Properties

Label 1078.2.w
Level $1078$
Weight $2$
Character orbit 1078.w
Rep. character $\chi_{1078}(87,\cdot)$
Character field $\Q(\zeta_{42})$
Dimension $672$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.w (of order \(42\) and degree \(12\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 539 \)
Character field: \(\Q(\zeta_{42})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1078, [\chi])\).

Total New Old
Modular forms 2064 672 1392
Cusp forms 1968 672 1296
Eisenstein series 96 0 96

Trace form

\( 672 q - 56 q^{4} + 12 q^{5} - 56 q^{9} - 18 q^{11} + 8 q^{14} + 20 q^{15} + 56 q^{16} - 28 q^{20} - 14 q^{22} - 100 q^{23} - 56 q^{25} + 8 q^{26} - 84 q^{27} + 12 q^{31} + 24 q^{33} - 112 q^{36} + 8 q^{37}+ \cdots + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1078, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1078, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1078, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(539, [\chi])\)\(^{\oplus 2}\)