Properties

Label 1078.2.q
Level $1078$
Weight $2$
Character orbit 1078.q
Rep. character $\chi_{1078}(361,\cdot)$
Character field $\Q(\zeta_{15})$
Dimension $320$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.q (of order \(15\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 77 \)
Character field: \(\Q(\zeta_{15})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1078, [\chi])\).

Total New Old
Modular forms 1472 320 1152
Cusp forms 1216 320 896
Eisenstein series 256 0 256

Trace form

\( 320 q + 40 q^{4} + 4 q^{5} + 8 q^{6} + 64 q^{9} + 20 q^{10} - 4 q^{11} + 8 q^{13} - 36 q^{15} + 40 q^{16} - 2 q^{17} + 8 q^{18} - 8 q^{20} + 8 q^{22} + 16 q^{23} - 4 q^{24} + 72 q^{25} - 8 q^{26} + 36 q^{27}+ \cdots + 152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1078, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1078, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1078, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(539, [\chi])\)\(^{\oplus 2}\)