Properties

Label 108.3.j.a.31.10
Level 108
Weight 3
Character 108.31
Analytic conductor 2.943
Analytic rank 0
Dimension 204
CM no
Inner twists 4

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 108.j (of order \(18\), degree \(6\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.94278685509\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 31.10
Character \(\chi\) \(=\) 108.31
Dual form 108.3.j.a.7.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.20427 + 1.59678i) q^{2} +(-0.204519 + 2.99302i) q^{3} +(-1.09944 - 3.84594i) q^{4} +(1.50670 - 8.54492i) q^{5} +(-4.53291 - 3.93099i) q^{6} +(-7.53806 - 8.98351i) q^{7} +(7.46516 + 2.87599i) q^{8} +(-8.91634 - 1.22426i) q^{9} +O(q^{10})\) \(q+(-1.20427 + 1.59678i) q^{2} +(-0.204519 + 2.99302i) q^{3} +(-1.09944 - 3.84594i) q^{4} +(1.50670 - 8.54492i) q^{5} +(-4.53291 - 3.93099i) q^{6} +(-7.53806 - 8.98351i) q^{7} +(7.46516 + 2.87599i) q^{8} +(-8.91634 - 1.22426i) q^{9} +(11.8299 + 12.6963i) q^{10} +(2.27133 - 0.400497i) q^{11} +(11.7358 - 2.50409i) q^{12} +(-4.42594 + 1.61091i) q^{13} +(23.4226 - 1.21804i) q^{14} +(25.2670 + 6.25718i) q^{15} +(-13.5824 + 8.45678i) q^{16} +(6.77412 - 11.7331i) q^{17} +(12.6926 - 12.7631i) q^{18} +(-13.9009 + 8.02568i) q^{19} +(-34.5197 + 3.59998i) q^{20} +(28.4295 - 20.7243i) q^{21} +(-2.09580 + 4.10914i) q^{22} +(3.20904 - 3.82439i) q^{23} +(-10.1347 + 21.7552i) q^{24} +(-47.2531 - 17.1987i) q^{25} +(2.75777 - 9.00726i) q^{26} +(5.48779 - 26.4364i) q^{27} +(-26.2623 + 38.8678i) q^{28} +(34.0967 + 12.4102i) q^{29} +(-40.4197 + 32.8105i) q^{30} +(0.283047 - 0.337322i) q^{31} +(2.85334 - 31.8725i) q^{32} +(0.734166 + 6.88006i) q^{33} +(10.5774 + 24.9467i) q^{34} +(-88.1209 + 50.8766i) q^{35} +(5.09460 + 35.6377i) q^{36} +(18.9267 - 32.7821i) q^{37} +(3.92521 - 31.8619i) q^{38} +(-3.91630 - 13.5764i) q^{39} +(35.8228 - 59.4560i) q^{40} +(2.35960 - 0.858824i) q^{41} +(-1.14474 + 70.3535i) q^{42} +(17.5866 - 3.10099i) q^{43} +(-4.03749 - 8.29508i) q^{44} +(-23.8954 + 74.3448i) q^{45} +(2.24216 + 9.72977i) q^{46} +(-5.64102 - 6.72271i) q^{47} +(-22.5334 - 42.3821i) q^{48} +(-15.3723 + 87.1809i) q^{49} +(84.3684 - 54.7411i) q^{50} +(33.7320 + 22.6747i) q^{51} +(11.0615 + 15.2508i) q^{52} -41.4639 q^{53} +(35.6045 + 40.5995i) q^{54} -20.0118i q^{55} +(-30.4364 - 88.7428i) q^{56} +(-21.1780 - 43.2471i) q^{57} +(-60.8781 + 39.4998i) q^{58} +(-25.5867 - 4.51163i) q^{59} +(-3.71489 - 104.055i) q^{60} +(51.1770 - 42.9426i) q^{61} +(0.197764 + 0.858193i) q^{62} +(56.2138 + 89.3286i) q^{63} +(47.4574 + 42.9395i) q^{64} +(7.09654 + 40.2465i) q^{65} +(-11.8701 - 7.11317i) q^{66} +(-32.3784 - 88.9589i) q^{67} +(-52.5726 - 13.1529i) q^{68} +(10.7902 + 10.3869i) q^{69} +(24.8828 - 201.980i) q^{70} +(100.208 + 57.8552i) q^{71} +(-63.0410 - 34.7826i) q^{72} +(22.5335 + 39.0292i) q^{73} +(29.5529 + 69.7005i) q^{74} +(61.1403 - 137.912i) q^{75} +(46.1495 + 44.6382i) q^{76} +(-20.7193 - 17.3856i) q^{77} +(26.3949 + 10.0962i) q^{78} +(19.8334 - 54.4917i) q^{79} +(51.7978 + 128.803i) q^{80} +(78.0024 + 21.8318i) q^{81} +(-1.47025 + 4.80203i) q^{82} +(22.8909 - 62.8923i) q^{83} +(-110.961 - 86.5529i) q^{84} +(-90.0519 - 75.5626i) q^{85} +(-16.2275 + 31.8164i) q^{86} +(-44.1173 + 99.5139i) q^{87} +(18.1077 + 3.54255i) q^{88} +(54.3190 + 94.0833i) q^{89} +(-89.9360 - 127.687i) q^{90} +(47.8347 + 27.6174i) q^{91} +(-18.2365 - 8.13708i) q^{92} +(0.951723 + 0.916153i) q^{93} +(17.5281 - 0.911509i) q^{94} +(47.6343 + 130.874i) q^{95} +(94.8116 + 15.0586i) q^{96} +(30.2853 + 171.757i) q^{97} +(-120.697 - 129.536i) q^{98} +(-20.7423 + 0.790274i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} + O(q^{10}) \) \( 204q - 6q^{2} - 6q^{4} - 12q^{5} - 6q^{6} - 3q^{8} - 12q^{9} - 3q^{10} + 39q^{12} - 12q^{13} + 39q^{14} - 6q^{16} - 6q^{17} - 27q^{18} - 69q^{20} - 12q^{21} - 6q^{22} - 138q^{24} - 12q^{25} - 174q^{26} - 12q^{28} + 60q^{29} - 153q^{30} - 96q^{32} + 48q^{33} + 6q^{34} + 24q^{36} - 6q^{37} + 72q^{38} + 69q^{40} - 192q^{41} - 126q^{42} - 219q^{44} - 132q^{45} - 3q^{46} - 219q^{48} - 12q^{49} - 165q^{50} + 21q^{52} - 24q^{53} + 78q^{54} + 99q^{56} - 150q^{57} - 141q^{58} + 210q^{60} - 12q^{61} + 294q^{62} - 3q^{64} - 156q^{65} + 393q^{66} + 375q^{68} - 60q^{69} - 165q^{70} + 228q^{72} - 6q^{73} + 447q^{74} - 54q^{76} + 132q^{77} + 750q^{78} + 798q^{80} + 228q^{81} - 12q^{82} + 762q^{84} + 138q^{85} + 606q^{86} - 198q^{88} - 114q^{89} + 894q^{90} + 723q^{92} - 1020q^{93} - 357q^{94} + 474q^{96} + 168q^{97} + 510q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(e\left(\frac{1}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.20427 + 1.59678i −0.602137 + 0.798392i
\(3\) −0.204519 + 2.99302i −0.0681730 + 0.997674i
\(4\) −1.09944 3.84594i −0.274861 0.961484i
\(5\) 1.50670 8.54492i 0.301340 1.70898i −0.338912 0.940818i \(-0.610059\pi\)
0.640252 0.768165i \(-0.278830\pi\)
\(6\) −4.53291 3.93099i −0.755485 0.655165i
\(7\) −7.53806 8.98351i −1.07687 1.28336i −0.956849 0.290587i \(-0.906150\pi\)
−0.120017 0.992772i \(1.46171\pi\)
\(8\) 7.46516 + 2.87599i 0.933146 + 0.359499i
\(9\) −8.91634 1.22426i −0.990705 0.136029i
\(10\) 11.8299 + 12.6963i 1.18299 + 1.26963i
\(11\) 2.27133 0.400497i 0.206485 0.0364089i −0.0694489 0.997586i \(-0.522124\pi\)
0.275934 + 0.961177i \(0.411013\pi\)
\(12\) 11.7358 2.50409i 0.977985 0.208674i
\(13\) −4.42594 + 1.61091i −0.340457 + 0.123916i −0.506590 0.862187i \(-0.669094\pi\)
0.166133 + 0.986103i \(0.446872\pi\)
\(14\) 23.4226 1.21804i 1.67304 0.0870031i
\(15\) 25.2670 + 6.25718i 1.68446 + 0.417145i
\(16\) −13.5824 + 8.45678i −0.848903 + 0.528549i
\(17\) 6.77412 11.7331i 0.398478 0.690183i −0.595061 0.803681i \(-0.702872\pi\)
0.993538 + 0.113497i \(0.0362053\pi\)
\(18\) 12.6926 12.7631i 0.705145 0.709063i
\(19\) −13.9009 + 8.02568i −0.731626 + 0.422404i −0.819017 0.573770i \(-0.805480\pi\)
0.0873908 + 0.996174i \(0.472147\pi\)
\(20\) −34.5197 + 3.59998i −1.72599 + 0.179999i
\(21\) 28.4295 20.7243i 1.35379 0.986870i
\(22\) −2.09580 + 4.10914i −0.0952637 + 0.186779i
\(23\) 3.20904 3.82439i 0.139524 0.166278i −0.691758 0.722130i \(-0.743163\pi\)
0.831281 + 0.555852i \(0.187608\pi\)
\(24\) −10.1347 + 21.7552i −0.422278 + 0.906467i
\(25\) −47.2531 17.1987i −1.89013 0.687949i
\(26\) 2.75777 9.00726i 0.106068 0.346433i
\(27\) 5.48779 26.4364i 0.203252 0.979127i
\(28\) −26.2623 + 38.8678i −0.937940 + 1.38813i
\(29\) 34.0967 + 12.4102i 1.17575 + 0.427937i 0.854698 0.519126i \(-0.173742\pi\)
0.321049 + 0.947063i \(0.395965\pi\)
\(30\) −40.4197 + 32.8105i −1.34732 + 1.09368i
\(31\) 0.283047 0.337322i 0.00913054 0.0108813i −0.761460 0.648212i \(-0.775517\pi\)
0.770590 + 0.637331i \(0.219961\pi\)
\(32\) 2.85334 31.8725i 0.0891670 0.996017i
\(33\) 0.734166 + 6.88006i 0.0222475 + 0.208487i
\(34\) 10.5774 + 24.9467i 0.311099 + 0.733727i
\(35\) −88.1209 + 50.8766i −2.51774 + 1.45362i
\(36\) 5.09460 + 35.6377i 0.141517 + 0.989936i
\(37\) 18.9267 32.7821i 0.511533 0.886002i −0.488377 0.872633i \(-0.662411\pi\)
0.999911 0.0133691i \(-0.00425565\pi\)
\(38\) 3.92521 31.8619i 0.103295 0.838470i
\(39\) −3.91630 13.5764i −0.100418 0.348113i
\(40\) 35.8228 59.4560i 0.895571 1.48640i
\(41\) 2.35960 0.858824i 0.0575512 0.0209469i −0.313084 0.949725i \(-0.601362\pi\)
0.370635 + 0.928778i \(0.379140\pi\)
\(42\) −1.14474 + 70.3535i −0.0272557 + 1.67508i
\(43\) 17.5866 3.10099i 0.408990 0.0721160i 0.0346317 0.999400i \(-0.488974\pi\)
0.374358 + 0.927284i \(0.377863\pi\)
\(44\) −4.03749 8.29508i −0.0917611 0.188525i
\(45\) −23.8954 + 74.3448i −0.531010 + 1.65211i
\(46\) 2.24216 + 9.72977i 0.0487425 + 0.211517i
\(47\) −5.64102 6.72271i −0.120022 0.143036i 0.702688 0.711498i \(-0.251983\pi\)
−0.822710 + 0.568462i \(0.807539\pi\)
\(48\) −22.5334 42.3821i −0.469447 0.882961i
\(49\) −15.3723 + 87.1809i −0.313721 + 1.77920i
\(50\) 84.3684 54.7411i 1.68737 1.09482i
\(51\) 33.7320 + 22.6747i 0.661412 + 0.444602i
\(52\) 11.0615 + 15.2508i 0.212722 + 0.293284i
\(53\) −41.4639 −0.782338 −0.391169 0.920319i \(-0.627929\pi\)
−0.391169 + 0.920319i \(0.627929\pi\)
\(54\) 35.6045 + 40.5995i 0.659342 + 0.751843i
\(55\) 20.0118i 0.363851i
\(56\) −30.4364 88.7428i −0.543507 1.58469i
\(57\) −21.1780 43.2471i −0.371545 0.758720i
\(58\) −60.8781 + 39.4998i −1.04962 + 0.681030i
\(59\) −25.5867 4.51163i −0.433674 0.0764684i −0.0474502 0.998874i \(-0.515110\pi\)
−0.386224 + 0.922405i \(0.626221\pi\)
\(60\) −3.71489 104.055i −0.0619149 1.73424i
\(61\) 51.1770 42.9426i 0.838967 0.703977i −0.118364 0.992970i \(-0.537765\pi\)
0.957331 + 0.288993i \(0.0933206\pi\)
\(62\) 0.197764 + 0.858193i 0.00318975 + 0.0138418i
\(63\) 56.2138 + 89.3286i 0.892282 + 1.41791i
\(64\) 47.4574 + 42.9395i 0.741521 + 0.670929i
\(65\) 7.09654 + 40.2465i 0.109178 + 0.619177i
\(66\) −11.8701 7.11317i −0.179850 0.107775i
\(67\) −32.3784 88.9589i −0.483260 1.32775i −0.906683 0.421813i \(-0.861394\pi\)
0.423423 0.905932i \(1.63917\pi\)
\(68\) −52.5726 13.1529i −0.773126 0.193425i
\(69\) 10.7902 + 10.3869i 0.156379 + 0.150535i
\(70\) 24.8828 201.980i 0.355468 2.88542i
\(71\) 100.208 + 57.8552i 1.41138 + 0.814862i 0.995519 0.0945652i \(-0.0301461\pi\)
0.415863 + 0.909427i \(0.363479\pi\)
\(72\) −63.0410 34.7826i −0.875570 0.483092i
\(73\) 22.5335 + 39.0292i 0.308678 + 0.534646i 0.978073 0.208260i \(-0.0667801\pi\)
−0.669395 + 0.742906i \(0.733447\pi\)
\(74\) 29.5529 + 69.7005i 0.399364 + 0.941899i
\(75\) 61.1403 137.912i 0.815204 1.83883i
\(76\) 46.1495 + 44.6382i 0.607230 + 0.587344i
\(77\) −20.7193 17.3856i −0.269082 0.225787i
\(78\) 26.3949 + 10.0962i 0.338396 + 0.129439i
\(79\) 19.8334 54.4917i 0.251055 0.689769i −0.748587 0.663036i \(-0.769267\pi\)
0.999643 0.0267327i \(-0.00851028\pi\)
\(80\) 51.7978 + 128.803i 0.647473 + 1.61003i
\(81\) 78.0024 + 21.8318i 0.962992 + 0.269529i
\(82\) −1.47025 + 4.80203i −0.0179299 + 0.0585614i
\(83\) 22.8909 62.8923i 0.275794 0.757738i −0.722033 0.691858i \(-0.756792\pi\)
0.997828 0.0658799i \(-0.0209854\pi\)
\(84\) −110.961 86.5529i −1.32096 1.03039i
\(85\) −90.0519 75.5626i −1.05943 0.888971i
\(86\) −16.2275 + 31.8164i −0.188691 + 0.369958i
\(87\) −44.1173 + 99.5139i −0.507095 + 1.14384i
\(88\) 18.1077 + 3.54255i 0.205769 + 0.0402563i
\(89\) 54.3190 + 94.0833i 0.610326 + 1.05712i 0.991185 + 0.132482i \(0.0422948\pi\)
−0.380860 + 0.924633i \(0.624372\pi\)
\(90\) −89.9360 127.687i −0.999289 1.41875i
\(91\) 47.8347 + 27.6174i 0.525656 + 0.303487i
\(92\) −18.2365 8.13708i −0.198223 0.0884465i
\(93\) 0.951723 + 0.916153i 0.0102336 + 0.00985111i
\(94\) 17.5281 0.911509i 0.186469 0.00969691i
\(95\) 47.6343 + 130.874i 0.501414 + 1.37762i
\(96\) 94.8116 + 15.0586i 0.987621 + 0.156861i
\(97\) 30.2853 + 171.757i 0.312220 + 1.77069i 0.587403 + 0.809295i \(0.300150\pi\)
−0.275183 + 0.961392i \(0.588738\pi\)
\(98\) −120.697 129.536i −1.23160 1.32180i
\(99\) −20.7423 + 0.790274i −0.209518 + 0.00798256i
\(100\) −14.1931 + 200.642i −0.141931 + 2.00642i
\(101\) −57.1968 + 47.9938i −0.566305 + 0.475186i −0.880417 0.474200i \(-0.842738\pi\)
0.314112 + 0.949386i \(0.398293\pi\)
\(102\) −76.8293 + 26.5562i −0.753228 + 0.260355i
\(103\) −137.158 24.1847i −1.33163 0.234803i −0.537868 0.843029i \(-0.680770\pi\)
−0.793764 + 0.608226i \(0.791881\pi\)
\(104\) −37.6734 0.703246i −0.362244 0.00676198i
\(105\) −134.252 274.153i −1.27859 2.61098i
\(106\) 49.9340 66.2090i 0.471075 0.624613i
\(107\) 28.1004i 0.262621i −0.991341 0.131310i \(-0.958082\pi\)
0.991341 0.131310i \(-0.0419185\pi\)
\(108\) −107.706 + 7.95966i −0.997280 + 0.0737005i
\(109\) 12.7869 0.117311 0.0586555 0.998278i \(-0.481319\pi\)
0.0586555 + 0.998278i \(0.481319\pi\)
\(110\) 31.9545 + 24.0997i 0.290496 + 0.219088i
\(111\) 94.2465 + 63.3526i 0.849068 + 0.570745i
\(112\) 178.357 + 58.2703i 1.59247 + 0.520271i
\(113\) 36.5416 207.238i 0.323377 1.83396i −0.197465 0.980310i \(-0.563271\pi\)
0.520842 0.853653i \(-0.325618\pi\)
\(114\) 94.5604 + 18.2646i 0.829478 + 0.160216i
\(115\) −27.8440 33.1832i −0.242122 0.288550i
\(116\) 10.2414 144.778i 0.0882876 1.24808i
\(117\) 41.4354 8.94495i 0.354149 0.0764525i
\(118\) 38.0176 35.4233i 0.322183 0.300197i
\(119\) −156.468 + 27.5896i −1.31486 + 0.231845i
\(120\) 170.626 + 119.378i 1.42189 + 0.994820i
\(121\) −108.704 + 39.5651i −0.898382 + 0.326984i
\(122\) 6.93891 + 133.433i 0.0568763 + 1.09372i
\(123\) 2.08790 + 7.23798i 0.0169748 + 0.0588453i
\(124\) −1.60851 0.717713i −0.0129719 0.00578801i
\(125\) −109.699 + 190.004i −0.877590 + 1.52003i
\(126\) −210.335 17.8149i −1.66933 0.141388i
\(127\) −96.5648 + 55.7517i −0.760353 + 0.438990i −0.829422 0.558622i \(-0.811330\pi\)
0.0690695 + 0.997612i \(0.477997\pi\)
\(128\) −125.717 + 24.0683i −0.982163 + 0.188033i
\(129\) 5.68453 + 53.2712i 0.0440661 + 0.412955i
\(130\) −72.8112 37.1362i −0.560086 0.285663i
\(131\) 10.1474 12.0932i 0.0774612 0.0923146i −0.725922 0.687777i \(-0.758587\pi\)
0.803383 + 0.595462i \(0.203031\pi\)
\(132\) 25.6531 10.3878i 0.194342 0.0786954i
\(133\) 176.885 + 64.3807i 1.32996 + 0.484066i
\(134\) 181.041 + 55.4297i 1.35105 + 0.413654i
\(135\) −217.629 86.7244i −1.61206 0.642403i
\(136\) 84.3142 68.1074i 0.619958 0.500789i
\(137\) 99.8901 + 36.3570i 0.729125 + 0.265380i 0.679794 0.733403i \(-0.262069\pi\)
0.0493306 + 0.998783i \(0.484291\pi\)
\(138\) −29.5800 + 4.72090i −0.214348 + 0.0342094i
\(139\) 36.3183 43.2824i 0.261283 0.311385i −0.619415 0.785064i \(-0.712630\pi\)
0.880697 + 0.473679i \(0.157074\pi\)
\(140\) 292.552 + 282.971i 2.08966 + 2.02122i
\(141\) 21.2749 15.5088i 0.150886 0.109991i
\(142\) −213.060 + 90.3373i −1.50043 + 0.636178i
\(143\) −9.40763 + 5.43150i −0.0657876 + 0.0379825i
\(144\) 131.459 58.7751i 0.912910 0.408161i
\(145\) 157.417 272.655i 1.08564 1.88038i
\(146\) −89.4577 11.0207i −0.612724 0.0754842i
\(147\) −257.790 63.8399i −1.75368 0.434285i
\(148\) −146.887 36.7490i −0.992477 0.248304i
\(149\) 110.073 40.0635i 0.738748 0.268882i 0.0548851 0.998493i \(-0.482521\pi\)
0.683863 + 0.729610i \(0.260299\pi\)
\(150\) 146.586 + 263.712i 0.977242 + 1.75808i
\(151\) 244.777 43.1607i 1.62104 0.285832i 0.711884 0.702297i \(-0.247842\pi\)
0.909152 + 0.416464i \(0.136731\pi\)
\(152\) −126.854 + 19.9342i −0.834567 + 0.131146i
\(153\) −74.7647 + 96.3232i −0.488658 + 0.629564i
\(154\) 52.7128 12.1473i 0.342291 0.0788785i
\(155\) −2.45592 2.92685i −0.0158446 0.0188829i
\(156\) −47.9082 + 29.9883i −0.307104 + 0.192233i
\(157\) 32.2061 182.650i 0.205134 1.16337i −0.692094 0.721807i \(-0.743312\pi\)
0.897228 0.441567i \(-0.145577\pi\)
\(158\) 63.1268 + 97.2927i 0.399536 + 0.615776i
\(159\) 8.48016 124.102i 0.0533343 0.780518i
\(160\) −268.049 72.4039i −1.67531 0.452524i
\(161\) −58.5464 −0.363642
\(162\) −128.797 + 98.2615i −0.795043 + 0.606553i
\(163\) 3.07052i 0.0188375i 0.999956 + 0.00941877i \(0.00299813\pi\)
−0.999956 + 0.00941877i \(0.997002\pi\)
\(164\) −5.89723 8.13064i −0.0359587 0.0495771i
\(165\) 59.8957 + 4.09279i 0.363004 + 0.0248048i
\(166\) 72.8584 + 112.291i 0.438906 + 0.676454i
\(167\) 90.6052 + 15.9761i 0.542546 + 0.0956655i 0.438203 0.898876i \(-0.355615\pi\)
0.104343 + 0.994541i \(0.466726\pi\)
\(168\) 271.834 72.9471i 1.61806 0.434209i
\(169\) −112.468 + 94.3715i −0.665489 + 0.558411i
\(170\) 229.104 52.7955i 1.34767 0.310562i
\(171\) 133.771 54.5415i 0.782285 0.318956i
\(172\) −31.2616 64.2274i −0.181754 0.373415i
\(173\) −49.4146 280.244i −0.285633 1.61991i −0.703014 0.711176i \(-0.748163\pi\)
0.417381 0.908732i \(-0.362948\pi\)
\(174\) −105.773 190.288i −0.607890 1.09361i
\(175\) 201.692 + 554.144i 1.15253 + 3.16654i
\(176\) −27.4633 + 24.6479i −0.156042 + 0.140045i
\(177\) 18.7364 75.6590i 0.105855 0.427452i
\(178\) −215.646 26.5664i −1.21149 0.149249i
\(179\) 37.3404 + 21.5585i 0.208606 + 0.120438i 0.600663 0.799502i \(-0.294903\pi\)
−0.392058 + 0.919941i \(0.628237\pi\)
\(180\) 312.197 + 10.1624i 1.73443 + 0.0564576i
\(181\) −52.2292 90.4636i −0.288559 0.499799i 0.684907 0.728630i \(-0.259843\pi\)
−0.973466 + 0.228832i \(0.926509\pi\)
\(182\) −101.705 + 43.1228i −0.558819 + 0.236938i
\(183\) 118.061 + 161.956i 0.645144 + 0.885007i
\(184\) 34.9550 19.3205i 0.189973 0.105003i
\(185\) −251.603 211.120i −1.36002 1.14119i
\(186\) −2.60904 + 0.416396i −0.0140271 + 0.00223869i
\(187\) 10.6872 29.3628i 0.0571508 0.157021i
\(188\) −19.6531 + 29.0863i −0.104538 + 0.154714i
\(189\) −278.859 + 149.980i −1.47544 + 0.793543i
\(190\) −266.343 81.5468i −1.40180 0.429194i
\(191\) 86.7947 238.466i 0.454422 1.24852i −0.475160 0.879900i \(-0.657610\pi\)
0.929582 0.368616i \(-0.120168\pi\)
\(192\) −138.225 + 133.259i −0.719920 + 0.694057i
\(193\) −0.204011 0.171186i −0.00105705 0.000886973i 0.642259 0.766488i \(-0.277997\pi\)
−0.643316 + 0.765601i \(0.722442\pi\)
\(194\) −310.730 158.483i −1.60170 0.816923i
\(195\) −121.910 + 13.0089i −0.625179 + 0.0667124i
\(196\) 352.193 36.7294i 1.79690 0.187395i
\(197\) 25.6282 + 44.3894i 0.130093 + 0.225327i 0.923712 0.383087i \(-0.125139\pi\)
−0.793620 + 0.608414i \(0.791806\pi\)
\(198\) 23.7175 34.0727i 0.119786 0.172084i
\(199\) −86.0717 49.6935i −0.432521 0.249716i 0.267899 0.963447i \(-0.413671\pi\)
−0.700420 + 0.713731i \(0.747004\pi\)
\(200\) −303.289 264.291i −1.51645 1.32145i
\(201\) 272.878 78.7154i 1.35760 0.391619i
\(202\) −7.75512 149.129i −0.0383917 0.738261i
\(203\) −145.536 399.856i −0.716925 1.96974i
\(204\) 50.1191 154.661i 0.245682 0.758141i
\(205\) −3.78337 21.4566i −0.0184555 0.104666i
\(206\) 203.794 189.887i 0.989290 0.921782i
\(207\) −33.2950 + 30.1709i −0.160845 + 0.145753i
\(208\) 46.4920 59.3094i 0.223519 0.285141i
\(209\) −28.3593 + 23.7963i −0.135690 + 0.113858i
\(210\) 599.440 + 115.783i 2.85448 + 0.551349i
\(211\) −100.532 17.7265i −0.476456 0.0840120i −0.0697369 0.997565i \(-0.522216\pi\)
−0.406719 + 0.913553i \(0.633327\pi\)
\(212\) 45.5873 + 159.468i 0.215034 + 0.752206i
\(213\) −193.656 + 288.093i −0.909184 + 1.35255i
\(214\) 44.8704 + 33.8407i 0.209675 + 0.158134i
\(215\) 154.948i 0.720688i
\(216\) 116.998 181.569i 0.541658 0.840599i
\(217\) −5.16396 −0.0237970
\(218\) −15.3989 + 20.4179i −0.0706373 + 0.0936601i
\(219\) −121.424 + 59.4610i −0.554446 + 0.271512i
\(220\) −76.9640 + 22.0018i −0.349837 + 0.100008i
\(221\) −11.0809 + 62.8426i −0.0501396 + 0.284356i
\(222\) −214.659 + 74.1974i −0.966934 + 0.334222i
\(223\) 211.508 + 252.065i 0.948464 + 1.13034i 0.991349 + 0.131256i \(0.0419009\pi\)
−0.0428842 + 0.999080i \(0.513655\pi\)
\(224\) −307.836 + 214.624i −1.37427 + 0.958143i
\(225\) 400.269 + 211.200i 1.77898 + 0.938666i
\(226\) 286.908 + 307.920i 1.26950 + 1.36248i
\(227\) 339.879 59.9299i 1.49727 0.264008i 0.635812 0.771844i \(-0.280665\pi\)
0.861454 + 0.507836i \(0.169554\pi\)
\(228\) −143.041 + 128.997i −0.627374 + 0.565777i
\(229\) −273.587 + 99.5776i −1.19470 + 0.434837i −0.861373 0.507973i \(-0.830395\pi\)
−0.333331 + 0.942810i \(0.608173\pi\)
\(230\) 86.5183 4.49920i 0.376167 0.0195617i
\(231\) 56.2729 58.4577i 0.243605 0.253064i
\(232\) 218.846 + 190.706i 0.943300 + 0.822007i
\(233\) 49.5426 85.8104i 0.212629 0.368285i −0.739907 0.672709i \(-0.765131\pi\)
0.952537 + 0.304424i \(0.0984640\pi\)
\(234\) −35.6165 + 76.9356i −0.152207 + 0.328785i
\(235\) −65.9443 + 38.0730i −0.280614 + 0.162013i
\(236\) 10.7797 + 103.365i 0.0456768 + 0.437989i
\(237\) 159.039 + 70.5063i 0.671049 + 0.297495i
\(238\) 144.376 283.072i 0.606623 1.18938i
\(239\) −74.1713 + 88.3940i −0.310340 + 0.369849i −0.898559 0.438853i \(-0.855385\pi\)
0.588219 + 0.808702i \(0.299829\pi\)
\(240\) −396.103 + 128.689i −1.65043 + 0.536206i
\(241\) 109.908 + 40.0034i 0.456051 + 0.165989i 0.559823 0.828612i \(-0.310869\pi\)
−0.103772 + 0.994601i \(0.533091\pi\)
\(242\) 67.7328 221.225i 0.279888 0.914151i
\(243\) −81.2960 + 228.998i −0.334552 + 0.942377i
\(244\) −221.421 149.610i −0.907462 0.613158i
\(245\) 721.792 + 262.711i 2.94609 + 1.07229i
\(246\) −14.0719 5.38259i −0.0572028 0.0218805i
\(247\) 48.5959 57.9143i 0.196745 0.234471i
\(248\) 3.08312 1.70412i 0.0124319 0.00687147i
\(249\) 183.556 + 81.3756i 0.737173 + 0.326810i
\(250\) −171.288 403.982i −0.685151 1.61593i
\(251\) 127.608 73.6744i 0.508397 0.293523i −0.223777 0.974640i \(-0.571839\pi\)
0.732175 + 0.681117i \(0.238505\pi\)
\(252\) 281.748 314.406i 1.11805 1.24764i
\(253\) 5.75715 9.97168i 0.0227555 0.0394138i
\(254\) 27.2671 221.334i 0.107351 0.871392i
\(255\) 244.578 254.073i 0.959128 0.996366i
\(256\) 112.966 229.728i 0.441272 0.897373i
\(257\) −294.633 + 107.238i −1.14643 + 0.417267i −0.844232 0.535978i \(-0.819943\pi\)
−0.302199 + 0.953245i \(0.597721\pi\)
\(258\) −91.9083 55.0762i −0.356234 0.213473i
\(259\) −437.169 + 77.0847i −1.68791 + 0.297624i
\(260\) 146.983 71.5416i 0.565320 0.275160i
\(261\) −288.824 152.396i −1.10661 0.583894i
\(262\) 7.08999 + 30.7668i 0.0270610 + 0.117430i
\(263\) 131.924 + 157.221i 0.501613 + 0.597799i 0.956131 0.292938i \(-0.0946330\pi\)
−0.454518 + 0.890737i \(0.650189\pi\)
\(264\) −14.3063 + 53.4722i −0.0541905 + 0.202546i
\(265\) −62.4737 + 354.306i −0.235750 + 1.33700i
\(266\) −315.820 + 204.915i −1.18729 + 0.770355i
\(267\) −292.702 + 143.336i −1.09626 + 0.536839i
\(268\) −306.532 + 222.331i −1.14378 + 0.829592i
\(269\) −270.423 −1.00529 −0.502645 0.864493i \(-0.667640\pi\)
−0.502645 + 0.864493i \(0.667640\pi\)
\(270\) 400.565 243.066i 1.48357 0.900244i
\(271\) 232.697i 0.858661i −0.903148 0.429330i \(-0.858750\pi\)
0.903148 0.429330i \(-0.141250\pi\)
\(272\) 7.21528 + 216.652i 0.0265268 + 0.796514i
\(273\) −92.4424 + 137.522i −0.338617 + 0.503743i
\(274\) −178.350 + 115.719i −0.650911 + 0.422333i
\(275\) −114.216 20.1393i −0.415330 0.0732338i
\(276\) 28.0842 52.9181i 0.101754 0.191732i
\(277\) −57.6704 + 48.3912i −0.208196 + 0.174698i −0.740923 0.671590i \(-0.765612\pi\)
0.532727 + 0.846287i \(0.321167\pi\)
\(278\) 25.3756 + 110.116i 0.0912790 + 0.396102i
\(279\) −2.93671 + 2.66116i −0.0105258 + 0.00953819i
\(280\) −804.158 + 126.368i −2.87199 + 0.451313i
\(281\) 24.3783 + 138.256i 0.0867556 + 0.492015i 0.996964 + 0.0778647i \(0.0248102\pi\)
−0.910208 + 0.414151i \(0.864079\pi\)
\(282\) −0.856653 + 52.6483i −0.00303778 + 0.186696i
\(283\) 48.0225 + 131.941i 0.169691 + 0.466221i 0.995165 0.0982185i \(-0.0313144\pi\)
−0.825474 + 0.564440i \(0.809092\pi\)
\(284\) 112.334 449.003i 0.395543 1.58099i
\(285\) −401.451 + 115.804i −1.40860 + 0.406331i
\(286\) 2.65644 21.5630i 0.00928825 0.0753950i
\(287\) −25.5021 14.7236i −0.0888573 0.0513018i
\(288\) −64.4616 + 280.693i −0.223825 + 0.974629i
\(289\) 52.7226 + 91.3183i 0.182431 + 0.315980i
\(290\) 245.797 + 579.713i 0.847577 + 1.99901i
\(291\) −520.265 + 55.5171i −1.78785 + 0.190780i
\(292\) 125.329 129.573i 0.429210 0.443742i
\(293\) 255.034 + 213.999i 0.870422 + 0.730371i 0.964187 0.265223i \(-0.0854457\pi\)
−0.0937648 + 0.995594i \(0.529890\pi\)
\(294\) 412.389 334.755i 1.40268 1.13862i
\(295\) −77.1031 + 211.839i −0.261366 + 0.718098i
\(296\) 235.572 190.290i 0.795851 0.642873i
\(297\) 1.87689 62.2438i 0.00631949 0.209575i
\(298\) −68.5860 + 224.011i −0.230154 + 0.751715i
\(299\) −8.04230 + 22.0960i −0.0268973 + 0.0738997i
\(300\) −597.622 83.5151i −1.99207 0.278384i
\(301\) −160.426 134.614i −0.532978 0.447221i
\(302\) −225.860 + 442.833i −0.747880 + 1.46633i
\(303\) −131.949 181.007i −0.435474 0.597382i
\(304\) 120.937 226.565i 0.397818 0.745280i
\(305\) −289.832 502.005i −0.950270 1.64592i
\(306\) −63.7702 235.383i −0.208399 0.769225i
\(307\) 176.337 + 101.808i 0.574387 + 0.331622i 0.758900 0.651208i \(-0.225737\pi\)
−0.184513 + 0.982830i \(0.559071\pi\)
\(308\) −44.0841 + 98.7996i −0.143130 + 0.320778i
\(309\) 100.437 405.571i 0.325038 1.31253i
\(310\) 7.63116 0.396842i 0.0246166 0.00128014i
\(311\) 63.2509 + 173.780i 0.203379 + 0.558779i 0.998887 0.0471636i \(-0.0150182\pi\)
−0.795508 + 0.605943i \(0.792796\pi\)
\(312\) 9.80974 112.613i 0.0314415 0.360940i
\(313\) −19.2606 109.232i −0.0615355 0.348985i −0.999994 0.00359201i \(-0.998857\pi\)
0.938458 0.345393i \(-0.112254\pi\)
\(314\) 252.867 + 271.387i 0.805310 + 0.864289i
\(315\) 848.003 345.751i 2.69207 1.09762i
\(316\) −231.377 16.3673i −0.732207 0.0517952i
\(317\) 104.031 87.2920i 0.328172 0.275369i −0.463783 0.885949i \(-0.653508\pi\)
0.791955 + 0.610580i \(0.209064\pi\)
\(318\) 187.952 + 162.994i 0.591045 + 0.512561i
\(319\) 82.4151 + 14.5320i 0.258355 + 0.0455549i
\(320\) 438.418 340.822i 1.37006 1.06507i
\(321\) 84.1052 + 5.74707i 0.262010 + 0.0179036i
\(322\) 70.5060 93.4860i 0.218963 0.290329i
\(323\) 217.468i 0.673275i
\(324\) −1.79546 323.995i −0.00554153 0.999985i
\(325\) 236.845 0.728755
\(326\) −4.90296 3.69775i −0.0150397 0.0113428i
\(327\) −2.61516 + 38.2714i −0.00799743 + 0.117038i
\(328\) 20.0848 + 0.374921i 0.0612341 + 0.00114305i
\(329\) −17.8712 + 101.352i −0.0543196 + 0.308062i
\(330\) −78.6662 + 90.7117i −0.238382 + 0.274884i
\(331\) −114.419 136.359i −0.345677 0.411962i 0.564993 0.825095i \(-0.308879\pi\)
−0.910670 + 0.413133i \(0.864434\pi\)
\(332\) −267.047 18.8905i −0.804358 0.0568990i
\(333\) −208.891 + 269.125i −0.627300 + 0.808183i
\(334\) −134.624 + 125.437i −0.403066 + 0.375561i
\(335\) −808.931 + 142.636i −2.41472 + 0.425780i
\(336\) −210.882 + 521.908i −0.627624 + 1.55330i
\(337\) 547.261 199.187i 1.62392 0.591059i 0.639797 0.768544i \(-0.279019\pi\)
0.984123 + 0.177486i \(0.0567963\pi\)
\(338\) −15.2491 293.236i −0.0451157 0.867561i
\(339\) 612.794 + 151.754i 1.80765 + 0.447652i
\(340\) −191.602 + 429.411i −0.563534 + 1.26297i
\(341\) 0.507797 0.879530i 0.00148914 0.00257927i
\(342\) −74.0056 + 279.286i −0.216391 + 0.816625i
\(343\) 401.424 231.762i 1.17033 0.675692i
\(344\) 140.205 + 27.4294i 0.407573 + 0.0797366i
\(345\) 105.013 76.5512i 0.304385 0.221887i
\(346\) 506.998 + 258.586i 1.46531 + 0.747359i
\(347\) −174.936 + 208.480i −0.504138 + 0.600808i −0.956754 0.290897i \(-0.906046\pi\)
0.452616 + 0.891705i \(0.350491\pi\)
\(348\) 431.228 + 60.2624i 1.23916 + 0.173168i
\(349\) 239.597 + 87.2061i 0.686524 + 0.249874i 0.661646 0.749816i \(-0.269858\pi\)
0.0248779 + 0.999690i \(0.492080\pi\)
\(350\) −1127.74 345.283i −3.22212 0.986523i
\(351\) 18.2981 + 125.846i 0.0521313 + 0.358537i
\(352\) −6.28397 73.5359i −0.0178522 0.208909i
\(353\) −216.192 78.6876i −0.612443 0.222911i 0.0171289 0.999853i \(-0.494547\pi\)
−0.629572 + 0.776942i \(0.716770\pi\)
\(354\) 98.2473 + 121.032i 0.277535 + 0.341899i
\(355\) 645.351 769.100i 1.81789 2.16648i
\(356\) 302.117 312.347i 0.848645 0.877378i
\(357\) −50.5755 473.955i −0.141668 1.32761i
\(358\) −79.3924 + 33.6622i −0.221766 + 0.0940286i
\(359\) 513.681 296.574i 1.43087 0.826112i 0.433680 0.901067i \(-0.357215\pi\)
0.997187 + 0.0749550i \(0.0238813\pi\)
\(360\) −392.198 + 486.273i −1.08944 + 1.35076i
\(361\) −51.6768 + 89.5068i −0.143149 + 0.247941i
\(362\) 207.349 + 25.5443i 0.572788 + 0.0705643i
\(363\) −96.1871 333.446i −0.264978 0.918584i
\(364\) 53.6231 214.333i 0.147316 0.588826i
\(365\) 367.452 133.742i 1.00672 0.366415i
\(366\) −400.788 6.52132i −1.09505 0.0178178i
\(367\) −328.288 + 57.8861i −0.894519 + 0.157728i −0.601966 0.798522i \(-0.705616\pi\)
−0.292553 + 0.956249i \(0.594505\pi\)
\(368\) −11.2447 + 79.0828i −0.0305561 + 0.214899i
\(369\) −22.0904 + 4.76881i −0.0598657 + 0.0129236i
\(370\) 640.113 147.509i 1.73003 0.398674i
\(371\) 312.558 + 372.492i 0.842473 + 1.00402i
\(372\) 2.47710 4.66752i 0.00665887 0.0125471i
\(373\) 10.8367 61.4578i 0.0290527 0.164766i −0.966829 0.255423i \(-0.917785\pi\)
0.995882 + 0.0906564i \(0.0288965\pi\)
\(374\) 34.0158 + 52.4261i 0.0909514 + 0.140177i
\(375\) −546.250 367.190i −1.45667 0.979174i
\(376\) −22.7767 66.4097i −0.0605764 0.176621i
\(377\) −170.902 −0.453320
\(378\) 96.3378 625.895i 0.254862 1.65581i
\(379\) 341.891i 0.902088i 0.892502 + 0.451044i \(0.148948\pi\)
−0.892502 + 0.451044i \(0.851052\pi\)
\(380\) 450.963 327.087i 1.18674 0.860756i
\(381\) −147.117 300.423i −0.386133 0.788511i
\(382\) 276.255 + 425.772i 0.723180 + 1.11459i
\(383\) −173.175 30.5355i −0.452155 0.0797272i −0.0570670 0.998370i \(-0.518175\pi\)
−0.395088 + 0.918643i \(0.629286\pi\)
\(384\) −46.3254 381.195i −0.120639 0.992696i
\(385\) −179.776 + 150.850i −0.466951 + 0.391818i
\(386\) 0.519033 0.119607i 0.00134464 0.000309864i
\(387\) −160.604 + 6.11896i −0.414998 + 0.0158113i
\(388\) 627.268 305.312i 1.61667 0.786887i
\(389\) 18.0397 + 102.308i 0.0463746 + 0.263003i 0.999176 0.0405915i \(-0.0129242\pi\)
−0.952801 + 0.303595i \(0.901813\pi\)
\(390\) 126.041 210.330i 0.323181 0.539308i
\(391\) −23.1336 63.5590i −0.0591651 0.162555i
\(392\) −365.488 + 606.609i −0.932368 + 1.54747i
\(393\) 34.1199 + 32.8447i 0.0868191 + 0.0835743i
\(394\) −101.744 12.5343i −0.258233 0.0318129i
\(395\) −435.744 251.577i −1.10315 0.636904i
\(396\) 25.8443 + 78.9047i 0.0652635 + 0.199254i
\(397\) −309.052 535.294i −0.778469 1.34835i −0.932824 0.360333i \(-0.882663\pi\)
0.154354 0.988016i \(-0.450670\pi\)
\(398\) 183.004 77.5933i 0.459809 0.194958i
\(399\) −228.869 + 516.252i −0.573607 + 1.29386i
\(400\) 787.259 166.008i 1.96815 0.415021i
\(401\) −157.870 132.468i −0.393690 0.330345i 0.424359 0.905494i \(-0.360500\pi\)
−0.818048 + 0.575149i \(0.804944\pi\)
\(402\) −202.928 + 530.522i −0.504797 + 1.31971i
\(403\) −0.709353 + 1.94893i −0.00176018 + 0.00483606i
\(404\) 247.466 + 167.209i 0.612539 + 0.413883i
\(405\) 304.077 633.630i 0.750808 1.56452i
\(406\) 813.749 + 249.148i 2.00431 + 0.613664i
\(407\) 29.8598 82.0391i 0.0733656 0.201570i
\(408\) 186.603 + 266.283i 0.457360 + 0.652656i
\(409\) −197.638 165.838i −0.483222 0.405472i 0.368368 0.929680i \(-0.379917\pi\)
−0.851590 + 0.524208i \(0.824361\pi\)
\(410\) 38.8177 + 19.7984i 0.0946774 + 0.0482887i
\(411\) −129.247 + 291.538i −0.314469 + 0.709337i
\(412\) 57.7849 + 554.091i 0.140255 + 1.34488i
\(413\) 152.344 + 263.868i 0.368872 + 0.638905i
\(414\) −8.08009 89.4990i −0.0195171 0.216181i
\(415\) −502.919 290.361i −1.21185 0.699664i
\(416\) 38.7151 + 145.663i 0.0930652 + 0.350150i
\(417\) 122.117 + 117.553i 0.292848 + 0.281903i
\(418\) −3.84514 73.9410i −0.00919890 0.176892i
\(419\) 41.7733 + 114.771i 0.0996975 + 0.273917i 0.979507 0.201410i \(-0.0645522\pi\)
−0.879810 + 0.475326i \(0.842330\pi\)
\(420\) −906.772 + 817.742i −2.15898 + 1.94700i
\(421\) −19.2591 109.224i −0.0457461 0.259439i 0.953354 0.301855i \(-0.0976058\pi\)
−0.999100 + 0.0424156i \(0.986495\pi\)
\(422\) 149.374 139.181i 0.353966 0.329812i
\(423\) 42.0670 + 66.8481i 0.0994491 + 0.158033i
\(424\) −309.535 119.250i −0.730036 0.281250i
\(425\) −521.893 + 437.920i −1.22798 + 1.03040i
\(426\) −226.806 656.170i −0.532409 1.54030i
\(427\) −771.550 136.045i −1.80691 0.318607i
\(428\) −108.072 + 30.8949i −0.252506 + 0.0721842i
\(429\) −14.3325 29.2681i −0.0334092 0.0682239i
\(430\) 247.419 + 186.600i 0.575392 + 0.433953i
\(431\) 697.944i 1.61936i 0.586872 + 0.809679i \(0.300359\pi\)
−0.586872 + 0.809679i \(0.699641\pi\)
\(432\) 149.029 + 405.480i 0.344975 + 0.938612i
\(433\) −599.940 −1.38554 −0.692772 0.721157i \(-0.743611\pi\)
−0.692772 + 0.721157i \(0.743611\pi\)
\(434\) 6.21882 8.24573i 0.0143291 0.0189994i
\(435\) 783.866 + 526.916i 1.80199 + 1.21130i
\(436\) −14.0585 49.1776i −0.0322442 0.112793i
\(437\) −13.9152 + 78.9172i −0.0318426 + 0.180589i
\(438\) 51.2810 265.495i 0.117080 0.606153i
\(439\) −501.455 597.611i −1.14227 1.36130i −0.922615 0.385722i \(-0.873952\pi\)
−0.219652 0.975578i \(1.42951\pi\)
\(440\) 57.5537 149.391i 0.130804 0.339526i
\(441\) 243.797 758.515i 0.552828 1.71999i
\(442\) −87.0018 93.3735i −0.196837 0.211252i
\(443\) 682.883 120.411i 1.54150 0.271807i 0.662656 0.748924i \(-0.269429\pi\)
0.878840 + 0.477117i \(0.158318\pi\)
\(444\) 140.032 432.119i 0.315386 0.973240i
\(445\) 885.776 322.396i 1.99051 0.724485i
\(446\) −657.207 + 34.1766i −1.47356 + 0.0766292i
\(447\) 97.3987 + 337.646i 0.217894 + 0.755360i
\(448\) 28.0107 750.014i 0.0625238 1.67414i
\(449\) −263.993 + 457.250i −0.587959 + 1.01837i 0.406541 + 0.913633i \(0.366735\pi\)
−0.994499 + 0.104742i \(0.966598\pi\)
\(450\) −819.275 + 384.802i −1.82061 + 0.855114i
\(451\) 5.01548 2.89569i 0.0111208 0.00642060i
\(452\) −837.199 + 87.3096i −1.85221 + 0.193163i
\(453\) 79.1195 + 741.448i 0.174657 + 1.63675i
\(454\) −313.613 + 614.886i −0.690778 + 1.35438i
\(455\) 308.060 367.132i 0.677056 0.806884i
\(456\) −33.7195 383.754i −0.0739462 0.841566i
\(457\) 125.330 + 45.6162i 0.274244 + 0.0998167i 0.475481 0.879726i \(-0.342274\pi\)
−0.201237 + 0.979543i \(0.564496\pi\)
\(458\) 170.470 556.779i 0.372206 1.21567i
\(459\) −273.007 243.472i −0.594786 0.530441i
\(460\) −97.0076 + 143.569i −0.210886 + 0.312107i
\(461\) −497.956 181.241i −1.08017 0.393148i −0.260196 0.965556i \(-0.583787\pi\)
−0.819969 + 0.572408i \(0.806009\pi\)
\(462\) 25.5763 + 160.255i 0.0553600 + 0.346872i
\(463\) −314.968 + 375.364i −0.680277 + 0.810722i −0.990143 0.140058i \(-0.955271\pi\)
0.309867 + 0.950780i \(0.399716\pi\)
\(464\) −568.066 + 119.787i −1.22428 + 0.258163i
\(465\) 9.26241 6.75202i 0.0199192 0.0145205i
\(466\) 77.3577 + 182.448i 0.166004 + 0.391520i
\(467\) −168.249 + 97.1384i −0.360276 + 0.208005i −0.669202 0.743081i \(-0.733364\pi\)
0.308926 + 0.951086i \(0.400030\pi\)
\(468\) −79.9576 149.523i −0.170850 0.319495i
\(469\) −555.093 + 961.449i −1.18357 + 2.05000i
\(470\) 18.6207 151.149i 0.0396186 0.321594i
\(471\) 540.088 + 133.749i 1.14668 + 0.283968i
\(472\) −178.034 107.267i −0.377190 0.227261i
\(473\) 38.7030 14.0867i 0.0818246 0.0297817i
\(474\) −304.110 + 169.042i −0.641581 + 0.356628i
\(475\) 794.892 140.161i 1.67346 0.295076i
\(476\) 278.136 + 571.434i 0.584319 + 1.20049i
\(477\) 369.707 + 50.7626i 0.775067 + 0.106420i
\(478\) −51.8235 224.886i −0.108417 0.470473i
\(479\) 13.8081 + 16.4559i 0.0288270 + 0.0343547i 0.780265 0.625449i \(-0.215084\pi\)
−0.751438 + 0.659803i \(0.770640\pi\)
\(480\) 271.527 787.468i 0.565682 1.64056i
\(481\) −30.9596 + 175.581i −0.0643652 + 0.365033i
\(482\) −196.237 + 127.325i −0.407130 + 0.264160i
\(483\) 11.9738 175.231i 0.0247906 0.362796i
\(484\) 271.679 + 374.570i 0.561320 + 0.773905i
\(485\) 1513.28 3.12016
\(486\) −267.757 405.588i −0.550941 0.834544i
\(487\) 669.554i 1.37485i −0.726254 0.687427i \(-0.758740\pi\)
0.726254 0.687427i \(-0.241260\pi\)
\(488\) 505.547 173.389i 1.03596 0.355305i
\(489\) −9.19012 0.627979i −0.0187937 0.00128421i
\(490\) −1288.73 + 836.170i −2.63006 + 1.70647i
\(491\) −571.962 100.852i −1.16489 0.205402i −0.442424 0.896806i \(-0.645881\pi\)
−0.722468 + 0.691404i \(0.756993\pi\)
\(492\) 25.5413 15.9877i 0.0519131 0.0324952i
\(493\) 376.585 315.992i 0.763864 0.640958i
\(494\) 33.9539 + 147.342i 0.0687326 + 0.298263i
\(495\) −24.4996 + 178.432i −0.0494941 + 0.360469i
\(496\) −0.991809 + 6.97532i −0.00199962 + 0.0140631i
\(497\) −235.632 1336.34i −0.474109 2.68881i
\(498\) −350.991 + 195.101i −0.704802 + 0.391769i
\(499\) 164.520 + 452.016i 0.329700 + 0.905844i 0.988187 + 0.153252i \(0.0489746\pi\)
−0.658487 + 0.752592i \(0.728803\pi\)
\(500\) 851.350 + 212.996i 1.70270 + 0.425992i
\(501\) −66.3474 + 267.916i −0.132430 + 0.534762i
\(502\) −36.0327 + 292.486i −0.0717783 + 0.582642i
\(503\) −373.012 215.359i −0.741575 0.428148i 0.0810668 0.996709i \(-0.474167\pi\)
−0.822642 + 0.568560i \(0.807501\pi\)
\(504\) 162.737 + 828.523i 0.322891 + 1.64389i
\(505\) 323.925 + 561.054i 0.641435 + 1.11100i
\(506\) 8.98943 + 21.2016i 0.0177657 + 0.0419003i
\(507\) −259.454 355.918i −0.511744 0.702009i
\(508\) 320.585 + 310.086i 0.631073 + 0.610406i
\(509\) 444.761 + 373.199i 0.873793 + 0.733200i 0.964893 0.262642i \(-0.0845939\pi\)
−0.0911001 + 0.995842i \(0.529038\pi\)
\(510\) 111.162 + 696.512i 0.217964 + 1.36571i
\(511\) 180.760 496.634i 0.353738 0.971887i
\(512\) 230.784 + 457.037i 0.450749 + 0.892651i
\(513\) 135.885 + 411.533i 0.264883 + 0.802209i
\(514\) 183.584 599.609i 0.357167 1.16655i
\(515\) −413.312 + 1135.57i −0.802548 + 2.20498i
\(516\) 198.628 80.4310i 0.384937 0.155874i
\(517\) −15.5051 13.0103i −0.0299905 0.0251650i
\(518\) 403.384 790.896i 0.778733 1.52683i
\(519\) 848.882 90.5836i 1.63561 0.174535i
\(520\) −62.7716 + 320.856i −0.120715 + 0.617031i
\(521\) 193.570 + 335.273i 0.371535 + 0.643517i 0.989802 0.142451i \(-0.0454983\pi\)
−0.618267 + 0.785968i \(0.712165\pi\)
\(522\) 591.168 277.663i 1.13251 0.531921i
\(523\) −142.838 82.4674i −0.273112 0.157681i 0.357189 0.934032i \(-0.383735\pi\)
−0.630301 + 0.776351i \(0.717069\pi\)
\(524\) −57.6662 25.7305i −0.110050 0.0491040i
\(525\) −1699.81 + 490.335i −3.23774 + 0.933972i
\(526\) −409.921 + 21.3171i −0.779318 + 0.0405268i
\(527\) −2.04045 5.60608i −0.00387181 0.0106377i
\(528\) −68.1549 87.2393i −0.129081 0.165226i
\(529\) 87.5319 + 496.418i 0.165467 + 0.938408i
\(530\) −490.515 526.439i −0.925500 0.993281i
\(531\) 222.617 + 71.5521i 0.419241 + 0.134750i
\(532\) 53.1295 751.070i 0.0998675 1.41179i
\(533\) −9.05997 + 7.60221i −0.0169981 + 0.0142631i
\(534\) 123.617 639.999i 0.231493 1.19850i
\(535\) −240.116 42.3389i −0.448815 0.0791382i
\(536\) 14.1348 757.213i 0.0263710 1.41271i
\(537\) −72.1618 + 107.351i −0.134380 + 0.199910i
\(538\) 325.664 431.807i 0.605323 0.802616i
\(539\) 204.173i 0.378800i
\(540\) −94.2664 + 932.334i −0.174567 + 1.72654i
\(541\) 543.641 1.00488 0.502441 0.864612i \(-0.332436\pi\)
0.502441 + 0.864612i \(0.332436\pi\)
\(542\) 371.567 + 280.231i 0.685548 + 0.517032i
\(543\) 281.441 137.821i 0.518308 0.253815i
\(544\) −354.635 249.387i −0.651903 0.458432i
\(545\) 19.2660 109.263i 0.0353504 0.200482i
\(546\) −108.267 313.225i −0.198291 0.573672i
\(547\) 557.244 + 664.097i 1.01873 + 1.21407i 0.976623 + 0.214958i \(0.0689616\pi\)
0.0421038 + 0.999113i \(0.486594\pi\)
\(548\) 30.0033 424.144i 0.0547505 0.773985i
\(549\) −508.884 + 320.237i −0.926930 + 0.583310i
\(550\) 169.705 158.125i 0.308555 0.287499i
\(551\) −573.574 + 101.137i −1.04097 + 0.183551i
\(552\) 50.6778 + 108.572i 0.0918076 + 0.196689i
\(553\) −639.032 + 232.589i −1.15557 + 0.420594i
\(554\) −7.81934 150.364i −0.0141143 0.271414i
\(555\) 683.344 709.875i 1.23125 1.27905i
\(556\) −206.391 92.0912i −0.371208 0.165632i
\(557\) 251.191 435.076i 0.450972 0.781106i −0.547475 0.836822i \(-0.684411\pi\)
0.998447 + 0.0557163i \(0.0177442\pi\)
\(558\) −0.712686 7.89406i −0.00127722 0.0141471i
\(559\) −72.8417 + 42.0552i −0.130307 + 0.0752329i
\(560\) 766.645 1436.25i 1.36901 2.56473i
\(561\) 85.6979 + 37.9923i 0.152759 + 0.0677224i
\(562\) −250.124 127.572i −0.445060 0.226996i
\(563\) 34.7389 41.4002i 0.0617032 0.0735351i −0.734310 0.678814i \(-0.762494\pi\)
0.796013 + 0.605279i \(0.206939\pi\)
\(564\) −83.0363 64.7709i −0.147228 0.114842i
\(565\) −1715.77 624.490i −3.03677 1.10529i
\(566\) −268.513 82.2113i −0.474405 0.145250i
\(567\) −391.860 865.305i −0.691112 1.52611i
\(568\) 581.679 + 720.096i 1.02408 + 1.26777i
\(569\) 216.377 + 78.7548i 0.380276 + 0.138409i 0.525083 0.851051i \(-0.324034\pi\)
−0.144808 + 0.989460i \(0.546256\pi\)
\(570\) 298.543 780.492i 0.523760 1.36928i
\(571\) 305.971 364.642i 0.535850 0.638602i −0.428402 0.903588i \(-0.640923\pi\)
0.964252 + 0.264987i \(0.0853676\pi\)
\(572\) 31.2323 + 30.2095i 0.0546020 + 0.0528138i
\(573\) 695.984 + 308.549i 1.21463 + 0.538480i
\(574\) 54.2219 22.9900i 0.0944633 0.0400523i
\(575\) −217.412 + 125.523i −0.378108 + 0.218301i
\(576\) −370.577 440.963i −0.643363 0.765561i
\(577\) −146.058 + 252.980i −0.253133 + 0.438440i −0.964387 0.264496i \(-0.914795\pi\)
0.711253 + 0.702936i \(0.248128\pi\)
\(578\) −209.308 25.7856i −0.362125 0.0446118i
\(579\) 0.554087 0.575600i 0.000956972 0.000994127i
\(580\) −1221.68 305.648i −2.10635 0.526980i
\(581\) −737.546 + 268.445i −1.26944 + 0.462039i
\(582\) 537.893 897.609i 0.924215 1.54228i
\(583\) −94.1784 + 16.6062i −0.161541 + 0.0284840i
\(584\) 55.9688 + 356.165i 0.0958370 + 0.609872i
\(585\) −14.0031 367.539i −0.0239369 0.628273i
\(586\) −648.841 + 149.521i −1.10724 + 0.255155i
\(587\) −536.993 639.963i −0.914809 1.09023i −0.995620 0.0934972i \(-0.970195\pi\)
0.0808107 0.996729i \(1.52575\pi\)
\(588\) 37.9018 + 1061.63i 0.0644588 + 1.80550i
\(589\) −1.22736 + 6.96072i −0.00208381 + 0.0118179i
\(590\) −245.408 378.229i −0.415946 0.641067i
\(591\) −138.100 + 67.6274i −0.233672 + 0.114429i
\(592\) 20.1593 + 605.320i 0.0340529 + 1.02250i
\(593\) −253.977 −0.428292 −0.214146 0.976802i \(-0.568697\pi\)
−0.214146 + 0.976802i \(0.568697\pi\)
\(594\) 97.1296 + 77.9556i 0.163518 + 0.131238i
\(595\) 1378.58i 2.31694i
\(596\) −275.101 379.288i −0.461579 0.636389i
\(597\) 166.337 247.451i 0.278621 0.414491i
\(598\) −25.5975 39.4515i −0.0428051 0.0659724i
\(599\) 1092.94 + 192.715i 1.82460 + 0.321727i 0.977698 0.210015i \(-0.0673512\pi\)
0.846907 + 0.531742i \(0.178462\pi\)
\(600\) 853.056 853.698i 1.42176 1.42283i
\(601\) 303.355 254.545i 0.504750 0.423536i −0.354527 0.935046i \(-0.615358\pi\)
0.859277 + 0.511510i \(0.170914\pi\)
\(602\) 408.146 94.0544i 0.677984 0.156237i
\(603\) 179.788 + 832.828i 0.298156 + 1.38114i
\(604\) −435.111 893.942i −0.720383 1.48004i
\(605\) 174.296 + 988.481i 0.288092 + 1.63385i
\(606\) 447.931 + 7.28840i 0.739161 + 0.0120271i
\(607\) 185.277 + 509.044i 0.305234 + 0.838622i 0.993569 + 0.113230i \(0.0361195\pi\)
−0.688335 + 0.725393i \(0.741658\pi\)
\(608\) 216.135 + 465.957i 0.355485 + 0.766376i
\(609\) 1226.54 353.813i 2.01403 0.580974i
\(610\) 1150.63 + 141.751i 1.88628 + 0.232379i
\(611\) 35.7965 + 20.6671i 0.0585868 + 0.0338251i
\(612\) 452.653 + 181.638i 0.739629 + 0.296795i
\(613\) −343.368 594.730i −0.560143 0.970196i −0.997483 0.0709000i \(-0.977413\pi\)
0.437341 0.899296i \(-0.355920\pi\)
\(614\) −374.924 + 158.967i −0.610625 + 0.258904i
\(615\) 64.9937 6.93544i 0.105681 0.0112771i
\(616\) −104.672 189.375i −0.169923 0.307426i
\(617\) 657.785 + 551.947i 1.06610 + 0.894566i 0.994694 0.102881i \(-0.0328062\pi\)
0.0714083 + 0.997447i \(0.477251\pi\)
\(618\) 526.656 + 648.795i 0.852194 + 1.04983i
\(619\) −80.2415 + 220.462i −0.129631 + 0.356158i −0.987480 0.157743i \(-0.949578\pi\)
0.857849 + 0.513901i \(0.171800\pi\)
\(620\) −8.55634 + 12.6632i −0.0138005 + 0.0204246i
\(621\) −83.4926 105.823i −0.134449 0.170408i
\(622\) −353.661 108.281i −0.568587 0.174086i
\(623\) 435.738 1197.18i 0.699419 1.92164i
\(624\) 168.006 + 151.281i 0.269240 + 0.242438i
\(625\) 495.256 + 415.569i 0.792410 + 0.664911i
\(626\) 197.616 + 100.791i 0.315680 + 0.161008i
\(627\) −65.4227 89.7468i −0.104342 0.143137i
\(628\) −737.868 + 76.9506i −1.17495 + 0.122533i
\(629\) −256.424 444.139i −0.407669 0.706104i
\(630\) −469.139 + 1770.46i −0.744664 + 2.81025i
\(631\) 124.225 + 71.7213i 0.196870 + 0.113663i 0.595195 0.803582i \(-0.297075\pi\)
−0.398325 + 0.917244i \(0.630408\pi\)
\(632\) 304.777 349.749i 0.482242 0.553401i
\(633\) 73.6166 297.269i 0.116298 0.469620i
\(634\) 14.1051 + 271.238i 0.0222479 + 0.427820i
\(635\) 330.900 + 909.139i 0.521102 + 1.43172i
\(636\) −486.613 + 103.829i −0.765115 + 0.163254i
\(637\) −72.4036 410.621i −0.113663 0.644617i
\(638\) −122.455 + 114.099i −0.191936 + 0.178838i
\(639\) −822.660 638.537i −1.28742 0.999276i
\(640\) 16.2440 + 1110.50i 0.0253812 + 1.73516i
\(641\) 334.138 280.375i 0.521276 0.437403i −0.343800 0.939043i \(-0.611714\pi\)
0.865076 + 0.501640i \(0.167270\pi\)
\(642\) −110.463 + 127.377i −0.172060 + 0.198406i
\(643\) −1138.09 200.676i −1.76997 0.312094i −0.808809 0.588072i \(-0.799887\pi\)
−0.961164 + 0.275978i \(0.910998\pi\)
\(644\) 64.3685 + 225.166i 0.0999511 + 0.349636i
\(645\) 463.762 + 31.6898i 0.719012 + 0.0491314i
\(646\) −347.249 261.891i −0.537537 0.405404i
\(647\) 935.380i 1.44572i −0.690995 0.722859i \(-0.742827\pi\)
0.690995 0.722859i \(-0.257173\pi\)
\(648\) 519.513 + 387.312i 0.801717 + 0.597704i
\(649\) −59.9229 −0.0923312
\(650\) −285.227 + 378.191i −0.438811 + 0.581832i
\(651\) 1.05613 15.4558i 0.00162231 0.0237417i
\(652\) 11.8090 3.37586i 0.0181120 0.00517770i
\(653\) −140.779 + 798.399i −0.215588 + 1.22266i 0.664294 + 0.747471i \(0.268732\pi\)
−0.879882 + 0.475191i \(0.842379\pi\)
\(654\) −57.9619 50.2652i −0.0886267 0.0768580i
\(655\) −88.0464 104.930i −0.134422 0.160198i
\(656\) −24.7863 + 31.6195i −0.0377839 + 0.0482005i
\(657\) −153.135 375.584i −0.233082 0.571666i
\(658\) −140.316 150.593i −0.213246 0.228864i
\(659\) −209.650 + 36.9669i −0.318133 + 0.0560954i −0.330435 0.943829i \(-0.607195\pi\)
0.0123016 + 0.999924i \(0.496084\pi\)
\(660\) −50.1113 234.855i −0.0759263 0.355841i
\(661\) −88.9075 + 32.3597i −0.134505 + 0.0489556i −0.408395 0.912805i \(-0.633912\pi\)
0.273891 + 0.961761i \(0.411689\pi\)
\(662\) 355.529 18.4885i 0.537052 0.0279283i
\(663\) −185.823 46.0177i −0.280276 0.0694083i
\(664\) 351.762 403.667i 0.529762 0.607932i
\(665\) 816.640 1414.46i 1.22803 2.12701i
\(666\) −178.172 657.654i −0.267526 0.987469i
\(667\) 156.879 90.5741i 0.235201 0.135793i
\(668\) −38.1721 366.027i −0.0571439 0.547944i
\(669\) −797.693 + 581.494i −1.19237 + 0.869199i
\(670\) 746.416 1463.46i 1.11405 2.18427i
\(671\) 99.0416 118.033i 0.147603 0.175906i
\(672\) −579.416 965.254i −0.862226 1.43639i
\(673\) −635.081 231.150i −0.943656 0.343463i −0.176048 0.984382i \(-0.556331\pi\)
−0.767609 + 0.640919i \(0.778553\pi\)
\(674\) −340.994 + 1113.73i −0.505926 + 1.65242i
\(675\) −713.988 + 1154.82i −1.05776 + 1.71085i
\(676\) 486.598 + 328.787i 0.719820 + 0.486371i
\(677\) −916.610 333.619i −1.35393 0.492790i −0.439757 0.898117i \(-0.644935\pi\)
−0.914172 + 0.405327i \(0.867158\pi\)
\(678\) −980.290 + 795.746i −1.44586 + 1.17367i
\(679\) 1314.68 1566.78i 1.93621 2.30748i
\(680\) −454.936 823.075i −0.669023 1.21040i
\(681\) 109.860 + 1029.52i 0.161321 + 1.51178i
\(682\) 0.792893 + 1.87004i 0.00116260 + 0.00274199i
\(683\) 193.748 111.861i 0.283672 0.163778i −0.351412 0.936221i \(-0.614299\pi\)
0.635085 + 0.772442i \(0.280965\pi\)
\(684\) −356.836 454.508i −0.521691 0.664486i
\(685\) 461.172 798.774i 0.673244 1.16609i
\(686\) −113.350 + 920.093i −0.165234 + 1.34124i
\(687\) −242.084 839.218i −0.352379 1.22157i
\(688\) −212.644 + 190.845i −0.309076 + 0.277391i
\(689\) 183.517 66.7948i 0.266353 0.0969445i
\(690\) −4.22843 + 259.871i −0.00612816 + 0.376625i
\(691\) −204.026 + 35.9752i −0.295262 + 0.0520626i −0.319317 0.947648i \(-0.603453\pi\)
0.0240551 + 0.999711i \(0.492342\pi\)
\(692\) −1023.47 + 498.158i −1.47901 + 0.719881i
\(693\) 163.456 + 180.382i 0.235867 + 0.260291i
\(694\) −122.228 530.403i −0.176120 0.764269i
\(695\) −315.124 375.550i −0.453416 0.540360i
\(696\) −615.544 + 616.007i −0.884402 + 0.885067i
\(697\) 5.90752 33.5032i 0.00847565 0.0480678i
\(698\) −427.790 + 277.565i −0.612880 + 0.397657i
\(699\) 246.700 + 165.832i 0.352932 + 0.237242i
\(700\) 1909.45 1384.94i 2.72779 1.97849i
\(701\) −318.924 −0.454955 −0.227478 0.973783i \(-0.573048\pi\)
−0.227478 + 0.973783i \(0.573048\pi\)
\(702\) −222.986 122.336i −0.317643 0.174267i
\(703\) 607.600i 0.864296i
\(704\) 124.989 + 78.5233i 0.177541 + 0.111539i
\(705\) −100.466 205.159i −0.142505 0.291006i
\(706\) 386.002 250.451i 0.546745 0.354747i
\(707\) 862.306 + 152.048i 1.21967 + 0.215060i
\(708\) −311.579 + 11.1238i −0.440083 + 0.0157116i
\(709\) 469.253 393.750i 0.661852 0.555360i −0.248789 0.968558i \(-0.580033\pi\)
0.910641 + 0.413198i \(0.135588\pi\)
\(710\) 450.906 + 1956.69i 0.635079 + 2.75591i
\(711\) −243.553 + 461.586i −0.342550 + 0.649207i
\(712\) 134.918 + 858.568i 0.189491 + 1.20585i
\(713\) −0.381741 2.16496i −0.000535401 0.00303641i
\(714\) 817.712 + 490.014i 1.14525 + 0.686295i
\(715\) 32.2372 + 88.5710i 0.0450870 + 0.123876i
\(716\) 41.8589 167.311i 0.0584621 0.233675i
\(717\) −249.396 240.075i −0.347832 0.334832i
\(718\) −145.049 + 1177.40i −0.202018 + 1.63983i
\(719\) 983.957 + 568.088i 1.36851 + 0.790108i 0.990737 0.135792i \(-0.0433577\pi\)
0.377770 + 0.925900i \(0.376691\pi\)
\(720\) −304.159 1211.86i −0.422444 1.68314i
\(721\) 816.643 + 1414.47i 1.13265 + 1.96181i
\(722\) −80.6901 190.308i −0.111759 0.263584i
\(723\) −142.209 + 320.776i −0.196693 + 0.443674i
\(724\) −290.494 + 300.330i −0.401235 + 0.414820i
\(725\) −1397.73 1172.84i −1.92791 1.61771i
\(726\) 648.277 + 247.970i 0.892944 + 0.341557i
\(727\) −393.913 + 1082.27i −0.541834 + 1.48868i 0.302653 + 0.953101i \(0.402128\pi\)
−0.844487 + 0.535576i \(0.820095\pi\)
\(728\) 277.666 + 343.740i 0.381410 + 0.472171i
\(729\) −668.768 290.155i −0.917378 0.398018i
\(730\) −228.957 + 747.804i −0.313639 + 1.02439i
\(731\) 82.7492 227.352i 0.113200 0.311015i
\(732\) 493.072 632.118i 0.673595 0.863550i
\(733\) 405.935 + 340.620i 0.553800 + 0.464693i 0.876225 0.481902i \(-0.160054\pi\)
−0.322426 + 0.946595i \(0.604498\pi\)
\(734\) 302.918 593.917i 0.412695 0.809151i
\(735\) −933.919 + 2106.61i −1.27064 + 2.86613i
\(736\) −112.737 113.193i −0.153175 0.153794i
\(737\) −109.170 189.088i −0.148127 0.256564i
\(738\) 18.9882 41.0166i 0.0257292 0.0555781i
\(739\) 1010.52 + 583.424i 1.36742 + 0.789478i 0.990597 0.136809i \(-0.0436845\pi\)
0.376819 + 0.926287i \(0.377018\pi\)
\(740\) −535.331 + 1199.76i −0.723420 + 1.62130i
\(741\) 163.400 + 157.293i 0.220513 + 0.212271i
\(742\) −971.194 + 50.5049i −1.30889 + 0.0680659i
\(743\) −297.963 818.648i −0.401028 1.10181i −0.961778 0.273829i \(-0.911710\pi\)
0.560751 0.827985i \(1.68949\pi\)
\(744\) 4.46992 + 9.57638i 0.00600796 + 0.0128715i
\(745\) −176.491 1000.93i −0.236901 1.34353i
\(746\) 85.0846 + 91.3159i 0.114054 + 0.122407i
\(747\) −281.100 + 532.745i −0.376305 + 0.713179i
\(748\) −124.678 8.81950i −0.166681 0.0117908i
\(749\) −252.441 + 211.823i −0.337037 + 0.282807i
\(750\) 1244.16 430.046i 1.65888 0.573395i
\(751\) −925.603 163.209i −1.23249 0.217322i −0.480798 0.876832i \(-0.659653\pi\)
−0.751696 + 0.659510i \(0.770764\pi\)
\(752\) 133.471 + 43.6060i 0.177489 + 0.0579866i
\(753\) 194.411 + 397.000i 0.258182 + 0.527225i
\(754\) 205.812 272.893i 0.272961 0.361927i
\(755\) 2156.62i 2.85646i