Properties

Label 1078.2.j
Level $1078$
Weight $2$
Character orbit 1078.j
Rep. character $\chi_{1078}(155,\cdot)$
Character field $\Q(\zeta_{7})$
Dimension $264$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.j (of order \(7\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 49 \)
Character field: \(\Q(\zeta_{7})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1078, [\chi])\).

Total New Old
Modular forms 1032 264 768
Cusp forms 984 264 720
Eisenstein series 48 0 48

Trace form

\( 264 q + 4 q^{3} - 44 q^{4} + 4 q^{5} - 20 q^{6} + 8 q^{7} - 56 q^{9} + 4 q^{12} + 16 q^{13} + 4 q^{14} + 24 q^{15} - 44 q^{16} + 24 q^{17} + 32 q^{19} + 4 q^{20} + 32 q^{21} + 8 q^{24} - 28 q^{25} + 12 q^{26}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1078, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1078, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1078, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(539, [\chi])\)\(^{\oplus 2}\)