Properties

Label 108.3.j.a.31.20
Level 108
Weight 3
Character 108.31
Analytic conductor 2.943
Analytic rank 0
Dimension 204
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 108.j (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.94278685509\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 31.20
Character \(\chi\) \(=\) 108.31
Dual form 108.3.j.a.7.20

$q$-expansion

\(f(q)\) \(=\) \(q+(0.343802 - 1.97023i) q^{2} +(2.96394 + 0.463733i) q^{3} +(-3.76360 - 1.35474i) q^{4} +(0.608002 - 3.44815i) q^{5} +(1.93267 - 5.68021i) q^{6} +(-5.71739 - 6.81372i) q^{7} +(-3.96308 + 6.94939i) q^{8} +(8.56990 + 2.74895i) q^{9} +O(q^{10})\) \(q+(0.343802 - 1.97023i) q^{2} +(2.96394 + 0.463733i) q^{3} +(-3.76360 - 1.35474i) q^{4} +(0.608002 - 3.44815i) q^{5} +(1.93267 - 5.68021i) q^{6} +(-5.71739 - 6.81372i) q^{7} +(-3.96308 + 6.94939i) q^{8} +(8.56990 + 2.74895i) q^{9} +(-6.58462 - 2.38339i) q^{10} +(5.38256 - 0.949091i) q^{11} +(-10.5269 - 5.76067i) q^{12} +(21.3373 - 7.76615i) q^{13} +(-15.3902 + 8.92199i) q^{14} +(3.40111 - 9.93818i) q^{15} +(12.3294 + 10.1974i) q^{16} +(-8.12631 + 14.0752i) q^{17} +(8.36242 - 15.9396i) q^{18} +(-19.5372 + 11.2798i) q^{19} +(-6.95962 + 12.1538i) q^{20} +(-13.7863 - 22.8468i) q^{21} +(-0.0193895 - 10.9312i) q^{22} +(-22.1707 + 26.4221i) q^{23} +(-14.9690 + 18.7598i) q^{24} +(11.9722 + 4.35753i) q^{25} +(-7.96527 - 44.7094i) q^{26} +(24.1259 + 12.1219i) q^{27} +(12.2872 + 33.3897i) q^{28} +(24.1480 + 8.78914i) q^{29} +(-18.4112 - 10.1177i) q^{30} +(14.3967 - 17.1573i) q^{31} +(24.3300 - 20.7858i) q^{32} +(16.3937 - 0.316980i) q^{33} +(24.9375 + 20.8498i) q^{34} +(-26.9709 + 15.5717i) q^{35} +(-28.5296 - 21.9559i) q^{36} +(7.88574 - 13.6585i) q^{37} +(15.5069 + 42.3708i) q^{38} +(66.8440 - 13.1236i) q^{39} +(21.5530 + 17.8905i) q^{40} +(-49.6190 + 18.0598i) q^{41} +(-49.7532 + 19.3073i) q^{42} +(9.61800 - 1.69591i) q^{43} +(-21.5436 - 3.71996i) q^{44} +(14.6893 - 27.8790i) q^{45} +(44.4351 + 52.7654i) q^{46} +(14.9904 + 17.8648i) q^{47} +(31.8147 + 35.9420i) q^{48} +(-5.22945 + 29.6577i) q^{49} +(12.7014 - 22.0899i) q^{50} +(-30.6130 + 37.9496i) q^{51} +(-90.8262 + 0.322212i) q^{52} +4.09859 q^{53} +(32.1774 - 43.3660i) q^{54} -19.1370i q^{55} +(70.0096 - 12.7291i) q^{56} +(-63.1380 + 24.3727i) q^{57} +(25.6187 - 44.5553i) q^{58} +(28.0094 + 4.93882i) q^{59} +(-26.2640 + 32.7957i) q^{60} +(-31.1357 + 26.1260i) q^{61} +(-28.8541 - 34.2634i) q^{62} +(-30.2669 - 74.1097i) q^{63} +(-32.5881 - 55.0819i) q^{64} +(-13.8057 - 78.2962i) q^{65} +(5.01168 - 32.4084i) q^{66} +(-30.9299 - 84.9793i) q^{67} +(49.6523 - 41.9643i) q^{68} +(-77.9656 + 68.0321i) q^{69} +(21.4071 + 58.4924i) q^{70} +(-87.8991 - 50.7486i) q^{71} +(-53.0667 + 48.6613i) q^{72} +(-16.0025 - 27.7171i) q^{73} +(-24.1992 - 20.2325i) q^{74} +(33.4642 + 18.4674i) q^{75} +(88.8115 - 15.9849i) q^{76} +(-37.2410 - 31.2489i) q^{77} +(-2.87538 - 136.210i) q^{78} +(-8.65102 + 23.7685i) q^{79} +(42.6584 - 36.3135i) q^{80} +(65.8865 + 47.1165i) q^{81} +(18.5229 + 103.970i) q^{82} +(-16.3859 + 45.0198i) q^{83} +(20.9345 + 104.663i) q^{84} +(43.5925 + 36.5785i) q^{85} +(-0.0346467 - 19.5327i) q^{86} +(67.4973 + 37.2487i) q^{87} +(-14.7359 + 41.1668i) q^{88} +(45.0663 + 78.0571i) q^{89} +(-49.8777 - 38.5262i) q^{90} +(-174.910 - 100.984i) q^{91} +(119.237 - 69.4065i) q^{92} +(50.6272 - 44.1769i) q^{93} +(40.3515 - 23.3925i) q^{94} +(27.0159 + 74.2255i) q^{95} +(81.7519 - 50.3253i) q^{96} +(-25.7741 - 146.172i) q^{97} +(56.6346 + 20.4996i) q^{98} +(48.7371 + 6.66280i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} + O(q^{10}) \) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} - 3q^{10} + 39q^{12} - 12q^{13} + 39q^{14} - 6q^{16} - 6q^{17} - 27q^{18} - 69q^{20} - 12q^{21} - 6q^{22} - 138q^{24} - 12q^{25} - 174q^{26} - 12q^{28} + 60q^{29} - 153q^{30} - 96q^{32} + 48q^{33} + 6q^{34} + 24q^{36} - 6q^{37} + 72q^{38} + 69q^{40} - 192q^{41} - 126q^{42} - 219q^{44} - 132q^{45} - 3q^{46} - 219q^{48} - 12q^{49} - 165q^{50} + 21q^{52} - 24q^{53} + 78q^{54} + 99q^{56} - 150q^{57} - 141q^{58} + 210q^{60} - 12q^{61} + 294q^{62} - 3q^{64} - 156q^{65} + 393q^{66} + 375q^{68} - 60q^{69} - 165q^{70} + 228q^{72} - 6q^{73} + 447q^{74} - 54q^{76} + 132q^{77} + 750q^{78} + 798q^{80} + 228q^{81} - 12q^{82} + 762q^{84} + 138q^{85} + 606q^{86} - 198q^{88} - 114q^{89} + 894q^{90} + 723q^{92} - 1020q^{93} - 357q^{94} + 474q^{96} + 168q^{97} + 510q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.343802 1.97023i 0.171901 0.985114i
\(3\) 2.96394 + 0.463733i 0.987981 + 0.154578i
\(4\) −3.76360 1.35474i −0.940900 0.338684i
\(5\) 0.608002 3.44815i 0.121600 0.689631i −0.861669 0.507471i \(-0.830580\pi\)
0.983269 0.182159i \(-0.0583086\pi\)
\(6\) 1.93267 5.68021i 0.322112 0.946702i
\(7\) −5.71739 6.81372i −0.816769 0.973388i 0.183184 0.983079i \(-0.441360\pi\)
−0.999953 + 0.00969079i \(0.996915\pi\)
\(8\) −3.96308 + 6.94939i −0.495385 + 0.868674i
\(9\) 8.56990 + 2.74895i 0.952212 + 0.305439i
\(10\) −6.58462 2.38339i −0.658462 0.238339i
\(11\) 5.38256 0.949091i 0.489324 0.0862810i 0.0764579 0.997073i \(-0.475639\pi\)
0.412866 + 0.910792i \(0.364528\pi\)
\(12\) −10.5269 5.76067i −0.877238 0.480056i
\(13\) 21.3373 7.76615i 1.64133 0.597396i 0.654061 0.756442i \(-0.273064\pi\)
0.987271 + 0.159046i \(0.0508418\pi\)
\(14\) −15.3902 + 8.92199i −1.09930 + 0.637285i
\(15\) 3.40111 9.93818i 0.226740 0.662545i
\(16\) 12.3294 + 10.1974i 0.770586 + 0.637336i
\(17\) −8.12631 + 14.0752i −0.478018 + 0.827951i −0.999682 0.0251993i \(-0.991978\pi\)
0.521664 + 0.853151i \(0.325311\pi\)
\(18\) 8.36242 15.9396i 0.464579 0.885532i
\(19\) −19.5372 + 11.2798i −1.02828 + 0.593675i −0.916490 0.400057i \(-0.868990\pi\)
−0.111785 + 0.993732i \(0.535657\pi\)
\(20\) −6.95962 + 12.1538i −0.347981 + 0.607689i
\(21\) −13.7863 22.8468i −0.656488 1.08794i
\(22\) −0.0193895 10.9312i −0.000881340 0.496872i
\(23\) −22.1707 + 26.4221i −0.963945 + 1.14879i 0.0248778 + 0.999690i \(0.492080\pi\)
−0.988823 + 0.149095i \(0.952364\pi\)
\(24\) −14.9690 + 18.7598i −0.623708 + 0.781658i
\(25\) 11.9722 + 4.35753i 0.478889 + 0.174301i
\(26\) −7.96527 44.7094i −0.306357 1.71959i
\(27\) 24.1259 + 12.1219i 0.893553 + 0.448959i
\(28\) 12.2872 + 33.3897i 0.438827 + 1.19249i
\(29\) 24.1480 + 8.78914i 0.832688 + 0.303074i 0.722962 0.690888i \(-0.242780\pi\)
0.109727 + 0.993962i \(0.465002\pi\)
\(30\) −18.4112 10.1177i −0.613706 0.337257i
\(31\) 14.3967 17.1573i 0.464408 0.553460i −0.482110 0.876111i \(-0.660129\pi\)
0.946518 + 0.322651i \(0.104574\pi\)
\(32\) 24.3300 20.7858i 0.760314 0.649556i
\(33\) 16.3937 0.316980i 0.496780 0.00960546i
\(34\) 24.9375 + 20.8498i 0.733455 + 0.613228i
\(35\) −26.9709 + 15.5717i −0.770598 + 0.444905i
\(36\) −28.5296 21.9559i −0.792488 0.609887i
\(37\) 7.88574 13.6585i 0.213128 0.369149i −0.739564 0.673086i \(-0.764968\pi\)
0.952692 + 0.303938i \(0.0983015\pi\)
\(38\) 15.5069 + 42.3708i 0.408076 + 1.11502i
\(39\) 66.8440 13.1236i 1.71395 0.336503i
\(40\) 21.5530 + 17.8905i 0.538825 + 0.447264i
\(41\) −49.6190 + 18.0598i −1.21022 + 0.440484i −0.866780 0.498691i \(-0.833814\pi\)
−0.343439 + 0.939175i \(0.611592\pi\)
\(42\) −49.7532 + 19.3073i −1.18460 + 0.459698i
\(43\) 9.61800 1.69591i 0.223674 0.0394398i −0.0606877 0.998157i \(-0.519329\pi\)
0.284362 + 0.958717i \(0.408218\pi\)
\(44\) −21.5436 3.71996i −0.489627 0.0845446i
\(45\) 14.6893 27.8790i 0.326430 0.619533i
\(46\) 44.4351 + 52.7654i 0.965981 + 1.14707i
\(47\) 14.9904 + 17.8648i 0.318944 + 0.380103i 0.901567 0.432640i \(-0.142418\pi\)
−0.582623 + 0.812743i \(0.697973\pi\)
\(48\) 31.8147 + 35.9420i 0.662806 + 0.748791i
\(49\) −5.22945 + 29.6577i −0.106724 + 0.605259i
\(50\) 12.7014 22.0899i 0.254028 0.441798i
\(51\) −30.6130 + 37.9496i −0.600255 + 0.744109i
\(52\) −90.8262 + 0.322212i −1.74666 + 0.00619638i
\(53\) 4.09859 0.0773318 0.0386659 0.999252i \(-0.487689\pi\)
0.0386659 + 0.999252i \(0.487689\pi\)
\(54\) 32.1774 43.3660i 0.595878 0.803075i
\(55\) 19.1370i 0.347945i
\(56\) 70.0096 12.7291i 1.25017 0.227305i
\(57\) −63.1380 + 24.3727i −1.10769 + 0.427591i
\(58\) 25.6187 44.5553i 0.441702 0.768194i
\(59\) 28.0094 + 4.93882i 0.474736 + 0.0837088i 0.405897 0.913919i \(-0.366959\pi\)
0.0688395 + 0.997628i \(0.478070\pi\)
\(60\) −26.2640 + 32.7957i −0.437734 + 0.546595i
\(61\) −31.1357 + 26.1260i −0.510422 + 0.428295i −0.861278 0.508135i \(-0.830335\pi\)
0.350856 + 0.936430i \(0.385891\pi\)
\(62\) −28.8541 34.2634i −0.465389 0.552635i
\(63\) −30.2669 74.1097i −0.480426 1.17634i
\(64\) −32.5881 55.0819i −0.509188 0.860655i
\(65\) −13.8057 78.2962i −0.212396 1.20456i
\(66\) 5.01168 32.4084i 0.0759345 0.491036i
\(67\) −30.9299 84.9793i −0.461641 1.26835i −0.924251 0.381785i \(-0.875309\pi\)
0.462610 0.886562i \(1.65309\pi\)
\(68\) 49.6523 41.9643i 0.730181 0.617122i
\(69\) −77.9656 + 68.0321i −1.12994 + 0.985973i
\(70\) 21.4071 + 58.4924i 0.305815 + 0.835606i
\(71\) −87.8991 50.7486i −1.23802 0.714769i −0.269328 0.963049i \(-0.586801\pi\)
−0.968688 + 0.248280i \(0.920135\pi\)
\(72\) −53.0667 + 48.6613i −0.737038 + 0.675851i
\(73\) −16.0025 27.7171i −0.219212 0.379687i 0.735355 0.677682i \(-0.237015\pi\)
−0.954567 + 0.297995i \(0.903682\pi\)
\(74\) −24.1992 20.2325i −0.327017 0.273412i
\(75\) 33.4642 + 18.4674i 0.446190 + 0.246232i
\(76\) 88.8115 15.9849i 1.16857 0.210328i
\(77\) −37.2410 31.2489i −0.483650 0.405830i
\(78\) −2.87538 136.210i −0.0368639 1.74628i
\(79\) −8.65102 + 23.7685i −0.109507 + 0.300867i −0.982326 0.187176i \(-0.940067\pi\)
0.872820 + 0.488042i \(0.162289\pi\)
\(80\) 42.6584 36.3135i 0.533230 0.453919i
\(81\) 65.8865 + 47.1165i 0.813414 + 0.581686i
\(82\) 18.5229 + 103.970i 0.225889 + 1.26792i
\(83\) −16.3859 + 45.0198i −0.197420 + 0.542408i −0.998416 0.0562623i \(-0.982082\pi\)
0.800996 + 0.598670i \(0.204304\pi\)
\(84\) 20.9345 + 104.663i 0.249221 + 1.24599i
\(85\) 43.5925 + 36.5785i 0.512853 + 0.430335i
\(86\) −0.0346467 19.5327i −0.000402868 0.227125i
\(87\) 67.4973 + 37.2487i 0.775832 + 0.428146i
\(88\) −14.7359 + 41.1668i −0.167453 + 0.467805i
\(89\) 45.0663 + 78.0571i 0.506363 + 0.877047i 0.999973 + 0.00736306i \(0.00234375\pi\)
−0.493610 + 0.869683i \(0.664323\pi\)
\(90\) −49.8777 38.5262i −0.554197 0.428069i
\(91\) −174.910 100.984i −1.92209 1.10972i
\(92\) 119.237 69.4065i 1.29605 0.754419i
\(93\) 50.6272 44.1769i 0.544379 0.475021i
\(94\) 40.3515 23.3925i 0.429271 0.248856i
\(95\) 27.0159 + 74.2255i 0.284378 + 0.781321i
\(96\) 81.7519 50.3253i 0.851582 0.524222i
\(97\) −25.7741 146.172i −0.265713 1.50693i −0.766998 0.641650i \(-0.778250\pi\)
0.501285 0.865282i \(-0.332861\pi\)
\(98\) 56.6346 + 20.4996i 0.577904 + 0.209180i
\(99\) 48.7371 + 6.66280i 0.492293 + 0.0673010i
\(100\) −39.1553 32.6192i −0.391553 0.326192i
\(101\) 7.81270 6.55563i 0.0773534 0.0649072i −0.603291 0.797521i \(-0.706144\pi\)
0.680645 + 0.732614i \(0.261700\pi\)
\(102\) 64.2445 + 73.3618i 0.629848 + 0.719233i
\(103\) 14.2078 + 2.50522i 0.137940 + 0.0243226i 0.242192 0.970228i \(-0.422134\pi\)
−0.104252 + 0.994551i \(0.533245\pi\)
\(104\) −30.5914 + 179.059i −0.294148 + 1.72172i
\(105\) −87.1613 + 33.6462i −0.830108 + 0.320440i
\(106\) 1.40910 8.07515i 0.0132934 0.0761807i
\(107\) 81.7160i 0.763701i 0.924224 + 0.381851i \(0.124713\pi\)
−0.924224 + 0.381851i \(0.875287\pi\)
\(108\) −74.3783 78.3062i −0.688688 0.725058i
\(109\) −193.369 −1.77402 −0.887012 0.461747i \(-0.847223\pi\)
−0.887012 + 0.461747i \(0.847223\pi\)
\(110\) −37.7042 6.57932i −0.342765 0.0598120i
\(111\) 29.7068 36.8261i 0.267628 0.331767i
\(112\) −1.00973 142.311i −0.00901544 1.27064i
\(113\) 0.255201 1.44731i 0.00225841 0.0128081i −0.983658 0.180049i \(-0.942375\pi\)
0.985916 + 0.167240i \(0.0534856\pi\)
\(114\) 26.3128 + 132.776i 0.230814 + 1.16470i
\(115\) 77.6274 + 92.5128i 0.675021 + 0.804459i
\(116\) −78.9763 65.7930i −0.680830 0.567181i
\(117\) 204.208 7.89985i 1.74536 0.0675201i
\(118\) 19.3603 53.4870i 0.164070 0.453280i
\(119\) 142.365 25.1029i 1.19635 0.210949i
\(120\) 55.5854 + 63.0214i 0.463212 + 0.525178i
\(121\) −85.6316 + 31.1674i −0.707699 + 0.257581i
\(122\) 40.7696 + 70.3267i 0.334177 + 0.576448i
\(123\) −155.443 + 30.5184i −1.26376 + 0.248117i
\(124\) −77.4268 + 45.0694i −0.624410 + 0.363463i
\(125\) 66.0714 114.439i 0.528571 0.915512i
\(126\) −156.419 + 34.1536i −1.24142 + 0.271060i
\(127\) 136.000 78.5197i 1.07087 0.618266i 0.142449 0.989802i \(-0.454502\pi\)
0.928418 + 0.371537i \(0.121169\pi\)
\(128\) −119.728 + 45.2686i −0.935374 + 0.353661i
\(129\) 29.2936 0.566406i 0.227082 0.00439074i
\(130\) −159.008 + 0.282044i −1.22314 + 0.00216957i
\(131\) −32.6480 + 38.9084i −0.249222 + 0.297011i −0.876123 0.482088i \(-0.839879\pi\)
0.626901 + 0.779099i \(0.284323\pi\)
\(132\) −62.1289 21.0162i −0.470673 0.159214i
\(133\) 188.559 + 68.6300i 1.41774 + 0.516015i
\(134\) −178.062 + 31.7230i −1.32882 + 0.236738i
\(135\) 56.4667 75.8197i 0.418272 0.561628i
\(136\) −65.6087 112.254i −0.482417 0.825396i
\(137\) 83.6505 + 30.4463i 0.610588 + 0.222236i 0.628760 0.777599i \(-0.283563\pi\)
−0.0181727 + 0.999835i \(0.505785\pi\)
\(138\) 107.234 + 177.000i 0.777059 + 1.28261i
\(139\) −44.4026 + 52.9170i −0.319443 + 0.380698i −0.901740 0.432279i \(-0.857710\pi\)
0.582297 + 0.812976i \(0.302154\pi\)
\(140\) 122.603 22.0670i 0.875738 0.157622i
\(141\) 36.1461 + 59.9018i 0.256355 + 0.424836i
\(142\) −130.206 + 155.734i −0.916945 + 1.09672i
\(143\) 107.479 62.0528i 0.751599 0.433936i
\(144\) 77.6294 + 121.283i 0.539093 + 0.842246i
\(145\) 44.9883 77.9220i 0.310264 0.537393i
\(146\) −60.1108 + 21.9994i −0.411718 + 0.150681i
\(147\) −29.2530 + 85.4786i −0.199000 + 0.581487i
\(148\) −48.1824 + 40.7220i −0.325557 + 0.275149i
\(149\) −200.510 + 72.9797i −1.34571 + 0.489797i −0.911605 0.411067i \(-0.865156\pi\)
−0.434101 + 0.900864i \(0.642934\pi\)
\(150\) 47.8900 59.5831i 0.319267 0.397220i
\(151\) 70.6394 12.4556i 0.467811 0.0824877i 0.0652263 0.997870i \(-0.479223\pi\)
0.402585 + 0.915383i \(0.368112\pi\)
\(152\) −0.960374 180.475i −0.00631825 1.18733i
\(153\) −108.334 + 98.2841i −0.708063 + 0.642379i
\(154\) −74.3711 + 62.6299i −0.482929 + 0.406688i
\(155\) −50.4077 60.0735i −0.325211 0.387571i
\(156\) −269.353 41.1641i −1.72662 0.263872i
\(157\) −45.4824 + 257.943i −0.289697 + 1.64295i 0.398312 + 0.917250i \(0.369596\pi\)
−0.688009 + 0.725702i \(0.741515\pi\)
\(158\) 43.8551 + 25.2161i 0.277564 + 0.159596i
\(159\) 12.1480 + 1.90065i 0.0764023 + 0.0119538i
\(160\) −56.8799 96.5315i −0.355499 0.603322i
\(161\) 306.791 1.90553
\(162\) 115.482 113.613i 0.712854 0.701313i
\(163\) 302.114i 1.85346i 0.375725 + 0.926731i \(0.377394\pi\)
−0.375725 + 0.926731i \(0.622606\pi\)
\(164\) 211.212 0.749290i 1.28788 0.00456884i
\(165\) 8.87443 56.7208i 0.0537844 0.343762i
\(166\) 83.0659 + 47.7619i 0.500397 + 0.287722i
\(167\) −111.528 19.6654i −0.667833 0.117757i −0.170555 0.985348i \(-0.554556\pi\)
−0.497278 + 0.867591i \(0.665667\pi\)
\(168\) 213.407 5.26249i 1.27028 0.0313243i
\(169\) 265.506 222.786i 1.57104 1.31826i
\(170\) 87.0552 73.3115i 0.512089 0.431244i
\(171\) −198.440 + 42.9601i −1.16047 + 0.251229i
\(172\) −38.4958 6.64713i −0.223813 0.0386461i
\(173\) −47.6724 270.364i −0.275563 1.56280i −0.737168 0.675710i \(-0.763837\pi\)
0.461605 0.887086i \(-0.347274\pi\)
\(174\) 96.5942 120.179i 0.555139 0.690684i
\(175\) −38.7588 106.489i −0.221479 0.608509i
\(176\) 76.0419 + 43.1863i 0.432056 + 0.245377i
\(177\) 80.7280 + 27.6273i 0.456091 + 0.156086i
\(178\) 169.284 61.9547i 0.951035 0.348060i
\(179\) −42.5533 24.5682i −0.237728 0.137252i 0.376404 0.926456i \(-0.377160\pi\)
−0.614132 + 0.789203i \(0.710494\pi\)
\(180\) −93.0535 + 85.0251i −0.516964 + 0.472362i
\(181\) −71.8830 124.505i −0.397144 0.687873i 0.596229 0.802815i \(-0.296665\pi\)
−0.993372 + 0.114942i \(0.963332\pi\)
\(182\) −259.097 + 309.894i −1.42361 + 1.70271i
\(183\) −104.400 + 62.9973i −0.570492 + 0.344247i
\(184\) −95.7529 258.786i −0.520396 1.40644i
\(185\) −42.3020 35.4956i −0.228660 0.191868i
\(186\) −69.6329 114.935i −0.374370 0.617932i
\(187\) −30.3817 + 83.4731i −0.162469 + 0.446380i
\(188\) −32.2156 87.5441i −0.171360 0.465660i
\(189\) −55.3421 233.693i −0.292815 1.23647i
\(190\) 155.529 27.7086i 0.818576 0.145835i
\(191\) 96.1293 264.113i 0.503295 1.38279i −0.384744 0.923023i \(-0.625710\pi\)
0.888039 0.459768i \(-0.152067\pi\)
\(192\) −71.0458 178.372i −0.370030 0.929020i
\(193\) 133.817 + 112.286i 0.693352 + 0.581791i 0.919874 0.392215i \(-0.128291\pi\)
−0.226522 + 0.974006i \(0.572735\pi\)
\(194\) −296.854 + 0.526553i −1.53018 + 0.00271419i
\(195\) −4.61088 238.467i −0.0236455 1.22291i
\(196\) 59.8600 104.535i 0.305408 0.533343i
\(197\) 75.0398 + 129.973i 0.380913 + 0.659761i 0.991193 0.132425i \(-0.0422764\pi\)
−0.610280 + 0.792186i \(0.708943\pi\)
\(198\) 29.8831 93.7324i 0.150925 0.473396i
\(199\) 144.287 + 83.3043i 0.725062 + 0.418615i 0.816613 0.577186i \(-0.195849\pi\)
−0.0915512 + 0.995800i \(0.529183\pi\)
\(200\) −77.7290 + 65.9304i −0.388645 + 0.329652i
\(201\) −52.2668 266.217i −0.260034 1.32446i
\(202\) −10.2301 17.6466i −0.0506439 0.0873596i
\(203\) −78.1765 214.788i −0.385106 1.05807i
\(204\) 166.627 101.354i 0.816798 0.496835i
\(205\) 32.1046 + 182.074i 0.156608 + 0.888167i
\(206\) 9.82054 27.1314i 0.0476725 0.131706i
\(207\) −262.634 + 165.488i −1.26876 + 0.799460i
\(208\) 342.270 + 121.833i 1.64553 + 0.585736i
\(209\) −94.4548 + 79.2570i −0.451937 + 0.379220i
\(210\) 36.3245 + 183.295i 0.172974 + 0.872835i
\(211\) 305.846 + 53.9289i 1.44951 + 0.255587i 0.842323 0.538974i \(-0.181188\pi\)
0.607184 + 0.794561i \(0.292299\pi\)
\(212\) −15.4254 5.55251i −0.0727615 0.0261911i
\(213\) −236.994 191.178i −1.11265 0.897547i
\(214\) 160.999 + 28.0942i 0.752333 + 0.131281i
\(215\) 34.1954i 0.159049i
\(216\) −179.853 + 119.620i −0.832651 + 0.553798i
\(217\) −199.216 −0.918046
\(218\) −66.4805 + 380.980i −0.304957 + 1.74762i
\(219\) −34.5771 89.5729i −0.157886 0.409008i
\(220\) −25.9255 + 72.0238i −0.117843 + 0.327381i
\(221\) −64.0837 + 363.437i −0.289971 + 1.64451i
\(222\) −62.3426 71.1900i −0.280823 0.320676i
\(223\) 12.9953 + 15.4873i 0.0582751 + 0.0694496i 0.794395 0.607402i \(-0.207788\pi\)
−0.736119 + 0.676852i \(0.763344\pi\)
\(224\) −280.733 46.9375i −1.25327 0.209542i
\(225\) 90.6221 + 70.2547i 0.402765 + 0.312243i
\(226\) −2.76380 1.00039i −0.0122292 0.00442652i
\(227\) 46.8151 8.25477i 0.206234 0.0363646i −0.0695767 0.997577i \(-0.522165\pi\)
0.275811 + 0.961212i \(0.411054\pi\)
\(228\) 270.645 6.19360i 1.18704 0.0271649i
\(229\) 66.3275 24.1412i 0.289640 0.105420i −0.193114 0.981176i \(-0.561859\pi\)
0.482754 + 0.875756i \(0.339637\pi\)
\(230\) 208.960 121.138i 0.908521 0.526686i
\(231\) −95.8891 109.890i −0.415104 0.475714i
\(232\) −156.779 + 132.982i −0.675773 + 0.573196i
\(233\) −191.622 + 331.898i −0.822411 + 1.42446i 0.0814716 + 0.996676i \(0.474038\pi\)
−0.903882 + 0.427781i \(0.859295\pi\)
\(234\) 54.6425 405.051i 0.233515 1.73099i
\(235\) 70.7149 40.8272i 0.300914 0.173733i
\(236\) −98.7255 56.5332i −0.418328 0.239547i
\(237\) −36.6633 + 66.4366i −0.154698 + 0.280323i
\(238\) −0.512840 289.123i −0.00215479 1.21480i
\(239\) 220.713 263.036i 0.923486 1.10057i −0.0711850 0.997463i \(-0.522678\pi\)
0.994671 0.103104i \(-0.0328775\pi\)
\(240\) 143.277 87.8491i 0.596987 0.366038i
\(241\) −226.848 82.5658i −0.941276 0.342597i −0.174607 0.984638i \(-0.555865\pi\)
−0.766670 + 0.642042i \(0.778088\pi\)
\(242\) 31.9665 + 179.429i 0.132093 + 0.741443i
\(243\) 173.434 + 170.204i 0.713721 + 0.700430i
\(244\) 152.576 56.1470i 0.625313 0.230111i
\(245\) 99.0848 + 36.0639i 0.404428 + 0.147200i
\(246\) 6.68658 + 316.750i 0.0271812 + 1.28760i
\(247\) −329.271 + 392.410i −1.33308 + 1.58871i
\(248\) 62.1775 + 168.043i 0.250716 + 0.677595i
\(249\) −69.4440 + 125.838i −0.278892 + 0.505372i
\(250\) −202.756 169.520i −0.811022 0.678081i
\(251\) −36.5452 + 21.0994i −0.145598 + 0.0840612i −0.571029 0.820930i \(-0.693456\pi\)
0.425431 + 0.904991i \(0.360122\pi\)
\(252\) 13.5131 + 319.923i 0.0536236 + 1.26954i
\(253\) −94.2584 + 163.260i −0.372563 + 0.645298i
\(254\) −107.945 294.947i −0.424979 1.16121i
\(255\) 112.243 + 128.632i 0.440169 + 0.504438i
\(256\) 48.0268 + 251.455i 0.187605 + 0.982245i
\(257\) 201.446 73.3205i 0.783838 0.285294i 0.0810661 0.996709i \(-0.474168\pi\)
0.702772 + 0.711415i \(0.251945\pi\)
\(258\) 8.95526 57.9099i 0.0347103 0.224457i
\(259\) −138.151 + 24.3597i −0.533401 + 0.0940530i
\(260\) −54.1115 + 313.379i −0.208121 + 1.20530i
\(261\) 182.785 + 141.704i 0.700325 + 0.542926i
\(262\) 65.4340 + 77.7009i 0.249748 + 0.296568i
\(263\) −68.4293 81.5508i −0.260187 0.310079i 0.620098 0.784525i \(-0.287093\pi\)
−0.880285 + 0.474446i \(0.842649\pi\)
\(264\) −62.7668 + 115.183i −0.237753 + 0.436298i
\(265\) 2.49195 14.1326i 0.00940359 0.0533304i
\(266\) 200.044 347.910i 0.752045 1.30793i
\(267\) 97.3763 + 252.256i 0.364705 + 0.944777i
\(268\) 1.28326 + 361.730i 0.00478829 + 1.34974i
\(269\) −443.421 −1.64841 −0.824203 0.566294i \(-0.808377\pi\)
−0.824203 + 0.566294i \(0.808377\pi\)
\(270\) −129.969 137.319i −0.481366 0.508590i
\(271\) 315.051i 1.16255i −0.813707 0.581275i \(-0.802554\pi\)
0.813707 0.581275i \(-0.197446\pi\)
\(272\) −243.722 + 90.6710i −0.896037 + 0.333349i
\(273\) −471.593 380.423i −1.72745 1.39349i
\(274\) 88.7454 154.343i 0.323888 0.563296i
\(275\) 68.5769 + 12.0920i 0.249371 + 0.0439708i
\(276\) 385.597 150.423i 1.39709 0.545011i
\(277\) 123.961 104.016i 0.447514 0.375509i −0.390999 0.920391i \(-0.627870\pi\)
0.838512 + 0.544883i \(0.183426\pi\)
\(278\) 88.9928 + 105.676i 0.320118 + 0.380130i
\(279\) 170.542 107.460i 0.611263 0.385163i
\(280\) −1.32578 249.143i −0.00473495 0.889797i
\(281\) −72.5198 411.280i −0.258078 1.46363i −0.788048 0.615614i \(-0.788908\pi\)
0.529970 0.848016i \(-0.322203\pi\)
\(282\) 130.447 50.6217i 0.462580 0.179509i
\(283\) 18.4189 + 50.6056i 0.0650845 + 0.178818i 0.967972 0.251059i \(-0.0807789\pi\)
−0.902887 + 0.429878i \(0.858557\pi\)
\(284\) 262.066 + 310.078i 0.922768 + 1.09182i
\(285\) 45.6527 + 232.528i 0.160185 + 0.815889i
\(286\) −85.3069 233.091i −0.298276 0.815005i
\(287\) 406.745 + 234.835i 1.41723 + 0.818239i
\(288\) 265.645 111.250i 0.922379 0.386285i
\(289\) 12.4263 + 21.5230i 0.0429976 + 0.0744741i
\(290\) −138.057 115.427i −0.476059 0.398024i
\(291\) −8.60812 445.199i −0.0295812 1.52989i
\(292\) 22.6775 + 125.995i 0.0776628 + 0.431491i
\(293\) −188.522 158.189i −0.643419 0.539893i 0.261647 0.965164i \(-0.415734\pi\)
−0.905066 + 0.425271i \(0.860179\pi\)
\(294\) 158.355 + 87.0229i 0.538623 + 0.295996i
\(295\) 34.0596 93.5780i 0.115456 0.317214i
\(296\) 63.6664 + 108.931i 0.215089 + 0.368009i
\(297\) 141.364 + 42.3491i 0.475973 + 0.142590i
\(298\) 74.8509 + 420.142i 0.251178 + 1.40987i
\(299\) −267.866 + 735.957i −0.895874 + 2.46139i
\(300\) −100.928 114.839i −0.336425 0.382797i
\(301\) −66.5453 55.8381i −0.221081 0.185509i
\(302\) −0.254463 143.458i −0.000842592 0.475027i
\(303\) 26.1964 15.8075i 0.0864569 0.0521700i
\(304\) −355.907 60.1554i −1.17075 0.197880i
\(305\) 71.1558 + 123.245i 0.233298 + 0.404084i
\(306\) 156.397 + 247.232i 0.511100 + 0.807949i
\(307\) 237.614 + 137.186i 0.773987 + 0.446861i 0.834295 0.551318i \(-0.185875\pi\)
−0.0603082 + 0.998180i \(0.519208\pi\)
\(308\) 97.8262 + 168.060i 0.317618 + 0.545650i
\(309\) 40.9494 + 14.0140i 0.132522 + 0.0453527i
\(310\) −135.689 + 78.6612i −0.437706 + 0.253746i
\(311\) −4.91549 13.5052i −0.0158054 0.0434251i 0.931539 0.363641i \(-0.118467\pi\)
−0.947344 + 0.320216i \(0.896244\pi\)
\(312\) −173.707 + 516.535i −0.556752 + 1.65556i
\(313\) 3.07623 + 17.4462i 0.00982822 + 0.0557386i 0.989327 0.145709i \(-0.0465464\pi\)
−0.979499 + 0.201448i \(0.935435\pi\)
\(314\) 492.571 + 178.292i 1.56870 + 0.567810i
\(315\) −273.944 + 59.3059i −0.869663 + 0.188273i
\(316\) 64.7590 77.7352i 0.204934 0.245997i
\(317\) 20.5145 17.2137i 0.0647144 0.0543018i −0.609857 0.792512i \(-0.708773\pi\)
0.674571 + 0.738210i \(0.264329\pi\)
\(318\) 7.92121 23.2808i 0.0249095 0.0732102i
\(319\) 138.320 + 24.3895i 0.433604 + 0.0764560i
\(320\) −209.745 + 78.8787i −0.655452 + 0.246496i
\(321\) −37.8944 + 242.202i −0.118051 + 0.754522i
\(322\) 105.475 604.448i 0.327563 1.87717i
\(323\) 366.653i 1.13515i
\(324\) −184.140 266.587i −0.568333 0.822799i
\(325\) 289.296 0.890143
\(326\) 595.234 + 103.868i 1.82587 + 0.318612i
\(327\) −573.133 89.6713i −1.75270 0.274224i
\(328\) 71.1390 416.394i 0.216887 1.26949i
\(329\) 36.0201 204.280i 0.109484 0.620913i
\(330\) −108.702 36.9854i −0.329400 0.112077i
\(331\) −171.799 204.742i −0.519031 0.618557i 0.441320 0.897350i \(-0.354510\pi\)
−0.960351 + 0.278793i \(0.910066\pi\)
\(332\) 122.660 147.238i 0.369458 0.443488i
\(333\) 105.127 95.3745i 0.315695 0.286410i
\(334\) −77.0890 + 212.975i −0.230805 + 0.637649i
\(335\) −311.827 + 54.9835i −0.930827 + 0.164130i
\(336\) 63.0016 422.270i 0.187505 1.25676i
\(337\) −45.3861 + 16.5192i −0.134677 + 0.0490184i −0.408479 0.912768i \(-0.633941\pi\)
0.273802 + 0.961786i \(0.411719\pi\)
\(338\) −347.658 599.703i −1.02858 1.77427i
\(339\) 1.42757 4.17141i 0.00421111 0.0123050i
\(340\) −114.511 196.723i −0.336796 0.578598i
\(341\) 61.2071 106.014i 0.179493 0.310891i
\(342\) 16.4171 + 405.742i 0.0480032 + 1.18638i
\(343\) −145.470 + 83.9870i −0.424110 + 0.244860i
\(344\) −26.3313 + 73.5602i −0.0765445 + 0.213838i
\(345\) 187.182 + 310.201i 0.542557 + 0.899133i
\(346\) −549.068 + 0.973924i −1.58690 + 0.00281481i
\(347\) 132.441 157.837i 0.381673 0.454860i −0.540668 0.841236i \(-0.681829\pi\)
0.922342 + 0.386375i \(0.126273\pi\)
\(348\) −203.571 231.630i −0.584974 0.665605i
\(349\) −154.612 56.2741i −0.443013 0.161244i 0.110875 0.993834i \(-0.464635\pi\)
−0.553889 + 0.832591i \(0.686857\pi\)
\(350\) −223.133 + 39.7526i −0.637523 + 0.113579i
\(351\) 608.923 + 71.2830i 1.73482 + 0.203086i
\(352\) 111.230 134.972i 0.315995 0.383444i
\(353\) 448.666 + 163.301i 1.27101 + 0.462609i 0.887449 0.460907i \(-0.152476\pi\)
0.383560 + 0.923516i \(0.374698\pi\)
\(354\) 82.1865 149.554i 0.232165 0.422470i
\(355\) −228.432 + 272.234i −0.643470 + 0.766857i
\(356\) −63.8646 354.829i −0.179395 0.996710i
\(357\) 433.604 8.38393i 1.21458 0.0234844i
\(358\) −63.0349 + 75.3932i −0.176075 + 0.210596i
\(359\) −361.309 + 208.602i −1.00643 + 0.581064i −0.910145 0.414290i \(-0.864030\pi\)
−0.0962869 + 0.995354i \(0.530697\pi\)
\(360\) 135.527 + 212.568i 0.376464 + 0.590468i
\(361\) 73.9690 128.118i 0.204900 0.354898i
\(362\) −270.017 + 98.8208i −0.745903 + 0.272986i
\(363\) −268.260 + 52.6681i −0.739009 + 0.145091i
\(364\) 521.484 + 617.022i 1.43265 + 1.69511i
\(365\) −105.302 + 38.3270i −0.288500 + 0.105005i
\(366\) 88.2261 + 227.350i 0.241055 + 0.621176i
\(367\) 46.8441 8.25989i 0.127641 0.0225065i −0.109463 0.993991i \(-0.534913\pi\)
0.237104 + 0.971484i \(0.423802\pi\)
\(368\) −542.787 + 99.6839i −1.47496 + 0.270880i
\(369\) −474.876 + 18.3707i −1.28693 + 0.0497852i
\(370\) −84.4780 + 71.1412i −0.228319 + 0.192274i
\(371\) −23.4332 27.9266i −0.0631623 0.0752739i
\(372\) −250.389 + 97.6777i −0.673088 + 0.262574i
\(373\) −3.14422 + 17.8318i −0.00842956 + 0.0478064i −0.988732 0.149694i \(-0.952171\pi\)
0.980303 + 0.197500i \(0.0632823\pi\)
\(374\) 154.016 + 88.5572i 0.411807 + 0.236784i
\(375\) 248.901 308.551i 0.663736 0.822803i
\(376\) −183.558 + 33.3743i −0.488185 + 0.0887613i
\(377\) 583.510 1.54777
\(378\) −479.455 + 28.6926i −1.26840 + 0.0759063i
\(379\) 492.502i 1.29948i −0.760157 0.649739i \(-0.774878\pi\)
0.760157 0.649739i \(-0.225122\pi\)
\(380\) −1.12087 315.955i −0.00294966 0.831460i
\(381\) 439.509 169.660i 1.15357 0.445302i
\(382\) −487.314 280.199i −1.27569 0.733506i
\(383\) 43.2067 + 7.61850i 0.112811 + 0.0198916i 0.229769 0.973245i \(-0.426203\pi\)
−0.116958 + 0.993137i \(0.537314\pi\)
\(384\) −375.859 + 78.6519i −0.978799 + 0.204823i
\(385\) −130.394 + 109.413i −0.338685 + 0.284190i
\(386\) 267.235 225.046i 0.692319 0.583020i
\(387\) 87.0873 + 11.9056i 0.225032 + 0.0307639i
\(388\) −101.022 + 585.052i −0.260365 + 1.50786i
\(389\) −43.7808 248.293i −0.112547 0.638286i −0.987936 0.154866i \(-0.950505\pi\)
0.875388 0.483420i \(-0.160606\pi\)
\(390\) −471.421 72.9011i −1.20877 0.186926i
\(391\) −191.729 526.771i −0.490355 1.34724i
\(392\) −185.378 153.877i −0.472904 0.392544i
\(393\) −114.810 + 100.182i −0.292137 + 0.254917i
\(394\) 281.875 103.161i 0.715419 0.261829i
\(395\) 76.6975 + 44.2813i 0.194171 + 0.112105i
\(396\) −174.400 91.1020i −0.440405 0.230056i
\(397\) 62.6518 + 108.516i 0.157813 + 0.273340i 0.934080 0.357064i \(-0.116222\pi\)
−0.776267 + 0.630405i \(0.782889\pi\)
\(398\) 213.735 255.639i 0.537022 0.642308i
\(399\) 527.053 + 290.857i 1.32094 + 0.728964i
\(400\) 103.175 + 175.811i 0.257936 + 0.439527i
\(401\) 390.899 + 328.004i 0.974812 + 0.817964i 0.983299 0.182000i \(-0.0582571\pi\)
−0.00848695 + 0.999964i \(0.502702\pi\)
\(402\) −542.477 + 11.4517i −1.34945 + 0.0284868i
\(403\) 173.940 477.896i 0.431613 1.18585i
\(404\) −38.2850 + 14.0886i −0.0947649 + 0.0348728i
\(405\) 202.524 198.540i 0.500060 0.490222i
\(406\) −450.059 + 80.1810i −1.10852 + 0.197490i
\(407\) 29.4823 81.0020i 0.0724381 0.199022i
\(408\) −142.405 363.139i −0.349031 0.890046i
\(409\) −518.054 434.699i −1.26664 1.06283i −0.994942 0.100451i \(-0.967972\pi\)
−0.271694 0.962384i \(-0.587584\pi\)
\(410\) 369.766 0.655882i 0.901867 0.00159971i
\(411\) 233.816 + 129.033i 0.568896 + 0.313948i
\(412\) −50.0787 28.6765i −0.121550 0.0696032i
\(413\) −126.489 219.085i −0.306269 0.530473i
\(414\) 235.755 + 574.344i 0.569457 + 1.38731i
\(415\) 145.273 + 83.8732i 0.350055 + 0.202104i
\(416\) 357.712 632.464i 0.859885 1.52035i
\(417\) −156.146 + 136.252i −0.374451 + 0.326743i
\(418\) 123.681 + 213.346i 0.295887 + 0.510398i
\(419\) 13.5624 + 37.2623i 0.0323684 + 0.0889315i 0.954824 0.297171i \(-0.0960432\pi\)
−0.922456 + 0.386103i \(0.873821\pi\)
\(420\) 373.622 8.55019i 0.889577 0.0203576i
\(421\) 4.01215 + 22.7540i 0.00953005 + 0.0540476i 0.989202 0.146559i \(-0.0468198\pi\)
−0.979672 + 0.200607i \(0.935709\pi\)
\(422\) 211.403 584.046i 0.500954 1.38399i
\(423\) 79.3565 + 194.308i 0.187604 + 0.459356i
\(424\) −16.2430 + 28.4827i −0.0383090 + 0.0671761i
\(425\) −158.623 + 133.100i −0.373231 + 0.313178i
\(426\) −458.143 + 401.205i −1.07545 + 0.941797i
\(427\) 356.030 + 62.7777i 0.833794 + 0.147020i
\(428\) 110.704 307.547i 0.258654 0.718567i
\(429\) 347.336 134.080i 0.809642 0.312540i
\(430\) −67.3728 11.7565i −0.156681 0.0273406i
\(431\) 617.967i 1.43380i 0.697177 + 0.716899i \(0.254439\pi\)
−0.697177 + 0.716899i \(0.745561\pi\)
\(432\) 173.846 + 395.476i 0.402421 + 0.915455i
\(433\) 135.919 0.313902 0.156951 0.987606i \(-0.449834\pi\)
0.156951 + 0.987606i \(0.449834\pi\)
\(434\) −68.4909 + 392.501i −0.157813 + 0.904380i
\(435\) 169.478 210.094i 0.389604 0.482974i
\(436\) 727.762 + 261.964i 1.66918 + 0.600834i
\(437\) 135.119 766.296i 0.309196 1.75354i
\(438\) −188.367 + 37.3295i −0.430061 + 0.0852272i
\(439\) −217.856 259.631i −0.496255 0.591414i 0.458542 0.888673i \(-0.348372\pi\)
−0.954797 + 0.297259i \(0.903927\pi\)
\(440\) 132.990 + 75.8412i 0.302250 + 0.172366i
\(441\) −126.344 + 239.788i −0.286493 + 0.543737i
\(442\) 694.021 + 251.210i 1.57018 + 0.568348i
\(443\) 329.343 58.0721i 0.743439 0.131088i 0.210916 0.977504i \(-0.432355\pi\)
0.532523 + 0.846416i \(0.321244\pi\)
\(444\) −161.694 + 98.3539i −0.364176 + 0.221518i
\(445\) 296.553 107.937i 0.666412 0.242554i
\(446\) 34.9812 20.2793i 0.0784333 0.0454692i
\(447\) −628.144 + 123.325i −1.40524 + 0.275894i
\(448\) −188.994 + 536.970i −0.421862 + 1.19859i
\(449\) 33.3868 57.8276i 0.0743581 0.128792i −0.826449 0.563012i \(-0.809643\pi\)
0.900807 + 0.434220i \(0.142976\pi\)
\(450\) 169.574 154.393i 0.376831 0.343095i
\(451\) −249.937 + 144.301i −0.554184 + 0.319958i
\(452\) −2.92120 + 5.10138i −0.00646284 + 0.0112862i
\(453\) 215.147 4.15997i 0.474939 0.00918316i
\(454\) −0.168641 95.0745i −0.000371456 0.209415i
\(455\) −454.555 + 541.718i −0.999022 + 1.19059i
\(456\) 80.8455 535.362i 0.177293 1.17404i
\(457\) 400.777 + 145.871i 0.876974 + 0.319192i 0.740988 0.671518i \(-0.234358\pi\)
0.135986 + 0.990711i \(0.456580\pi\)
\(458\) −24.7602 138.980i −0.0540616 0.303450i
\(459\) −366.672 + 241.070i −0.798850 + 0.525208i
\(460\) −166.828 453.346i −0.362670 0.985535i
\(461\) −107.797 39.2350i −0.233834 0.0851084i 0.222446 0.974945i \(-0.428596\pi\)
−0.456279 + 0.889837i \(0.650818\pi\)
\(462\) −249.475 + 151.143i −0.539989 + 0.327149i
\(463\) −203.177 + 242.137i −0.438827 + 0.522973i −0.939447 0.342694i \(-0.888661\pi\)
0.500621 + 0.865667i \(0.333105\pi\)
\(464\) 208.103 + 354.611i 0.448498 + 0.764247i
\(465\) −121.547 201.430i −0.261392 0.433183i
\(466\) 588.036 + 491.646i 1.26188 + 1.05503i
\(467\) 368.289 212.632i 0.788627 0.455314i −0.0508517 0.998706i \(-0.516194\pi\)
0.839479 + 0.543392i \(0.182860\pi\)
\(468\) −779.258 246.916i −1.66508 0.527598i
\(469\) −402.186 + 696.607i −0.857540 + 1.48530i
\(470\) −56.1271 153.361i −0.119419 0.326300i
\(471\) −254.424 + 743.438i −0.540178 + 1.57842i
\(472\) −145.325 + 175.076i −0.307893 + 0.370923i
\(473\) 50.1599 18.2567i 0.106046 0.0385977i
\(474\) 118.290 + 95.0762i 0.249558 + 0.200583i
\(475\) −283.056 + 49.9105i −0.595908 + 0.105075i
\(476\) −569.814 98.3907i −1.19709 0.206703i
\(477\) 35.1245 + 11.2668i 0.0736362 + 0.0236202i
\(478\) −442.359 525.287i −0.925436 1.09893i
\(479\) 100.261 + 119.487i 0.209314 + 0.249450i 0.860479 0.509485i \(-0.170164\pi\)
−0.651166 + 0.758936i \(0.725720\pi\)
\(480\) −123.824 312.491i −0.257966 0.651023i
\(481\) 62.1865 352.677i 0.129286 0.733217i
\(482\) −240.664 + 418.555i −0.499303 + 0.868372i
\(483\) 909.311 + 142.269i 1.88263 + 0.294553i
\(484\) 364.507 1.29311i 0.753113 0.00267172i
\(485\) −519.696 −1.07154
\(486\) 394.969 283.189i 0.812693 0.582692i
\(487\) 545.789i 1.12072i 0.828250 + 0.560359i \(0.189337\pi\)
−0.828250 + 0.560359i \(0.810663\pi\)
\(488\) −58.1664 319.914i −0.119193 0.655561i
\(489\) −140.100 + 895.449i −0.286504 + 1.83118i
\(490\) 105.120 182.821i 0.214530 0.373104i
\(491\) −193.358 34.0942i −0.393804 0.0694383i −0.0267601 0.999642i \(-0.508519\pi\)
−0.367044 + 0.930204i \(0.619630\pi\)
\(492\) 626.369 + 95.7252i 1.27311 + 0.194563i
\(493\) −319.942 + 268.464i −0.648970 + 0.544551i
\(494\) 659.934 + 783.651i 1.33590 + 1.58634i
\(495\) 52.6066 164.002i 0.106276 0.331317i
\(496\) 352.461 64.7301i 0.710607 0.130504i
\(497\) 156.767 + 889.069i 0.315426 + 1.78887i
\(498\) 224.054 + 180.084i 0.449907 + 0.361614i
\(499\) −329.193 904.449i −0.659705 1.81252i −0.578270 0.815845i \(-0.696272\pi\)
−0.0814345 0.996679i \(1.47405\pi\)
\(500\) −403.701 + 341.193i −0.807402 + 0.682387i
\(501\) −321.443 110.006i −0.641604 0.219574i
\(502\) 29.0062 + 79.2563i 0.0577814 + 0.157881i
\(503\) −379.909 219.340i −0.755285 0.436064i 0.0723150 0.997382i \(-0.476961\pi\)
−0.827600 + 0.561318i \(0.810295\pi\)
\(504\) 634.967 + 83.3662i 1.25986 + 0.165409i
\(505\) −17.8547 30.9252i −0.0353558 0.0612380i
\(506\) 289.254 + 241.840i 0.571648 + 0.477945i
\(507\) 890.259 537.202i 1.75594 1.05957i
\(508\) −618.224 + 111.272i −1.21698 + 0.219040i
\(509\) −193.632 162.477i −0.380417 0.319208i 0.432449 0.901658i \(-0.357650\pi\)
−0.812866 + 0.582450i \(0.802094\pi\)
\(510\) 292.023 176.921i 0.572595 0.346903i
\(511\) −97.3642 + 267.506i −0.190537 + 0.523495i
\(512\) 511.935 8.17321i 0.999873 0.0159633i
\(513\) −608.086 + 35.3081i −1.18535 + 0.0688267i
\(514\) −75.2004 422.103i −0.146304 0.821213i
\(515\) 17.2768 47.4676i 0.0335472 0.0921701i
\(516\) −111.017 37.5535i −0.215149 0.0727780i
\(517\) 97.6420 + 81.9313i 0.188863 + 0.158475i
\(518\) 0.497658 + 280.564i 0.000960729 + 0.541629i
\(519\) −15.9218 823.449i −0.0306778 1.58661i
\(520\) 598.824 + 214.352i 1.15158 + 0.412216i
\(521\) −364.963 632.134i −0.700504 1.21331i −0.968290 0.249830i \(-0.919625\pi\)
0.267785 0.963479i \(-0.413708\pi\)
\(522\) 342.030 311.410i 0.655231 0.596570i
\(523\) −405.945 234.373i −0.776186 0.448131i 0.0588911 0.998264i \(-0.481244\pi\)
−0.835077 + 0.550133i \(0.814577\pi\)
\(524\) 175.585 102.206i 0.335085 0.195050i
\(525\) −65.4965 333.601i −0.124755 0.635430i
\(526\) −184.200 + 106.784i −0.350190 + 0.203011i
\(527\) 124.500 + 342.061i 0.236243 + 0.649071i
\(528\) 205.357 + 163.265i 0.388933 + 0.309214i
\(529\) −114.724 650.630i −0.216869 1.22992i
\(530\) −26.9876 9.76851i −0.0509200 0.0184312i
\(531\) 226.462 + 119.322i 0.426481 + 0.224712i
\(532\) −616.687 513.745i −1.15919 0.965685i
\(533\) −918.481 + 770.697i −1.72323 + 1.44596i
\(534\) 530.479 105.128i 0.993407 0.196868i
\(535\) 281.769 + 49.6836i 0.526672 + 0.0928665i
\(536\) 713.132 + 121.835i 1.33047 + 0.227304i
\(537\) −114.733 92.5521i −0.213655 0.172350i
\(538\) −152.449 + 873.641i −0.283363 + 1.62387i
\(539\) 164.598i 0.305376i
\(540\) −315.234 + 208.858i −0.583767 + 0.386773i
\(541\) 578.608 1.06952 0.534758 0.845005i \(-0.320403\pi\)
0.534758 + 0.845005i \(0.320403\pi\)
\(542\) −620.723 108.315i −1.14524 0.199844i
\(543\) −155.320 402.360i −0.286041 0.740995i
\(544\) 94.8504 + 511.361i 0.174357 + 0.940002i
\(545\) −117.569 + 666.765i −0.215722 + 1.22342i
\(546\) −911.655 + 798.356i −1.66970 + 1.46219i
\(547\) 163.148 + 194.432i 0.298259 + 0.355451i 0.894272 0.447524i \(-0.147694\pi\)
−0.596013 + 0.802975i \(0.703249\pi\)
\(548\) −273.580 227.912i −0.499234 0.415898i
\(549\) −338.650 + 138.307i −0.616848 + 0.251924i
\(550\) 47.4008 130.955i 0.0861833 0.238100i
\(551\) −570.924 + 100.669i −1.03616 + 0.182703i
\(552\) −163.798 811.430i −0.296736 1.46998i
\(553\) 211.413 76.9480i 0.382302 0.139146i
\(554\) −162.317 279.993i −0.292991 0.505402i
\(555\) −108.920 124.824i −0.196253 0.224908i
\(556\) 238.802 139.004i 0.429500 0.250008i
\(557\) 65.6464 113.703i 0.117857 0.204135i −0.801061 0.598583i \(-0.795731\pi\)
0.918918 + 0.394448i \(0.129064\pi\)
\(558\) −153.089 372.953i −0.274352 0.668374i
\(559\) 192.052 110.881i 0.343563 0.198356i
\(560\) −491.325 83.0439i −0.877366 0.148293i
\(561\) −128.759 + 233.320i −0.229517 + 0.415901i
\(562\) −835.249 + 1.48155i −1.48621 + 0.00263620i
\(563\) −233.686 + 278.496i −0.415072 + 0.494664i −0.932554 0.361030i \(-0.882425\pi\)
0.517482 + 0.855694i \(0.326870\pi\)
\(564\) −54.8881 274.415i −0.0973194 0.486552i
\(565\) −4.83540 1.75994i −0.00855823 0.00311494i
\(566\) 106.037 18.8912i 0.187344 0.0333766i
\(567\) −55.6599 718.315i −0.0981656 1.26687i
\(568\) 701.023 409.725i 1.23419 0.721347i
\(569\) −285.161 103.790i −0.501161 0.182408i 0.0790551 0.996870i \(-0.474810\pi\)
−0.580216 + 0.814463i \(0.697032\pi\)
\(570\) 473.829 10.0025i 0.831280 0.0175483i
\(571\) 186.268 221.985i 0.326213 0.388765i −0.577866 0.816132i \(-0.696114\pi\)
0.904078 + 0.427367i \(0.140559\pi\)
\(572\) −488.572 + 87.9367i −0.854147 + 0.153735i
\(573\) 407.400 738.238i 0.710994 1.28837i
\(574\) 602.518 720.645i 1.04968 1.25548i
\(575\) −380.568 + 219.721i −0.661857 + 0.382124i
\(576\) −127.859 561.630i −0.221977 0.975052i
\(577\) 493.417 854.624i 0.855143 1.48115i −0.0213695 0.999772i \(-0.506803\pi\)
0.876512 0.481379i \(-0.159864\pi\)
\(578\) 46.6774 17.0830i 0.0807568 0.0295554i
\(579\) 344.555 + 394.864i 0.595087 + 0.681975i
\(580\) −274.882 + 232.320i −0.473934 + 0.400552i
\(581\) 400.437 145.747i 0.689220 0.250856i
\(582\) −880.103 136.100i −1.51220 0.233849i
\(583\) 22.0609 3.88993i 0.0378403 0.00667227i
\(584\) 256.036 1.36247i 0.438418 0.00233299i
\(585\) 96.9188 708.942i 0.165673 1.21187i
\(586\) −376.482 + 317.045i −0.642460 + 0.541033i
\(587\) −183.011 218.104i −0.311773 0.371557i 0.587289 0.809377i \(-0.300195\pi\)
−0.899062 + 0.437820i \(0.855751\pi\)
\(588\) 225.898 282.077i 0.384180 0.479723i
\(589\) −87.7398 + 497.597i −0.148964 + 0.844817i
\(590\) −172.660 99.2775i −0.292645 0.168267i
\(591\) 162.141 + 420.030i 0.274350 + 0.710711i
\(592\) 236.507 87.9868i 0.399505 0.148626i
\(593\) −669.113 −1.12835 −0.564176 0.825654i \(-0.690806\pi\)
−0.564176 + 0.825654i \(0.690806\pi\)
\(594\) 132.039 263.960i 0.222287 0.444377i
\(595\) 506.161i 0.850690i
\(596\) 853.509 3.02788i 1.43206 0.00508033i
\(597\) 389.028 + 313.820i 0.651638 + 0.525661i
\(598\) 1357.91 + 780.782i 2.27075 + 1.30565i
\(599\) 363.236 + 64.0483i 0.606404 + 0.106925i 0.468415 0.883508i \(-0.344825\pi\)
0.137989 + 0.990434i \(0.455936\pi\)
\(600\) −260.958 + 159.368i −0.434931 + 0.265614i
\(601\) −489.063 + 410.373i −0.813750 + 0.682817i −0.951500 0.307650i \(-0.900457\pi\)
0.137750 + 0.990467i \(0.456013\pi\)
\(602\) −132.892 + 111.912i −0.220751 + 0.185901i
\(603\) −31.4624 813.289i −0.0521764 1.34874i
\(604\) −282.733 48.8199i −0.468101 0.0808276i
\(605\) 55.4056 + 314.221i 0.0915795 + 0.519373i
\(606\) −22.1380 57.0476i −0.0365314 0.0941380i
\(607\) −38.7649 106.506i −0.0638631 0.175463i 0.903657 0.428258i \(-0.140872\pi\)
−0.967520 + 0.252795i \(0.918650\pi\)
\(608\) −240.881 + 680.536i −0.396186 + 1.11930i
\(609\) −132.106 672.873i −0.216923 1.10488i
\(610\) 267.285 97.8212i 0.438173 0.160363i
\(611\) 458.595 + 264.770i 0.750565 + 0.433339i
\(612\) 540.874 223.138i 0.883781 0.364605i
\(613\) 132.437 + 229.387i 0.216047 + 0.374204i 0.953596 0.301089i \(-0.0973502\pi\)
−0.737549 + 0.675294i \(0.764017\pi\)
\(614\) 351.981 420.989i 0.573259 0.685649i
\(615\) 10.7224 + 554.546i 0.0174348 + 0.901700i
\(616\) 364.750 134.961i 0.592127 0.219092i
\(617\) 616.167 + 517.025i 0.998649 + 0.837966i 0.986797 0.161964i \(-0.0517827\pi\)
0.0118524 + 0.999930i \(0.496227\pi\)
\(618\) 41.6892 75.8617i 0.0674583 0.122754i
\(619\) −266.035 + 730.924i −0.429781 + 1.18081i 0.516164 + 0.856490i \(0.327359\pi\)
−0.945946 + 0.324325i \(0.894863\pi\)
\(620\) 108.330 + 294.382i 0.174727 + 0.474809i
\(621\) −855.174 + 368.705i −1.37709 + 0.593728i
\(622\) −28.2983 + 5.04152i −0.0454956 + 0.00810534i
\(623\) 274.198 753.352i 0.440125 1.20923i
\(624\) 957.971 + 519.828i 1.53521 + 0.833057i
\(625\) −110.436 92.6665i −0.176697 0.148266i
\(626\) 35.4306 0.0628460i 0.0565984 0.000100393i
\(627\) −316.713 + 191.111i −0.505124 + 0.304803i
\(628\) 520.623 909.179i 0.829018 1.44774i
\(629\) 128.164 + 221.986i 0.203758 + 0.352919i
\(630\) 22.6636 + 560.122i 0.0359740 + 0.889082i
\(631\) −56.8376 32.8152i −0.0900754 0.0520051i 0.454286 0.890856i \(-0.349895\pi\)
−0.544361 + 0.838851i \(0.683228\pi\)
\(632\) −130.892 154.316i −0.207107 0.244170i
\(633\) 881.501 + 301.673i 1.39258 + 0.476576i
\(634\) −26.8619 46.3363i −0.0423690 0.0730856i
\(635\) −188.060 516.690i −0.296157 0.813684i
\(636\) −43.1452 23.6106i −0.0678384 0.0371236i
\(637\) 118.744 + 673.429i 0.186411 + 1.05719i
\(638\) 95.6074 264.136i 0.149855 0.414006i
\(639\) −613.782 676.541i −0.960535 1.05875i
\(640\) 83.2983 + 440.363i 0.130154 + 0.688068i
\(641\) 593.381 497.905i 0.925711 0.776764i −0.0493316 0.998782i \(-0.515709\pi\)
0.975042 + 0.222019i \(0.0712647\pi\)
\(642\) 464.164 + 157.930i 0.722997 + 0.245997i
\(643\) 1077.13 + 189.927i 1.67516 + 0.295376i 0.928915 0.370293i \(-0.120743\pi\)
0.746247 + 0.665670i \(0.231854\pi\)
\(644\) −1154.64 415.621i −1.79292 0.645375i
\(645\) 15.8575 101.353i 0.0245853 0.157137i
\(646\) −722.391 126.056i −1.11825 0.195133i
\(647\) 1076.11i 1.66323i −0.555356 0.831613i \(-0.687418\pi\)
0.555356 0.831613i \(-0.312582\pi\)
\(648\) −588.544 + 271.145i −0.908248 + 0.418433i
\(649\) 155.450 0.239522
\(650\) 99.4607 569.980i 0.153016 0.876892i
\(651\) −590.464 92.3829i −0.907011 0.141909i
\(652\) 409.286 1137.04i 0.627739 1.74392i
\(653\) −44.4135 + 251.881i −0.0680145 + 0.385729i 0.931731 + 0.363150i \(0.118299\pi\)
−0.999745 + 0.0225791i \(0.992812\pi\)
\(654\) −373.717 + 1098.37i −0.571433 + 1.67947i
\(655\) 114.312 + 136.232i 0.174522 + 0.207987i
\(656\) −795.934 283.317i −1.21331 0.431886i
\(657\) −60.9467 281.523i −0.0927652 0.428498i
\(658\) −390.095 141.200i −0.592850 0.214589i
\(659\) 672.381 118.559i 1.02030 0.179907i 0.361620 0.932326i \(-0.382224\pi\)
0.658685 + 0.752418i \(0.271113\pi\)
\(660\) −110.242 + 201.452i −0.167033 + 0.305230i
\(661\) −296.947 + 108.080i −0.449239 + 0.163510i −0.556725 0.830697i \(-0.687942\pi\)
0.107486 + 0.994207i \(0.465720\pi\)
\(662\) −462.454 + 268.093i −0.698571 + 0.404974i
\(663\) −358.478 + 1047.49i −0.540690 + 1.57992i
\(664\) −247.922 292.289i −0.373376 0.440194i
\(665\) 351.291 608.455i 0.528258 0.914969i
\(666\) −151.767 239.913i −0.227878 0.360230i
\(667\) −767.605 + 443.177i −1.15083 + 0.664433i
\(668\) 393.106 + 225.104i 0.588482 + 0.336982i
\(669\) 31.3355 + 51.9297i 0.0468393 + 0.0776228i
\(670\) 1.12329 + 633.274i 0.00167655 + 0.945185i
\(671\) −142.794 + 170.175i −0.212808 + 0.253615i
\(672\) −810.309 269.305i −1.20582 0.400751i
\(673\) −161.836 58.9034i −0.240469 0.0875236i 0.218974 0.975731i \(-0.429729\pi\)
−0.459444 + 0.888207i \(0.651951\pi\)
\(674\) 16.9427 + 95.1003i 0.0251376 + 0.141098i
\(675\) 236.019 + 250.255i 0.349658 + 0.370749i
\(676\) −1301.08 + 478.787i −1.92467 + 0.708265i
\(677\) −723.236 263.236i −1.06829 0.388828i −0.252756 0.967530i \(-0.581337\pi\)
−0.815539 + 0.578702i \(0.803559\pi\)
\(678\) −7.72783 4.24677i −0.0113980 0.00626367i
\(679\) −848.616 + 1011.34i −1.24980 + 1.48946i
\(680\) −426.959 + 157.978i −0.627881 + 0.232321i
\(681\) 142.585 2.75695i 0.209376 0.00404839i
\(682\) −187.828 157.040i −0.275408 0.230263i
\(683\) 534.500 308.594i 0.782577 0.451821i −0.0547656 0.998499i \(-0.517441\pi\)
0.837343 + 0.546678i \(0.184108\pi\)
\(684\) 805.048 + 107.149i 1.17697 + 0.156651i
\(685\) 155.843 269.928i 0.227508 0.394056i
\(686\) 115.461 + 315.483i 0.168310 + 0.459888i
\(687\) 207.786 40.7950i 0.302454 0.0593813i
\(688\) 135.878 + 77.1688i 0.197497 + 0.112164i
\(689\) 87.4528 31.8302i 0.126927 0.0461977i
\(690\) 675.520 262.144i 0.979015 0.379918i
\(691\) 1107.65 195.308i 1.60296 0.282645i 0.700576 0.713578i \(-0.252926\pi\)
0.902384 + 0.430933i \(0.141815\pi\)
\(692\) −186.852 + 1082.12i −0.270017 + 1.56376i
\(693\) −233.250 370.174i −0.336580 0.534162i
\(694\) −265.441 315.203i −0.382479 0.454183i
\(695\) 155.469 + 185.281i 0.223696 + 0.266591i
\(696\) −526.353 + 321.446i −0.756254 + 0.461848i
\(697\) 149.024 845.156i 0.213807 1.21256i
\(698\) −164.029 + 285.273i −0.234998 + 0.408701i
\(699\) −721.868 + 894.867i −1.03271 + 1.28021i
\(700\) 1.60808 + 453.290i 0.00229725 + 0.647557i
\(701\) 368.048 0.525032 0.262516 0.964928i \(-0.415448\pi\)
0.262516 + 0.964928i \(0.415448\pi\)
\(702\) 349.793 1175.21i 0.498280 1.67409i
\(703\) 355.799i 0.506115i
\(704\) −227.685 265.553i −0.323416 0.377206i
\(705\) 228.528 88.2168i 0.324153 0.125130i
\(706\) 475.993 827.831i 0.674211 1.17257i
\(707\) −89.3364 15.7524i −0.126360 0.0222806i
\(708\) −266.400 213.343i −0.376272 0.301332i
\(709\) −565.166 + 474.230i −0.797131 + 0.668872i −0.947499 0.319758i \(-0.896398\pi\)
0.150369 + 0.988630i \(0.451954\pi\)
\(710\) 457.829 + 543.658i 0.644829 + 0.765715i
\(711\) −139.477 + 179.912i −0.196170 + 0.253041i
\(712\) −721.051 + 3.83698i −1.01271 + 0.00538902i
\(713\) 134.146 + 760.778i 0.188143 + 1.06701i
\(714\) 132.556 857.181i 0.185652 1.20053i
\(715\) −148.620 408.331i −0.207861 0.571092i
\(716\) 126.870 + 150.113i 0.177193 + 0.209656i
\(717\) 776.159 677.270i 1.08251 0.944589i
\(718\) 286.775 + 783.579i 0.399407 + 1.09134i
\(719\) −1138.67 657.410i −1.58368 0.914340i −0.994315 0.106475i \(-0.966044\pi\)
−0.589367 0.807865i \(1.29938\pi\)
\(720\) 465.403 193.937i 0.646393 0.269358i
\(721\) −64.1618 111.131i −0.0889900 0.154135i
\(722\) −226.991 189.783i −0.314392 0.262857i
\(723\) −634.075 349.917i −0.877005 0.483979i
\(724\) 101.867 + 565.970i 0.140701 + 0.781726i
\(725\) 250.806 + 210.451i 0.345939 + 0.290277i
\(726\) 11.5396 + 546.642i 0.0158947 + 0.752950i
\(727\) 64.9919 178.564i 0.0893974 0.245617i −0.886934 0.461895i \(-0.847170\pi\)
0.976332 + 0.216278i \(0.0693918\pi\)
\(728\) 1394.96 815.309i 1.91616 1.11993i
\(729\) 435.120 + 584.903i 0.596872 + 0.802336i
\(730\) 39.3097 + 220.647i 0.0538489 + 0.302256i
\(731\) −54.2885 + 149.156i −0.0742661 + 0.204044i
\(732\) 478.265 95.6619i 0.653367 0.130686i
\(733\) 42.1532 + 35.3708i 0.0575078 + 0.0482548i 0.671089 0.741377i \(-0.265827\pi\)
−0.613581 + 0.789632i \(0.710271\pi\)
\(734\) −0.168746 95.1334i −0.000229899 0.129610i
\(735\) 276.958 + 152.840i 0.376813 + 0.207946i
\(736\) 9.78871 + 1103.69i 0.0132999 + 1.49957i
\(737\) −247.135 428.051i −0.335326 0.580802i
\(738\) −127.069 + 941.929i −0.172180 + 1.27633i
\(739\) 190.459 + 109.961i 0.257725 + 0.148798i 0.623296 0.781986i \(-0.285793\pi\)
−0.365571 + 0.930783i \(0.619126\pi\)
\(740\) 111.121 + 190.899i 0.150163 + 0.257972i
\(741\) −1157.91 + 1010.39i −1.56264 + 1.36355i
\(742\) −63.0782 + 36.5675i −0.0850110 + 0.0492824i
\(743\) 324.288 + 890.974i 0.436458 + 1.19916i 0.941781 + 0.336228i \(0.109151\pi\)
−0.505323 + 0.862930i \(0.668627\pi\)
\(744\) 106.363 + 526.905i 0.142961 + 0.708206i
\(745\) 129.735 + 735.762i 0.174140 + 0.987600i
\(746\) 34.0517 + 12.3254i 0.0456457 + 0.0165220i
\(747\) −264.183 + 340.772i −0.353659 + 0.456187i
\(748\) 227.429 273.000i 0.304049 0.364973i
\(749\) 556.790 467.202i 0.743378 0.623768i
\(750\) −522.344 596.472i −0.696458 0.795296i
\(751\) 462.740 + 81.5936i 0.616166 + 0.108647i 0.473015 0.881054i \(-0.343166\pi\)
0.143150 + 0.989701i \(0.454277\pi\)
\(752\) 2.64740 + 373.125i 0.00352048 + 0.496176i
\(753\) −118.102 + 45.5901i −0.156842 + 0.0605446i
\(754\) 200.612 1149.65i 0.266064 1.52473i
\(755\) 251.149i 0.332647i
\(756\) −108.307 + 954.500i −0.143263 + 1.26257i
\(757\)