Properties

Label 108.3.d.b
Level 108
Weight 3
Character orbit 108.d
Analytic conductor 2.943
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) = \( 3 \)
Character orbit: \([\chi]\) = 108.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(2.94278685509\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \zeta_{6} q^{2} + ( -4 + 4 \zeta_{6} ) q^{4} -7 q^{5} + ( -5 + 10 \zeta_{6} ) q^{7} -8 q^{8} +O(q^{10})\) \( q + 2 \zeta_{6} q^{2} + ( -4 + 4 \zeta_{6} ) q^{4} -7 q^{5} + ( -5 + 10 \zeta_{6} ) q^{7} -8 q^{8} -14 \zeta_{6} q^{10} + ( -5 + 10 \zeta_{6} ) q^{11} + 20 q^{13} + ( -20 + 10 \zeta_{6} ) q^{14} -16 \zeta_{6} q^{16} + 8 q^{17} + ( 6 - 12 \zeta_{6} ) q^{19} + ( 28 - 28 \zeta_{6} ) q^{20} + ( -20 + 10 \zeta_{6} ) q^{22} + ( 2 - 4 \zeta_{6} ) q^{23} + 24 q^{25} + 40 \zeta_{6} q^{26} + ( -20 - 20 \zeta_{6} ) q^{28} -10 q^{29} + ( -31 + 62 \zeta_{6} ) q^{31} + ( 32 - 32 \zeta_{6} ) q^{32} + 16 \zeta_{6} q^{34} + ( 35 - 70 \zeta_{6} ) q^{35} -10 q^{37} + ( 24 - 12 \zeta_{6} ) q^{38} + 56 q^{40} + 50 q^{41} + ( 10 - 20 \zeta_{6} ) q^{43} + ( -20 - 20 \zeta_{6} ) q^{44} + ( 8 - 4 \zeta_{6} ) q^{46} + ( -50 + 100 \zeta_{6} ) q^{47} -26 q^{49} + 48 \zeta_{6} q^{50} + ( -80 + 80 \zeta_{6} ) q^{52} + 47 q^{53} + ( 35 - 70 \zeta_{6} ) q^{55} + ( 40 - 80 \zeta_{6} ) q^{56} -20 \zeta_{6} q^{58} + ( 20 - 40 \zeta_{6} ) q^{59} -64 q^{61} + ( -124 + 62 \zeta_{6} ) q^{62} + 64 q^{64} -140 q^{65} + ( 50 - 100 \zeta_{6} ) q^{67} + ( -32 + 32 \zeta_{6} ) q^{68} + ( 140 - 70 \zeta_{6} ) q^{70} -55 q^{73} -20 \zeta_{6} q^{74} + ( 24 + 24 \zeta_{6} ) q^{76} -75 q^{77} + ( 4 - 8 \zeta_{6} ) q^{79} + 112 \zeta_{6} q^{80} + 100 \zeta_{6} q^{82} + ( -17 + 34 \zeta_{6} ) q^{83} -56 q^{85} + ( 40 - 20 \zeta_{6} ) q^{86} + ( 40 - 80 \zeta_{6} ) q^{88} -10 q^{89} + ( -100 + 200 \zeta_{6} ) q^{91} + ( 8 + 8 \zeta_{6} ) q^{92} + ( -200 + 100 \zeta_{6} ) q^{94} + ( -42 + 84 \zeta_{6} ) q^{95} -25 q^{97} -52 \zeta_{6} q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 2q^{2} - 4q^{4} - 14q^{5} - 16q^{8} + O(q^{10}) \) \( 2q + 2q^{2} - 4q^{4} - 14q^{5} - 16q^{8} - 14q^{10} + 40q^{13} - 30q^{14} - 16q^{16} + 16q^{17} + 28q^{20} - 30q^{22} + 48q^{25} + 40q^{26} - 60q^{28} - 20q^{29} + 32q^{32} + 16q^{34} - 20q^{37} + 36q^{38} + 112q^{40} + 100q^{41} - 60q^{44} + 12q^{46} - 52q^{49} + 48q^{50} - 80q^{52} + 94q^{53} - 20q^{58} - 128q^{61} - 186q^{62} + 128q^{64} - 280q^{65} - 32q^{68} + 210q^{70} - 110q^{73} - 20q^{74} + 72q^{76} - 150q^{77} + 112q^{80} + 100q^{82} - 112q^{85} + 60q^{86} - 20q^{89} + 24q^{92} - 300q^{94} - 50q^{97} - 52q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 1.73205i 0 −2.00000 3.46410i −7.00000 0 8.66025i −8.00000 0 −7.00000 + 12.1244i
55.2 1.00000 + 1.73205i 0 −2.00000 + 3.46410i −7.00000 0 8.66025i −8.00000 0 −7.00000 12.1244i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 108.3.d.b yes 2
3.b odd 2 1 108.3.d.a 2
4.b odd 2 1 inner 108.3.d.b yes 2
8.b even 2 1 1728.3.g.f 2
8.d odd 2 1 1728.3.g.f 2
9.c even 3 1 324.3.f.b 2
9.c even 3 1 324.3.f.h 2
9.d odd 6 1 324.3.f.c 2
9.d odd 6 1 324.3.f.i 2
12.b even 2 1 108.3.d.a 2
24.f even 2 1 1728.3.g.a 2
24.h odd 2 1 1728.3.g.a 2
36.f odd 6 1 324.3.f.b 2
36.f odd 6 1 324.3.f.h 2
36.h even 6 1 324.3.f.c 2
36.h even 6 1 324.3.f.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
108.3.d.a 2 3.b odd 2 1
108.3.d.a 2 12.b even 2 1
108.3.d.b yes 2 1.a even 1 1 trivial
108.3.d.b yes 2 4.b odd 2 1 inner
324.3.f.b 2 9.c even 3 1
324.3.f.b 2 36.f odd 6 1
324.3.f.c 2 9.d odd 6 1
324.3.f.c 2 36.h even 6 1
324.3.f.h 2 9.c even 3 1
324.3.f.h 2 36.f odd 6 1
324.3.f.i 2 9.d odd 6 1
324.3.f.i 2 36.h even 6 1
1728.3.g.a 2 24.f even 2 1
1728.3.g.a 2 24.h odd 2 1
1728.3.g.f 2 8.b even 2 1
1728.3.g.f 2 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 7 \) acting on \(S_{3}^{\mathrm{new}}(108, [\chi])\).

Hecke Characteristic Polynomials

$p$ $F_p(T)$
$2$ \( 1 - 2 T + 4 T^{2} \)
$3$ 1
$5$ \( ( 1 + 7 T + 25 T^{2} )^{2} \)
$7$ \( ( 1 - 11 T + 49 T^{2} )( 1 + 11 T + 49 T^{2} ) \)
$11$ \( 1 - 167 T^{2} + 14641 T^{4} \)
$13$ \( ( 1 - 20 T + 169 T^{2} )^{2} \)
$17$ \( ( 1 - 8 T + 289 T^{2} )^{2} \)
$19$ \( 1 - 614 T^{2} + 130321 T^{4} \)
$23$ \( 1 - 1046 T^{2} + 279841 T^{4} \)
$29$ \( ( 1 + 10 T + 841 T^{2} )^{2} \)
$31$ \( ( 1 - 31 T + 961 T^{2} )( 1 + 31 T + 961 T^{2} ) \)
$37$ \( ( 1 + 10 T + 1369 T^{2} )^{2} \)
$41$ \( ( 1 - 50 T + 1681 T^{2} )^{2} \)
$43$ \( 1 - 3398 T^{2} + 3418801 T^{4} \)
$47$ \( 1 + 3082 T^{2} + 4879681 T^{4} \)
$53$ \( ( 1 - 47 T + 2809 T^{2} )^{2} \)
$59$ \( 1 - 5762 T^{2} + 12117361 T^{4} \)
$61$ \( ( 1 + 64 T + 3721 T^{2} )^{2} \)
$67$ \( 1 - 1478 T^{2} + 20151121 T^{4} \)
$71$ \( ( 1 - 71 T )^{2}( 1 + 71 T )^{2} \)
$73$ \( ( 1 + 55 T + 5329 T^{2} )^{2} \)
$79$ \( 1 - 12434 T^{2} + 38950081 T^{4} \)
$83$ \( 1 - 12911 T^{2} + 47458321 T^{4} \)
$89$ \( ( 1 + 10 T + 7921 T^{2} )^{2} \)
$97$ \( ( 1 + 25 T + 9409 T^{2} )^{2} \)
show more
show less