\) −98.3511 269.281i −0.496722 1.36001i
\(199\) 205.095 + 118.412i 1.03063 + 0.595033i 0.917164 0.398510i \(-0.130472\pi\)
0.113463 + 0.993542i \(0.463806\pi\)
\(200\) −77.7395 + 46.6604i −0.388698 + 0.233302i
\(201\) −98.5774 53.4418i −0.490435 0.265880i
\(202\) −91.3006 + 140.542i −0.451983 + 0.695752i
\(203\) −21.9706 60.3637i −0.108230 0.297358i
\(204\) −85.3728 83.8417i −0.418494 0.410989i
\(205\) −40.4502 229.404i −0.197318 1.11905i
\(206\) 334.477 41.0149i 1.62367 0.199101i
\(207\) 3.58011 + 3.82939i 0.0172952 + 0.0184995i
\(208\) 7.95205 223.656i 0.0382310 1.07527i
\(209\) −206.624 + 173.378i −0.988629 + 0.829559i
\(210\) 2.07245 80.6204i 0.00986882 0.383907i
\(211\) −88.9172 15.6785i −0.421408 0.0743057i −0.0410771 0.999156i \(-0.513079\pi\)
−0.380331 + 0.924850i \(0.624190\pi\)
\(212\) −220.252 + 148.461i −1.03893 + 0.700287i
\(213\) 43.4233 8.86341i 0.203865 0.0416122i
\(214\) 11.5014 + 37.6406i 0.0537448 + 0.175891i
\(215\) 6.40641i 0.0297972i
\(216\) 215.358 + 16.6375i 0.997029 + 0.0770255i
\(217\) 103.815 0.478410
\(218\) 188.527 57.6060i 0.864804 0.264247i
\(219\) 376.495 + 125.707i 1.71915 + 0.574002i
\(220\) 131.635 + 195.290i 0.598341 + 0.887683i
\(221\) 24.2195 137.355i 0.109590 0.621518i
\(222\) −182.027 334.868i −0.819939 1.50842i
\(223\) 217.859 + 259.634i 0.976944 + 1.16428i 0.986407 + 0.164322i \(0.0525436\pi\)
−0.00946232 + 0.999955i \(0.503012\pi\)
\(224\) 95.3592 66.6588i 0.425711 0.297584i
\(225\) 46.1916 90.9426i 0.205296 0.404189i
\(226\) −41.0449 334.722i −0.181615 1.48107i
\(227\) −234.651 + 41.3753i −1.03371 + 0.182270i −0.664664 0.747143i \(-0.731425\pi\)
−0.369042 + 0.929413i \(0.620314\pi\)
\(228\) −54.3731 195.819i −0.238478 0.858855i
\(229\) 153.568 55.8943i 0.670604 0.244080i 0.0157961 0.999875i \(-0.494972\pi\)
0.654808 + 0.755795i \(0.272750\pi\)
\(230\) −3.61146 2.34612i −0.0157020 0.0102005i
\(231\) 173.659 4.65822i 0.751770 0.0201655i
\(232\) −121.189 + 72.7392i −0.522365 + 0.313531i
\(233\) −72.9459 + 126.346i −0.313072 + 0.542257i −0.979026 0.203736i \(-0.934692\pi\)
0.665953 + 0.745993i \(0.268025\pi\)
\(234\) 126.130 + 217.900i 0.539015 + 0.931199i
\(235\) 257.607 148.730i 1.09620 0.632892i
\(236\) 242.834 108.025i 1.02896 0.457731i
\(237\) 78.7221 + 199.475i 0.332161 + 0.841666i
\(238\) 64.6119 32.9085i 0.271479 0.138271i
\(239\) −93.1529 + 111.015i −0.389761 + 0.464499i −0.924870 0.380284i \(-0.875826\pi\)
0.535109 + 0.844783i \(0.320271\pi\)
\(240\) −175.014 + 29.2881i −0.729225 + 0.122034i
\(241\) −77.0503 28.0440i −0.319711 0.116365i 0.177180 0.984179i \(-0.443303\pi\)
−0.496890 + 0.867813i \(0.665525\pi\)
\(242\) −211.916 + 159.638i −0.875687 + 0.659660i
\(243\) −215.185 + 112.892i −0.885534 + 0.464574i
\(244\) 7.82422 27.2537i 0.0320665 0.111696i
\(245\) −124.297 45.2405i −0.507336 0.184655i
\(246\) −75.1974 + 370.516i −0.305680 + 1.50616i
\(247\) 152.267 181.464i 0.616464 0.734673i
\(248\) −43.4789 224.248i −0.175318 0.904227i
\(249\) −26.5838 67.3610i −0.106762 0.270526i
\(250\) −60.4716 + 261.742i −0.241887 + 1.04697i
\(251\) 41.5537 23.9911i 0.165553 0.0955819i −0.414934 0.909851i \(-0.636195\pi\)
0.580487 + 0.814269i \(0.302862\pi\)
\(252\) −51.0277 + 120.535i −0.202491 + 0.478313i
\(253\) 4.63844 8.03401i 0.0183337 0.0317550i
\(254\) −275.051 + 294.862i −1.08288 + 1.16087i
\(255\) −110.549 + 2.96535i −0.433524 + 0.0116288i
\(256\) −183.926 178.066i −0.718459 0.695569i
\(257\) −278.499 + 101.365i −1.08365 + 0.394417i −0.821266 0.570546i \(-0.806732\pi\)
−0.262387 + 0.964963i \(0.584510\pi\)
\(258\) −3.80612 + 9.67601i −0.0147524 + 0.0375039i
\(259\) 227.456 40.1065i 0.878207 0.154852i
\(260\) −143.633 148.830i −0.552434 0.572425i
\(261\) 72.0084 141.771i 0.275894 0.543184i
\(262\) −174.588 + 411.123i −0.666367 + 1.56917i
\(263\) 332.363 + 396.095i 1.26374 + 1.50606i 0.772466 + 0.635056i \(0.219023\pi\)
0.491270 + 0.871007i \(0.336533\pi\)
\(264\) −82.7925 373.166i −0.313608 1.41351i
\(265\) −42.6279 + 241.755i −0.160860 + 0.912282i
\(266\) 122.982 + 6.46471i 0.462337 + 0.0243034i
\(267\) −168.722 56.3341i −0.631919 0.210989i
\(268\) −120.927 87.9175i −0.451222 0.328050i
\(269\) 128.175 0.476485 0.238243 0.971206i \(-0.423429\pi\)
0.238243 + 0.971206i \(0.423429\pi\)
\(270\) 149.281 132.540i 0.552892 0.490889i
\(271\) 105.053i 0.387649i 0.981036 + 0.193824i \(0.0620892\pi\)
−0.981036 + 0.193824i \(0.937911\pi\)
\(272\) −98.1451 125.784i −0.360828 0.462442i
\(273\) −149.486 + 30.5126i −0.547568 + 0.111768i
\(274\) 396.831 + 20.8600i 1.44829 + 0.0761314i
\(275\) −177.762 31.3442i −0.646406 0.113979i
\(276\) 4.06076 + 5.68912i 0.0147129 + 0.0206127i
\(277\) −317.904 + 266.753i −1.14767 + 0.963007i −0.999662 0.0259792i \(-0.991730\pi\)
−0.148005 + 0.988987i \(0.547285\pi\)
\(278\) −108.644 + 255.836i −0.390805 + 0.920274i
\(279\) 175.498 + 187.718i 0.629024 + 0.672824i
\(280\) 16.8717 106.198i 0.0602562 0.379277i
\(281\) 69.9019 + 396.433i 0.248761 + 1.41079i 0.811593 + 0.584223i \(0.198601\pi\)
−0.562832 + 0.826571i \(0.690288\pi\)
\(282\) −477.443 + 71.5882i −1.69306 + 0.253859i
\(283\) 88.9908 + 244.500i 0.314455 + 0.863958i 0.991743 + 0.128240i \(0.0409328\pi\)
−0.677288 + 0.735718i \(0.736845\pi\)
\(284\) 58.9489 4.10335i 0.207567 0.0144484i
\(285\) −165.120 89.5168i −0.579370 0.314094i
\(286\) 303.911 325.802i 1.06263 1.13917i
\(287\) −198.408 114.551i −0.691317 0.399132i
\(288\) 281.735 + 59.7423i 0.978248 + 0.207439i
\(289\) 94.7849 + 164.172i 0.327976 + 0.568070i
\(290\) −29.4054 + 127.277i −0.101398 + 0.438886i
\(291\) 180.285 + 143.217i 0.619534 + 0.492155i
\(292\) 475.600 + 232.152i 1.62877 + 0.795041i
\(293\) −150.425 126.221i −0.513394 0.430789i 0.348927 0.937150i \(-0.386546\pi\)
−0.862322 + 0.506361i \(0.830990\pi\)
\(294\) 160.856 + 142.176i 0.547130 + 0.483592i
\(295\) 84.0116 230.820i 0.284785 0.782440i
\(296\) −181.894 474.524i −0.614507 1.60312i
\(297\) 301.991 + 306.135i 1.01680 + 1.03076i
\(298\) −2.72951 + 2.05616i −0.00915943 + 0.00689986i
\(299\) −2.78653 + 7.65594i −0.00931951 + 0.0256051i
\(300\) 76.9961 112.107i 0.256654 0.373690i
\(301\) −4.82666 4.05005i −0.0160354 0.0134553i
\(302\) 200.244 101.989i 0.663059 0.337713i
\(303\) 36.9995 248.654i 0.122110 0.820639i
\(304\) −37.5418 268.357i −0.123493 0.882753i
\(305\) −13.1028 22.6947i −0.0429599 0.0744088i
\(306\) 168.730 + 61.1995i 0.551407 + 0.199999i
\(307\) −170.588 98.4890i −0.555661 0.320811i 0.195741 0.980656i \(-0.437289\pi\)
−0.751402 + 0.659845i \(0.770622\pi\)
\(308\) 230.352 + 24.2847i 0.747896 + 0.0788465i
\(309\) −430.818 + 264.384i −1.39423 + 0.855611i
\(310\) −177.035 115.008i −0.571080 0.370992i
\(311\) −9.51663 26.1467i −0.0306001 0.0840731i 0.923452 0.383714i \(-0.125355\pi\)
−0.954052 + 0.299641i \(0.903133\pi\)
\(312\) 128.516 + 310.122i 0.411910 + 0.993981i
\(313\) −56.7402 321.790i −0.181279 1.02808i −0.930644 0.365926i \(-0.880752\pi\)
0.749365 0.662157i \(-0.230359\pi\)
\(314\) 0.740346 + 6.03754i 0.00235779 + 0.0192278i
\(315\) 47.4089 + 111.294i 0.150505 + 0.353313i
\(316\) 69.0846 + 277.457i 0.218622 + 0.878030i
\(317\) −75.2721 + 63.1608i −0.237452 + 0.199245i −0.753746 0.657165i \(-0.771755\pi\)
0.516295 + 0.856411i \(0.327311\pi\)
\(318\) 208.013 339.812i 0.654129 1.06859i
\(319\) −277.114 48.8627i −0.868696 0.153174i
\(320\) −236.461 + 8.03252i −0.738940 + 0.0251016i
\(321\) −39.1479 44.1918i −0.121956 0.137669i
\(322\) −4.05072 + 1.23773i −0.0125799 + 0.00384388i
\(323\) 168.873i 0.522827i
\(324\) −304.212 + 111.494i −0.938926 + 0.344118i
\(325\) 158.525 0.487769
\(326\) 23.2563 + 76.1111i 0.0713384 + 0.233470i
\(327\) −221.340 + 196.077i −0.676880 + 0.599622i
\(328\) −164.343 + 476.551i −0.501046 + 1.45290i
\(329\) 50.8014 288.109i 0.154412 0.875712i
\(330\) −301.299 184.438i −0.913029 0.558903i
\(331\) −227.814 271.498i −0.688259 0.820235i 0.302885 0.953027i \(-0.402050\pi\)
−0.991144 + 0.132792i \(0.957606\pi\)
\(332\) −23.3293 93.6950i −0.0702689 0.282214i
\(333\) 457.031 + 343.484i 1.37246 + 1.03148i
\(334\) 39.2230 4.80967i 0.117434 0.0144002i
\(335\) −136.078 + 23.9942i −0.406203 + 0.0716246i
\(336\) −88.5757 + 150.373i −0.263618 + 0.447539i
\(337\) 554.135 201.688i 1.64432 0.598482i 0.656530 0.754300i \(-0.272023\pi\)
0.987786 + 0.155817i \(0.0498012\pi\)
\(338\) −29.0320 + 44.6898i −0.0858934 + 0.132218i
\(339\) 264.578 + 431.134i 0.780465 + 1.27178i
\(340\) −146.639 15.4593i −0.431290 0.0454685i
\(341\) 227.377 393.829i 0.666795 1.15492i
\(342\) 196.209 + 233.303i 0.573710 + 0.682173i
\(343\) −266.953 + 154.125i −0.778288 + 0.449345i
\(344\) −6.72695 + 12.1222i −0.0195551 + 0.0352388i
\(345\) 6.38958 + 0.950765i 0.0185205 + 0.00275584i
\(346\) −125.292 245.995i −0.362115 0.710968i
\(347\) 173.802 207.129i 0.500871 0.596915i −0.455077 0.890452i \(-0.650388\pi\)
0.955947 + 0.293538i \(0.0948326\pi\)
\(348\) 120.030 174.764i 0.344913 0.502197i
\(349\) −484.371 176.297i −1.38788 0.505148i −0.463324 0.886189i \(-0.653343\pi\)
−0.924558 + 0.381041i \(0.875566\pi\)
\(350\) 49.5875 + 65.8265i 0.141678 + 0.188076i
\(351\) −307.877 218.719i −0.877141 0.623131i
\(352\) −44.0173 507.748i −0.125049 1.44247i
\(353\) 203.053 + 73.9054i 0.575222 + 0.209364i 0.613217 0.789914i \(-0.289875\pi\)
−0.0379952 + 0.999278i \(0.512097\pi\)
\(354\) −264.021 + 298.710i −0.745822 + 0.843813i
\(355\) 35.1045 41.8359i 0.0988858 0.117847i
\(356\) −213.135 104.037i −0.598695 0.292238i
\(357\) −67.6533 + 85.1633i −0.189505 + 0.238553i
\(358\) 359.499 + 83.0569i 1.00419 + 0.232003i
\(359\) 220.356 127.223i 0.613806 0.354381i −0.160648 0.987012i \(-0.551358\pi\)
0.774453 + 0.632631i \(0.218025\pi\)
\(360\) 220.547 149.018i 0.612631 0.413939i
\(361\) −37.0922 + 64.2455i −0.102748 + 0.177965i
\(362\) 134.703 + 125.652i 0.372107 + 0.347106i
\(363\) 189.674 349.868i 0.522518 0.963823i
\(364\) −202.933 + 14.1259i −0.557509 + 0.0388075i
\(365\) 459.625 167.290i 1.25925 0.458328i
\(366\) 6.30678 + 42.0617i 0.0172316 + 0.114923i
\(367\) −558.823 + 98.5356i −1.52268 + 0.268489i −0.871485 0.490422i \(-0.836843\pi\)
−0.651194 + 0.758911i \(0.725732\pi\)
\(368\) 4.37007 + 8.23148i 0.0118752 + 0.0223682i
\(369\) −128.275 552.407i −0.347630 1.49704i
\(370\) −432.308 183.585i −1.16840 0.496175i
\(371\) 155.192 + 184.951i 0.418307 + 0.498519i
\(372\) 199.060 + 278.882i 0.535107 + 0.749683i
\(373\) −63.4862 + 360.048i −0.170204 + 0.965277i 0.773330 + 0.634003i \(0.218589\pi\)
−0.943535 + 0.331274i \(0.892522\pi\)
\(374\) 16.6734 317.186i 0.0445812 0.848091i
\(375\) −80.5882 394.815i −0.214902 1.05284i
\(376\) −643.614 + 10.9286i −1.71174 + 0.0290653i
\(377\) 247.126 0.655506
\(378\) −5.48385 196.260i −0.0145075 0.519207i
\(379\) 310.348i 0.818860i −0.912342 0.409430i \(-0.865728\pi\)
0.912342 0.409430i \(-0.134272\pi\)
\(380\) −202.558 147.265i −0.533046 0.387539i
\(381\) 191.556 573.715i 0.502770 1.50581i
\(382\) −6.29152 + 119.687i −0.0164699 + 0.313316i
\(383\) 223.698 + 39.4441i 0.584069 + 0.102987i 0.457872 0.889018i \(-0.348612\pi\)
0.126197 + 0.992005i \(0.459723\pi\)
\(384\) 361.914 + 128.352i 0.942484 + 0.334250i
\(385\) 163.989 137.603i 0.425946 0.357411i
\(386\) 517.912 + 219.938i 1.34174 + 0.569786i
\(387\) −0.836120 15.5741i −0.00216052 0.0402431i
\(388\) 213.187 + 220.902i 0.549452 + 0.569335i
\(389\) −54.4461 308.779i −0.139964 0.793778i −0.971273 0.237967i \(-0.923519\pi\)
0.831309 0.555811i \(-0.187592\pi\)
\(390\) 288.719 + 113.570i 0.740306 + 0.291205i
\(391\) 1.98650 + 5.45785i 0.00508055 + 0.0139587i
\(392\) 187.690 + 216.120i 0.478802 + 0.551327i
\(393\) −17.9652 669.745i −0.0457131 1.70419i
\(394\) −44.3168 41.3392i −0.112479 0.104922i
\(395\) 228.854 + 132.129i 0.579376 + 0.334503i
\(396\) 345.495 + 457.574i 0.872462 + 1.15549i
\(397\) −70.7625 122.564i −0.178243 0.308726i 0.763036 0.646356i \(-0.223708\pi\)
−0.941279 + 0.337630i \(0.890375\pi\)
\(398\) −461.490 106.620i −1.15952 0.267890i
\(399\) −171.830 + 67.8123i −0.430652 + 0.169956i
\(400\) 121.422 134.682i 0.303556 0.336704i
\(401\) −289.868 243.229i −0.722864 0.606555i 0.205312 0.978697i \(-0.434179\pi\)
−0.928176 + 0.372142i \(0.878624\pi\)
\(402\) 219.783 + 44.6056i 0.546723 + 0.110959i
\(403\) −136.597 + 375.296i −0.338949 + 0.931255i
\(404\) 92.4925 322.175i 0.228942 0.797462i
\(405\) −121.096 + 273.865i −0.299004 + 0.676209i
\(406\) 77.3022 + 102.617i 0.190400 + 0.252752i
\(407\) 346.030 950.709i 0.850196 2.33589i
\(408\) 212.293 + 110.469i 0.520326 + 0.270757i
\(409\) 250.395 + 210.106i 0.612212 + 0.513707i 0.895345 0.445374i \(-0.146929\pi\)
−0.283133 + 0.959081i \(0.591374\pi\)
\(410\) 211.442 + 415.141i 0.515713 + 1.01254i
\(411\) −554.453 + 218.813i −1.34903 + 0.532392i
\(412\) −615.784 + 273.931i −1.49462 + 0.664881i
\(413\) −120.791 209.217i −0.292473 0.506578i
\(414\) −9.08573 5.23213i −0.0219462 0.0126380i
\(415\) −77.2820 44.6188i −0.186222 0.107515i
\(416\) 115.504 + 432.435i 0.277654 + 1.03951i
\(417\) −11.1795 416.774i −0.0268094 0.999457i
\(418\) 293.880 452.379i 0.703063 1.08225i
\(419\) 87.2276 + 239.656i 0.208180 + 0.571971i 0.999207 0.0398104i \(-0.0126754\pi\)
−0.791027 + 0.611782i \(0.790453\pi\)
\(420\) 43.1539 + 155.414i 0.102747 + 0.370033i
\(421\) 106.511 + 604.054i 0.252995 + 1.43481i 0.801167 + 0.598441i \(0.204213\pi\)
−0.548172 + 0.836366i \(0.684676\pi\)
\(422\) 179.235 21.9785i 0.424728 0.0520818i
\(423\) 606.836 395.185i 1.43460 0.934244i
\(424\) 334.511 412.686i 0.788941 0.973315i
\(425\) 86.5716 72.6422i 0.203698 0.170923i
\(426\) −77.8757 + 42.3314i −0.182807 + 0.0993695i
\(427\) −25.3818 4.47550i −0.0594422 0.0104813i
\(428\) −43.9974 65.2734i −0.102798 0.152508i
\(429\) −211.655 + 633.914i −0.493369 + 1.47765i
\(430\) 3.74416 + 12.2535i 0.00870736 + 0.0284966i
\(431\) 309.004i 0.716947i 0.933540 + 0.358473i \(0.116703\pi\)
−0.933540 + 0.358473i \(0.883297\pi\)
\(432\) −421.640 + 94.0415i −0.976018 + 0.217689i
\(433\) 271.919 0.627989 0.313994 0.949425i \(-0.398333\pi\)
0.313994 + 0.949425i \(0.398333\pi\)
\(434\) −198.567 + 60.6737i −0.457528 + 0.139801i
\(435\) −39.1875 191.986i −0.0900861 0.441347i
\(436\) −326.929 + 220.366i −0.749838 + 0.505427i
\(437\) −1.71297 + 9.71471i −0.00391983 + 0.0222305i
\(438\) −793.590 20.4003i −1.81185 0.0465760i
\(439\) 100.848 + 120.186i 0.229723 + 0.273773i 0.868576 0.495555i \(-0.165035\pi\)
−0.638853 + 0.769328i \(0.720591\pi\)
\(440\) −365.914 296.599i −0.831623 0.674089i
\(441\) −308.073 93.7580i −0.698579 0.212603i
\(442\) 33.9515 + 276.875i 0.0768133 + 0.626414i
\(443\) −254.933 + 44.9516i −0.575470 + 0.101471i −0.453806 0.891100i \(-0.649934\pi\)
−0.121664 + 0.992571i \(0.538823\pi\)
\(444\) 543.873 + 534.120i 1.22494 + 1.20297i
\(445\) −205.976 + 74.9693i −0.462869 + 0.168470i
\(446\) −568.439 369.277i −1.27453 0.827975i
\(447\) 2.44303 4.50635i 0.00546538 0.0100813i
\(448\) −143.436 + 183.230i −0.320169 + 0.408996i
\(449\) −403.822 + 699.440i −0.899381 + 1.55777i −0.0710933 + 0.997470i \(0.522649\pi\)
−0.828287 + 0.560303i \(0.810685\pi\)
\(450\) −35.2002 + 200.942i −0.0782227 + 0.446539i
\(451\) −869.112 + 501.782i −1.92708 + 1.11260i
\(452\) 274.132 + 616.235i 0.606486 + 1.36335i
\(453\) −209.670 + 263.936i −0.462847 + 0.582640i
\(454\) 424.636 216.278i 0.935323 0.476384i
\(455\) −120.848 + 144.021i −0.265600 + 0.316530i
\(456\) 218.444 + 342.765i 0.479044 + 0.751678i
\(457\) 514.385 + 187.221i 1.12557 + 0.409673i 0.836681 0.547690i \(-0.184493\pi\)
0.288887 + 0.957363i \(0.406715\pi\)
\(458\) −261.064 + 196.661i −0.570008 + 0.429390i
\(459\) −268.359 + 21.6369i −0.584660 + 0.0471392i
\(460\) 8.27882 + 2.37675i 0.0179974 + 0.00516685i
\(461\) 144.983 + 52.7695i 0.314497 + 0.114468i 0.494446 0.869208i \(-0.335371\pi\)
−0.179949 + 0.983676i \(0.557593\pi\)
\(462\) −329.435 + 110.403i −0.713064 + 0.238968i
\(463\) 40.7312 48.5415i 0.0879723 0.104841i −0.720263 0.693702i \(-0.755979\pi\)
0.808235 + 0.588860i \(0.200423\pi\)
\(464\) 189.286 209.956i 0.407944 0.452491i
\(465\) 313.219 + 46.6067i 0.673589 + 0.100229i
\(466\) 65.6820 284.295i 0.140949 0.610074i
\(467\) 162.795 93.9898i 0.348598 0.201263i −0.315470 0.948936i \(-0.602162\pi\)
0.664067 + 0.747673i \(0.268829\pi\)
\(468\) −368.598 343.063i −0.787603 0.733042i
\(469\) −67.9493 + 117.692i −0.144881 + 0.250942i
\(470\) −405.802 + 435.031i −0.863409 + 0.925599i
\(471\) −4.77231 7.77657i −0.0101323 0.0165108i
\(472\) −401.335 + 348.541i −0.850286 + 0.738434i
\(473\) −25.9355 + 9.43977i −0.0548320 + 0.0199572i
\(474\) −267.153 335.527i −0.563614 0.707864i
\(475\) 189.023 33.3299i 0.397944 0.0701682i
\(476\) −104.350 + 100.706i −0.219223 + 0.211567i
\(477\) −72.0770 + 593.273i −0.151105 + 1.24376i
\(478\) 113.292 266.781i 0.237012 0.558120i
\(479\) −198.830 236.957i −0.415094 0.494690i 0.517466 0.855704i \(-0.326875\pi\)
−0.932561 + 0.361013i \(0.882431\pi\)
\(480\) 317.633 158.305i 0.661735 0.329802i
\(481\) −154.292 + 875.033i −0.320773 + 1.81919i
\(482\) 163.764 + 8.60852i 0.339760 + 0.0178600i
\(483\) 4.75573 4.21292i 0.00984623 0.00872241i
\(484\) 312.034 429.192i 0.644698 0.886760i
\(485\) 283.728 0.585006
\(486\) 345.606 341.691i 0.711124 0.703067i
\(487\) 396.572i 0.814316i −0.913358 0.407158i \(-0.866520\pi\)
0.913358 0.407158i \(-0.133480\pi\)
\(488\) 0.962785 + 56.7011i 0.00197292 + 0.116191i
\(489\) −79.1588 89.3579i −0.161879 0.182736i
\(490\) 264.184 + 13.8872i 0.539151 + 0.0283413i
\(491\) 391.258 + 68.9894i 0.796860 + 0.140508i 0.557232 0.830357i \(-0.311863\pi\)
0.239628 + 0.970865i \(0.422975\pi\)
\(492\) −72.7144 752.635i −0.147793 1.52975i
\(493\) 134.957 113.242i 0.273746 0.229701i
\(494\) −185.185 + 436.078i −0.374869 + 0.882748i
\(495\) 526.035 + 63.9082i 1.06270 + 0.129107i
\(496\) 214.222 + 403.509i 0.431899 + 0.813527i
\(497\) −9.32703 52.8962i −0.0187667 0.106431i
\(498\) 90.2154 + 113.305i 0.181155 + 0.227520i
\(499\) 254.967 + 700.517i 0.510956 + 1.40384i 0.880242 + 0.474525i \(0.157380\pi\)
−0.369285 + 0.929316i \(0.620397\pi\)
\(500\) −37.3087 535.977i −0.0746173 1.07195i
\(501\) −50.5206 + 31.0034i −0.100840 + 0.0618830i
\(502\) −65.4586 + 70.1734i −0.130396 + 0.139788i
\(503\) 36.9239 + 21.3180i 0.0734073 + 0.0423817i 0.536254 0.844056i \(-0.319839\pi\)
−0.462847 + 0.886438i \(0.653172\pi\)
\(504\) 27.1553 260.370i 0.0538796 0.516607i
\(505\) −154.892 268.281i −0.306717 0.531249i
\(506\) −4.17655 + 18.0776i −0.00825404 + 0.0357264i
\(507\) 11.7652 79.0675i 0.0232055 0.155952i
\(508\) 353.760 724.734i 0.696379 1.42664i
\(509\) −149.916 125.794i −0.294530 0.247140i 0.483533 0.875326i \(-0.339353\pi\)
−0.778063 + 0.628186i \(0.783798\pi\)
\(510\) 209.714 70.2810i 0.411203 0.137806i
\(511\) 164.531 452.046i 0.321979 0.884629i
\(512\) 455.864 + 233.093i 0.890359 + 0.455260i
\(513\) −413.094 196.067i −0.805251 0.382196i
\(514\) 473.443 356.647i 0.921095 0.693867i
\(515\) −213.038 + 585.318i −0.413667 + 1.13654i
\(516\) 1.62493 20.7318i 0.00314909 0.0401779i
\(517\) −981.694 823.739i −1.89883 1.59331i
\(518\) −411.615 + 209.646i −0.794623 + 0.404722i
\(519\) 324.240 + 257.574i 0.624739 + 0.496290i
\(520\) 361.709 + 200.723i 0.695595 + 0.386006i
\(521\) 1.15666 + 2.00340i 0.00222008 + 0.00384530i 0.867133 0.498076i \(-0.165960\pi\)
−0.864913 + 0.501921i \(0.832627\pi\)
\(522\) −54.8738 + 313.250i −0.105122 + 0.600097i
\(523\) 358.549 + 207.008i 0.685562 + 0.395810i 0.801947 0.597395i \(-0.203797\pi\)
−0.116385 + 0.993204i \(0.537131\pi\)
\(524\) 93.6581 888.392i 0.178737 1.69540i
\(525\) −108.678 58.9174i −0.207005 0.112224i
\(526\) −867.205 563.364i −1.64868 1.07104i
\(527\) 97.3785 + 267.545i 0.184779 + 0.507676i
\(528\) 376.450 + 665.367i 0.712974 + 1.26017i
\(529\) 91.8010 + 520.629i 0.173537 + 0.984176i
\(530\) −59.7568 487.318i −0.112749 0.919468i
\(531\) 174.109 572.092i 0.327888 1.07739i
\(532\) −239.005 + 59.5103i −0.449258 + 0.111862i
\(533\) 675.165 566.531i 1.26673 1.06291i
\(534\) 355.640 + 9.14218i 0.665992 + 0.0171202i
\(535\) −71.6457 12.6331i −0.133917 0.0236132i
\(536\) 282.681 + 97.4850i 0.527390 + 0.181875i
\(537\) −542.273 + 110.687i −1.00982 + 0.206120i
\(538\) −245.160 + 74.9104i −0.455687 + 0.139239i
\(539\) 569.863i 1.05726i
\(540\) −208.068 + 340.756i −0.385311 + 0.631029i
\(541\) −148.013 −0.273591 −0.136796 0.990599i \(-0.543680\pi\)
−0.136796 + 0.990599i \(0.543680\pi\)
\(542\) −61.3972 200.935i −0.113279 0.370728i
\(543\) −262.092 87.5089i −0.482674 0.161158i
\(544\) 261.236 + 183.228i 0.480213 + 0.336815i
\(545\) −63.2742 + 358.846i −0.116099 + 0.658433i
\(546\) 268.090 145.727i 0.491007 0.266900i
\(547\) −110.386 131.554i −0.201803 0.240500i 0.655646 0.755069i \(-0.272397\pi\)
−0.857449 + 0.514569i \(0.827952\pi\)
\(548\) −771.210 + 192.025i −1.40732 + 0.350411i
\(549\) −34.8150 53.4611i −0.0634154 0.0973790i
\(550\) 358.324 43.9391i 0.651498 0.0798892i
\(551\) 294.670 51.9582i 0.534791 0.0942980i
\(552\) −11.0920 8.50831i −0.0200942 0.0154136i
\(553\) 244.226 88.8909i 0.441638 0.160743i
\(554\) 452.154 696.015i 0.816163 1.25634i
\(555\) 704.258 18.8910i 1.26893 0.0340378i
\(556\) 58.2822 552.834i 0.104824 0.994306i
\(557\) 157.849 273.403i 0.283392 0.490849i −0.688826 0.724926i \(-0.741874\pi\)
0.972218 + 0.234078i \(0.0752071\pi\)
\(558\) −445.385 256.480i −0.798181 0.459642i
\(559\) 20.9919 12.1197i 0.0375525 0.0216810i
\(560\) 29.7955 + 212.985i 0.0532063 + 0.380330i
\(561\) 174.897 + 443.173i 0.311759 + 0.789970i
\(562\) −365.393 717.405i −0.650166 1.27652i
\(563\) −699.739 + 833.916i −1.24288 + 1.48120i −0.425645 + 0.904890i \(0.639953\pi\)
−0.817231 + 0.576311i \(0.804492\pi\)
\(564\) 871.366 415.964i 1.54498 0.737525i
\(565\) 585.747 + 213.195i 1.03672 + 0.377336i
\(566\) −313.109 415.646i −0.553195 0.734357i
\(567\) 129.777 + 264.369i 0.228884 + 0.466260i
\(568\) −110.354 + 42.3006i −0.194284 + 0.0744729i
\(569\) −70.1886 25.5466i −0.123354 0.0448973i 0.279605 0.960115i \(-0.409796\pi\)
−0.402960 + 0.915218i \(0.632019\pi\)
\(570\) 368.143 + 74.7159i 0.645866 + 0.131081i
\(571\) 270.128 321.926i 0.473078 0.563793i −0.475752 0.879579i \(-0.657824\pi\)
0.948830 + 0.315787i \(0.102268\pi\)
\(572\) −390.880 + 800.780i −0.683357 + 1.39996i
\(573\) −65.9955 167.227i −0.115175 0.291844i
\(574\) 446.443 + 103.144i 0.777776 + 0.179693i
\(575\) −5.71702 + 3.30073i −0.00994265 + 0.00574039i
\(576\) −573.792 + 50.3884i −0.996166 + 0.0874799i
\(577\) 369.741 640.409i 0.640798 1.10990i −0.344457 0.938802i \(-0.611937\pi\)
0.985255 0.171093i \(-0.0547298\pi\)
\(578\) −277.244 258.617i −0.479661 0.447433i
\(579\) −843.712 + 22.6317i −1.45719 + 0.0390876i
\(580\) −18.1420 260.629i −0.0312793 0.449360i
\(581\) −82.4730 + 30.0177i −0.141950 + 0.0516656i
\(582\) −428.533 168.566i −0.736310 0.289633i
\(583\) 1041.53 183.649i 1.78649 0.315007i
\(584\) −1045.36 166.078i −1.79000 0.284380i
\(585\) −464.710 + 24.9487i −0.794377 + 0.0426474i
\(586\) 361.486 + 153.509i 0.616871 + 0.261961i
\(587\) −480.055 572.107i −0.817810 0.974628i 0.182152 0.983270i \(-0.441694\pi\)
−0.999963 + 0.00864185i \(0.997249\pi\)
\(588\) −390.763 177.930i −0.664564 0.302602i
\(589\) −83.9700 + 476.218i −0.142564 + 0.808519i
\(590\) −25.7886 + 490.589i −0.0437094 + 0.831507i
\(591\) 86.2274 + 28.7902i 0.145901 + 0.0487143i
\(592\) 625.240 + 801.317i 1.05615 + 1.35358i
\(593\) −534.250 −0.900927 −0.450463 0.892795i \(-0.648741\pi\)
−0.450463 + 0.892795i \(0.648741\pi\)
\(594\) −756.536 409.048i −1.27363 0.688634i
\(595\) 134.028i 0.225257i
\(596\) 4.01904 5.52805i 0.00674336 0.00927526i
\(597\) 696.116 142.089i 1.16602 0.238004i
\(598\) 0.855367 16.2721i 0.00143038 0.0272109i
\(599\) −709.697 125.139i −1.18480 0.208913i −0.453684 0.891163i \(-0.649890\pi\)
−0.731119 + 0.682250i \(0.761001\pi\)
\(600\) −81.7506 + 259.427i −0.136251 + 0.432378i
\(601\) 191.524 160.708i 0.318676 0.267401i −0.469391 0.882990i \(-0.655527\pi\)
0.788067 + 0.615590i \(0.211082\pi\)
\(602\) 11.5990 + 4.92564i 0.0192674 + 0.00818213i
\(603\) −327.677 + 76.0904i −0.543411 + 0.126186i
\(604\) −323.400 + 312.106i −0.535430 + 0.516731i
\(605\) −85.1596 482.964i −0.140760 0.798288i
\(606\) 74.5544 + 497.225i 0.123027 + 0.820503i
\(607\) 131.884 + 362.349i 0.217272 + 0.596951i 0.999666 0.0258331i \(-0.00822386\pi\)
−0.782394 + 0.622784i \(0.786002\pi\)
\(608\) 228.645 + 491.346i 0.376061 + 0.808135i
\(609\) −169.418 91.8468i −0.278191 0.150816i
\(610\) 38.3254 + 35.7503i 0.0628285 + 0.0586071i
\(611\) 974.684 + 562.734i 1.59523 + 0.921005i
\(612\) −358.499 18.4435i −0.585782 0.0301365i
\(613\) −214.313 371.200i −0.349613 0.605547i 0.636568 0.771221i \(-0.280354\pi\)
−0.986181 + 0.165674i \(0.947020\pi\)
\(614\) 383.845 + 88.6816i 0.625155 + 0.144433i
\(615\) −547.187 434.683i −0.889735 0.706801i
\(616\) −454.788 + 88.1777i −0.738292 + 0.143146i
\(617\) 300.247 + 251.937i 0.486624 + 0.408326i 0.852815 0.522214i \(-0.174894\pi\)
−0.366191 + 0.930540i \(0.619338\pi\)
\(618\) 669.511 757.475i 1.08335 1.22569i
\(619\) −36.0407 + 99.0211i −0.0582241 + 0.159969i −0.965394 0.260794i \(-0.916016\pi\)
0.907170 + 0.420764i \(0.138238\pi\)
\(620\) 405.830 + 116.509i 0.654564 + 0.187918i
\(621\) 15.6573 + 1.47740i 0.0252130 + 0.00237907i
\(622\) 33.4837 + 44.4490i 0.0538323 + 0.0714614i
\(623\) −73.7330 + 202.580i −0.118352 + 0.325168i
\(624\) −427.061 518.061i −0.684392 0.830227i
\(625\) −163.333 137.053i −0.261333 0.219285i
\(626\) 296.594 + 582.327i 0.473793 + 0.930234i
\(627\) −119.095 + 800.372i −0.189944 + 1.27651i
\(628\) −4.94464 11.1153i −0.00787364 0.0176996i
\(629\) 316.713 + 548.564i 0.503519 + 0.872120i
\(630\) −155.724 185.164i −0.247180 0.293911i
\(631\) 528.383 + 305.062i 0.837374 + 0.483458i 0.856371 0.516362i \(-0.172714\pi\)
−0.0189969 + 0.999820i \(0.506047\pi\)
\(632\) −294.296 490.317i −0.465658 0.775819i
\(633\) −230.861 + 141.675i −0.364710 + 0.223815i
\(634\) 107.059 164.800i 0.168863 0.259937i
\(635\) −254.922 700.391i −0.401451 1.10298i
\(636\) −199.267 + 771.530i −0.313313 + 1.21310i
\(637\) −86.9064 492.871i −0.136431 0.773738i
\(638\) 558.594 68.4969i 0.875539 0.107362i
\(639\) 79.8794 106.285i 0.125007 0.166331i
\(640\) 447.584 153.561i 0.699350 0.239939i
\(641\) 229.980 192.976i 0.358783 0.301054i −0.445523 0.895271i \(-0.646982\pi\)
0.804305 + 0.594216i \(0.202538\pi\)
\(642\) 100.706 + 61.6462i 0.156862 + 0.0960221i
\(643\) 231.774 + 40.8680i 0.360457 + 0.0635584i 0.350944 0.936396i \(-0.385861\pi\)
0.00951324 + 0.999955i \(0.496972\pi\)
\(644\) 7.02444 4.73481i 0.0109075 0.00735219i
\(645\) −12.7442 14.3862i −0.0197585 0.0223042i
\(646\) 98.6963 + 323.004i 0.152781 + 0.500006i
\(647\) 915.078i 1.41434i −0.707044 0.707170i \(-0.749972\pi\)
0.707044 0.707170i \(-0.250028\pi\)
\(648\) 516.705 391.049i 0.797385 0.603471i
\(649\) −1058.24 −1.63056
\(650\) −303.211 + 92.6485i −0.466479 + 0.142536i
\(651\) 233.127 206.518i 0.358106 0.317233i
\(652\) −88.9648 131.986i −0.136449 0.202432i
\(653\) −105.737 + 599.667i −0.161926 + 0.918326i 0.790252 + 0.612782i \(0.209950\pi\)
−0.952178 + 0.305544i \(0.901162\pi\)
\(654\) 308.762 504.396i 0.472113 0.771247i
\(655\) −530.691 632.453i −0.810215 0.965577i
\(656\) 35.8232 1007.55i 0.0546085 1.53590i
\(657\) 1095.52 466.672i 1.66746 0.710307i
\(658\) 71.2147 + 580.757i 0.108229 + 0.882610i
\(659\) 78.7669 13.8887i 0.119525 0.0210755i −0.113566 0.993530i \(-0.536227\pi\)
0.233091 + 0.972455i \(0.425116\pi\)
\(660\) 684.089 + 176.683i 1.03650 + 0.267702i
\(661\) 80.7044 29.3740i 0.122094 0.0444387i −0.280250 0.959927i \(-0.590418\pi\)
0.402345 + 0.915488i \(0.368195\pi\)
\(662\) 594.414 + 386.151i 0.897907 + 0.583310i
\(663\) −218.853 356.625i −0.330095 0.537896i
\(664\) 99.3812 + 165.576i 0.149670 + 0.249362i
\(665\) −113.817 + 197.137i −0.171154 + 0.296447i
\(666\) −1074.91 389.876i −1.61398 0.585399i
\(667\) −8.91231 + 5.14552i −0.0133618 + 0.00771443i
\(668\) −72.2109 + 32.1230i −0.108100 + 0.0480883i
\(669\) 1005.71 + 149.649i 1.50330 + 0.223691i
\(670\) 246.254 125.423i 0.367543 0.187199i
\(671\) −72.5698 + 86.4853i −0.108152 + 0.128890i
\(672\) 81.5347 339.386i 0.121331 0.505039i
\(673\) 721.132 + 262.471i 1.07152 + 0.390001i 0.816744 0.577000i \(-0.195777\pi\)
0.254774 + 0.967001i \(0.417999\pi\)
\(674\) −942.019 + 709.629i −1.39765 + 1.05286i
\(675\) −77.1836 296.109i −0.114346 0.438680i
\(676\) 29.4110 102.446i 0.0435073 0.151547i
\(677\) −50.8219 18.4976i −0.0750692 0.0273230i 0.304213 0.952604i \(-0.401607\pi\)
−0.379282 + 0.925281i \(0.623829\pi\)
\(678\) −758.030 670.001i −1.11804 0.988202i
\(679\) 179.369 213.764i 0.264167 0.314822i
\(680\) 289.511 56.1326i 0.425751 0.0825479i
\(681\) −444.625 + 559.702i −0.652900 + 0.821883i
\(682\) −204.735 + 886.166i −0.300198 + 1.29936i
\(683\) 41.0521 23.7014i 0.0601055 0.0347019i −0.469646 0.882855i \(-0.655618\pi\)
0.529752 + 0.848153i \(0.322285\pi\)
\(684\) −511.641 331.567i −0.748013 0.484747i
\(685\) −367.260 + 636.113i −0.536146 + 0.928633i
\(686\) 420.524 450.814i 0.613009 0.657163i
\(687\) 233.663 431.009i 0.340121 0.627378i
\(688\) 5.78197 27.1176i 0.00840403 0.0394151i
\(689\) −872.801 + 317.674i −1.26676 + 0.461065i
\(690\) −12.7770 + 1.91580i −0.0185174 + 0.00277652i
\(691\) −655.348 + 115.555i −0.948405 + 0.167229i −0.626394 0.779507i \(-0.715470\pi\)
−0.322011 + 0.946736i \(0.604359\pi\)
\(692\) 383.415 + 397.290i 0.554068 + 0.574118i
\(693\) 380.702 355.919i 0.549353 0.513592i
\(694\) −211.377 + 497.754i −0.304578 + 0.717224i
\(695\) −330.242 393.567i −0.475168 0.566283i
\(696\) −127.442 + 404.423i −0.183106 + 0.581067i
\(697\) 109.106 618.773i 0.156537 0.887766i
\(698\) 1029.49 + 54.1168i 1.47492 + 0.0775312i
\(699\) 87.5319 + 428.833i 0.125224 + 0.613495i
\(700\) −133.318 96.9255i −0.190454 0.138465i
\(701\) −536.019 −0.764649 −0.382325 0.924028i \(-0.624876\pi\)
−0.382325 + 0.924028i \(0.624876\pi\)
\(702\) 716.704 + 238.408i 1.02095 + 0.339613i
\(703\) 1075.82i 1.53032i
\(704\) 380.941 + 945.446i 0.541109 + 1.34296i
\(705\) 282.616 846.443i 0.400873 1.20063i
\(706\) −431.574 22.6863i −0.611295 0.0321336i
\(707\) −300.046 52.9063i −0.424394 0.0748321i
\(708\) 330.415 725.647i 0.466688 1.02493i
\(709\) 512.391 429.947i 0.722695 0.606413i −0.205434 0.978671i \(-0.565861\pi\)
0.928129 + 0.372258i \(0.121416\pi\)
\(710\) −42.6938 + 100.536i −0.0601321 + 0.141600i
\(711\) 573.592 + 291.339i 0.806740 + 0.409759i
\(712\) 468.468 + 74.4261i 0.657960 + 0.104531i
\(713\) −2.88802 16.3788i −0.00405052 0.0229716i
\(714\) 79.6278 202.431i 0.111524 0.283517i
\(715\) 281.670 + 773.883i 0.393944 + 1.08235i
\(716\) −736.157 + 51.2429i −1.02815 + 0.0715683i
\(717\) 11.6578 + 434.604i 0.0162591 + 0.606142i
\(718\) −347.122 + 372.124i −0.483456 + 0.518279i
\(719\) −541.911 312.872i −0.753701 0.435149i 0.0733289 0.997308i \(-0.476638\pi\)
−0.827029 + 0.562159i \(0.809971\pi\)
\(720\) −334.749 + 413.924i −0.464929 + 0.574894i
\(721\) 306.305 + 530.537i 0.424834 + 0.735834i
\(722\) 33.3986 144.561i 0.0462584 0.200223i
\(723\) −228.812 + 90.2999i −0.316475 + 0.124896i
\(724\) −331.082 161.609i −0.457296 0.223218i
\(725\) 153.391 + 128.710i 0.211573 + 0.177531i
\(726\) −158.313 + 780.046i −0.218062 + 1.07444i
\(727\) 484.036 1329.88i 0.665798 1.82927i 0.117334 0.993093i \(-0.462565\pi\)
0.548465 0.836174i \(-0.315213\pi\)
\(728\) 379.895 145.621i 0.521834 0.200029i
\(729\) −258.645 + 681.575i −0.354794 + 0.934945i
\(730\) −781.355 + 588.599i −1.07035 + 0.806300i
\(731\) 5.91011 16.2379i 0.00808497 0.0222133i
\(732\) −36.6456 76.7656i −0.0500623 0.104871i
\(733\) −952.728 799.434i −1.29977 1.09063i −0.990186 0.139759i \(-0.955367\pi\)
−0.309580 0.950873i \(-0.600188\pi\)
\(734\) 1011.27 515.068i 1.37776 0.701728i
\(735\) −369.118 + 145.672i −0.502202 + 0.198193i
\(736\) −13.1695 13.1903i −0.0178933 0.0179216i
\(737\) 297.647 + 515.540i 0.403863 + 0.699512i
\(738\) 568.201 + 981.620i 0.769921 + 1.33011i
\(739\) −1173.60 677.576i −1.58809 0.916883i −0.993622 0.112761i \(-0.964030\pi\)
−0.594465 0.804121i \(1.29736\pi\)
\(740\) 934.171 + 98.4844i 1.26239 + 0.133087i
\(741\) −19.0557 710.398i −0.0257162 0.958702i
\(742\) −404.929 263.055i −0.545726 0.354521i
\(743\) 272.586 + 748.924i 0.366872 + 1.00797i 0.976544 + 0.215319i \(0.0690792\pi\)
−0.609671 + 0.792654i \(0.708699\pi\)
\(744\) −543.732 417.079i −0.730822 0.560591i
\(745\) −1.09687 6.22064i −0.00147231 0.00834986i
\(746\) −88.9966 725.769i −0.119298 0.972881i
\(747\) −193.697 98.3827i −0.259300 0.131704i
\(748\) 153.485 + 616.427i 0.205194 + 0.824101i
\(749\) −54.8114 + 45.9923i −0.0731795 + 0.0614049i
\(750\) 384.887 + 708.064i 0.513183 + 0.944086i
\(751\) −1324.25 233.502i −1.76332 0.310921i −0.804292 0.594234i \(-0.797455\pi\)
−0.959027 + 0.283313i \(0.908566\pi\)
\(752\) 1224.65 397.057i 1.62853 0.528001i
\(753\) 45.5878 136.537i 0.0605416 0.181324i
\(754\) −472.678 + 144.430i −0.626894 + 0.191552i
\(755\) 415.377i 0.550168i
\(756\) 125.191 + 372.182i 0.165597 + 0.492304i