Properties

Label 108.2.a
Level $108$
Weight $2$
Character orbit 108.a
Rep. character $\chi_{108}(1,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $36$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 108.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(108))\).

Total New Old
Modular forms 27 1 26
Cusp forms 10 1 9
Eisenstein series 17 0 17

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(6\)\(0\)\(6\)\(1\)\(0\)\(1\)\(5\)\(0\)\(5\)
\(+\)\(-\)\(-\)\(9\)\(0\)\(9\)\(3\)\(0\)\(3\)\(6\)\(0\)\(6\)
\(-\)\(+\)\(-\)\(6\)\(1\)\(5\)\(3\)\(1\)\(2\)\(3\)\(0\)\(3\)
\(-\)\(-\)\(+\)\(6\)\(0\)\(6\)\(3\)\(0\)\(3\)\(3\)\(0\)\(3\)
Plus space\(+\)\(12\)\(0\)\(12\)\(4\)\(0\)\(4\)\(8\)\(0\)\(8\)
Minus space\(-\)\(15\)\(1\)\(14\)\(6\)\(1\)\(5\)\(9\)\(0\)\(9\)

Trace form

\( q + 5 q^{7} - 7 q^{13} - q^{19} - 5 q^{25} - 4 q^{31} - q^{37} + 8 q^{43} + 18 q^{49} - 13 q^{61} + 11 q^{67} + 17 q^{73} - 13 q^{79} - 35 q^{91} + 5 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(108))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3
108.2.a.a 108.a 1.a $1$ $0.862$ \(\Q\) \(\Q(\sqrt{-3}) \) 108.2.a.a \(0\) \(0\) \(0\) \(5\) $-$ $+$ $N(\mathrm{U}(1))$ \(q+5q^{7}-7q^{13}-q^{19}-5q^{25}-4q^{31}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(108))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(108)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 2}\)