Properties

Label 108.2
Level 108
Weight 2
Dimension 133
Nonzero newspaces 6
Newform subspaces 7
Sturm bound 1296
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 7 \)
Sturm bound: \(1296\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(108))\).

Total New Old
Modular forms 399 165 234
Cusp forms 250 133 117
Eisenstein series 149 32 117

Trace form

\( 133 q - 3 q^{2} - 5 q^{4} - 6 q^{6} + 6 q^{7} - 9 q^{8} - 6 q^{9} - 13 q^{10} + 6 q^{11} - 15 q^{12} - 16 q^{13} - 33 q^{14} - 9 q^{15} - 29 q^{16} - 42 q^{17} - 27 q^{18} - 9 q^{19} - 45 q^{20} - 42 q^{21}+ \cdots + 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(108))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
108.2.a \(\chi_{108}(1, \cdot)\) 108.2.a.a 1 1
108.2.b \(\chi_{108}(107, \cdot)\) 108.2.b.a 4 1
108.2.b.b 4
108.2.e \(\chi_{108}(37, \cdot)\) 108.2.e.a 2 2
108.2.h \(\chi_{108}(35, \cdot)\) 108.2.h.a 8 2
108.2.i \(\chi_{108}(13, \cdot)\) 108.2.i.a 18 6
108.2.l \(\chi_{108}(11, \cdot)\) 108.2.l.a 96 6

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(108))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(108)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 2}\)