Properties

Label 108.1.c.a
Level 108
Weight 1
Character orbit 108.c
Self dual Yes
Analytic conductor 0.054
Analytic rank 0
Dimension 1
Projective image \(D_{3}\)
CM disc. -3
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) = \( 1 \)
Character orbit: \([\chi]\) = 108.c (of order \(2\) and degree \(1\))

Newform invariants

Self dual: Yes
Analytic conductor: \(0.0538990213644\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Projective image \(D_{3}\)
Projective field Galois closure of 3.1.108.1
Artin image size \(6\)
Artin image $S_3$
Artin field Galois closure of 3.1.108.1

$q$-expansion

\(f(q)\) \(=\) \( q - q^{7} + O(q^{10}) \) \( q - q^{7} - q^{13} - q^{19} + q^{25} + 2q^{31} - q^{37} + 2q^{43} - q^{61} - q^{67} - q^{73} - q^{79} + q^{91} - q^{97} + O(q^{100}) \)

Character Values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
0
0 0 0 0 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char. orbit Parity Mult. Self Twist Proved
1.a Even 1 trivial yes
3.b Odd 1 CM by \(\Q(\sqrt{-3}) \) yes

Hecke kernels

There are no other newforms in \(S_{1}^{\mathrm{new}}(108, [\chi])\).