Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1078,2,Mod(901,1078)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1078, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1078.901");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1078 = 2 \cdot 7^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1078.i (of order \(6\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.60787333789\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
901.1 | −0.866025 | − | 0.500000i | −0.662827 | + | 0.382683i | 0.500000 | + | 0.866025i | −3.37695 | − | 1.94969i | 0.765367 | 0 | − | 1.00000i | −1.20711 | + | 2.09077i | 1.94969 | + | 3.37695i | |||||
901.2 | −0.866025 | − | 0.500000i | 0.662827 | − | 0.382683i | 0.500000 | + | 0.866025i | 3.37695 | + | 1.94969i | −0.765367 | 0 | − | 1.00000i | −1.20711 | + | 2.09077i | −1.94969 | − | 3.37695i | |||||
901.3 | −0.866025 | − | 0.500000i | −1.60021 | + | 0.923880i | 0.500000 | + | 0.866025i | 2.80322 | + | 1.61844i | 1.84776 | 0 | − | 1.00000i | 0.207107 | − | 0.358719i | −1.61844 | − | 2.80322i | |||||
901.4 | −0.866025 | − | 0.500000i | 1.60021 | − | 0.923880i | 0.500000 | + | 0.866025i | −2.80322 | − | 1.61844i | −1.84776 | 0 | − | 1.00000i | 0.207107 | − | 0.358719i | 1.61844 | + | 2.80322i | |||||
901.5 | −0.866025 | − | 0.500000i | −1.60021 | + | 0.923880i | 0.500000 | + | 0.866025i | −2.14039 | − | 1.23576i | 1.84776 | 0 | − | 1.00000i | 0.207107 | − | 0.358719i | 1.23576 | + | 2.14039i | |||||
901.6 | −0.866025 | − | 0.500000i | 1.60021 | − | 0.923880i | 0.500000 | + | 0.866025i | 2.14039 | + | 1.23576i | −1.84776 | 0 | − | 1.00000i | 0.207107 | − | 0.358719i | −1.23576 | − | 2.14039i | |||||
901.7 | −0.866025 | − | 0.500000i | −0.662827 | + | 0.382683i | 0.500000 | + | 0.866025i | 1.77675 | + | 1.02581i | 0.765367 | 0 | − | 1.00000i | −1.20711 | + | 2.09077i | −1.02581 | − | 1.77675i | |||||
901.8 | −0.866025 | − | 0.500000i | 0.662827 | − | 0.382683i | 0.500000 | + | 0.866025i | −1.77675 | − | 1.02581i | −0.765367 | 0 | − | 1.00000i | −1.20711 | + | 2.09077i | 1.02581 | + | 1.77675i | |||||
901.9 | 0.866025 | + | 0.500000i | −1.60021 | + | 0.923880i | 0.500000 | + | 0.866025i | −2.14039 | − | 1.23576i | −1.84776 | 0 | 1.00000i | 0.207107 | − | 0.358719i | −1.23576 | − | 2.14039i | ||||||
901.10 | 0.866025 | + | 0.500000i | 1.60021 | − | 0.923880i | 0.500000 | + | 0.866025i | 2.14039 | + | 1.23576i | 1.84776 | 0 | 1.00000i | 0.207107 | − | 0.358719i | 1.23576 | + | 2.14039i | ||||||
901.11 | 0.866025 | + | 0.500000i | −0.662827 | + | 0.382683i | 0.500000 | + | 0.866025i | −3.37695 | − | 1.94969i | −0.765367 | 0 | 1.00000i | −1.20711 | + | 2.09077i | −1.94969 | − | 3.37695i | ||||||
901.12 | 0.866025 | + | 0.500000i | 0.662827 | − | 0.382683i | 0.500000 | + | 0.866025i | 3.37695 | + | 1.94969i | 0.765367 | 0 | 1.00000i | −1.20711 | + | 2.09077i | 1.94969 | + | 3.37695i | ||||||
901.13 | 0.866025 | + | 0.500000i | −0.662827 | + | 0.382683i | 0.500000 | + | 0.866025i | 1.77675 | + | 1.02581i | −0.765367 | 0 | 1.00000i | −1.20711 | + | 2.09077i | 1.02581 | + | 1.77675i | ||||||
901.14 | 0.866025 | + | 0.500000i | 0.662827 | − | 0.382683i | 0.500000 | + | 0.866025i | −1.77675 | − | 1.02581i | 0.765367 | 0 | 1.00000i | −1.20711 | + | 2.09077i | −1.02581 | − | 1.77675i | ||||||
901.15 | 0.866025 | + | 0.500000i | −1.60021 | + | 0.923880i | 0.500000 | + | 0.866025i | 2.80322 | + | 1.61844i | −1.84776 | 0 | 1.00000i | 0.207107 | − | 0.358719i | 1.61844 | + | 2.80322i | ||||||
901.16 | 0.866025 | + | 0.500000i | 1.60021 | − | 0.923880i | 0.500000 | + | 0.866025i | −2.80322 | − | 1.61844i | 1.84776 | 0 | 1.00000i | 0.207107 | − | 0.358719i | −1.61844 | − | 2.80322i | ||||||
1011.1 | −0.866025 | + | 0.500000i | −0.662827 | − | 0.382683i | 0.500000 | − | 0.866025i | −3.37695 | + | 1.94969i | 0.765367 | 0 | 1.00000i | −1.20711 | − | 2.09077i | 1.94969 | − | 3.37695i | ||||||
1011.2 | −0.866025 | + | 0.500000i | 0.662827 | + | 0.382683i | 0.500000 | − | 0.866025i | 3.37695 | − | 1.94969i | −0.765367 | 0 | 1.00000i | −1.20711 | − | 2.09077i | −1.94969 | + | 3.37695i | ||||||
1011.3 | −0.866025 | + | 0.500000i | −1.60021 | − | 0.923880i | 0.500000 | − | 0.866025i | 2.80322 | − | 1.61844i | 1.84776 | 0 | 1.00000i | 0.207107 | + | 0.358719i | −1.61844 | + | 2.80322i | ||||||
1011.4 | −0.866025 | + | 0.500000i | 1.60021 | + | 0.923880i | 0.500000 | − | 0.866025i | −2.80322 | + | 1.61844i | −1.84776 | 0 | 1.00000i | 0.207107 | + | 0.358719i | 1.61844 | − | 2.80322i | ||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
7.d | odd | 6 | 1 | inner |
11.b | odd | 2 | 1 | inner |
77.b | even | 2 | 1 | inner |
77.h | odd | 6 | 1 | inner |
77.i | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1078.2.i.d | 32 | |
7.b | odd | 2 | 1 | inner | 1078.2.i.d | 32 | |
7.c | even | 3 | 1 | 1078.2.c.c | ✓ | 16 | |
7.c | even | 3 | 1 | inner | 1078.2.i.d | 32 | |
7.d | odd | 6 | 1 | 1078.2.c.c | ✓ | 16 | |
7.d | odd | 6 | 1 | inner | 1078.2.i.d | 32 | |
11.b | odd | 2 | 1 | inner | 1078.2.i.d | 32 | |
77.b | even | 2 | 1 | inner | 1078.2.i.d | 32 | |
77.h | odd | 6 | 1 | 1078.2.c.c | ✓ | 16 | |
77.h | odd | 6 | 1 | inner | 1078.2.i.d | 32 | |
77.i | even | 6 | 1 | 1078.2.c.c | ✓ | 16 | |
77.i | even | 6 | 1 | inner | 1078.2.i.d | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1078.2.c.c | ✓ | 16 | 7.c | even | 3 | 1 | |
1078.2.c.c | ✓ | 16 | 7.d | odd | 6 | 1 | |
1078.2.c.c | ✓ | 16 | 77.h | odd | 6 | 1 | |
1078.2.c.c | ✓ | 16 | 77.i | even | 6 | 1 | |
1078.2.i.d | 32 | 1.a | even | 1 | 1 | trivial | |
1078.2.i.d | 32 | 7.b | odd | 2 | 1 | inner | |
1078.2.i.d | 32 | 7.c | even | 3 | 1 | inner | |
1078.2.i.d | 32 | 7.d | odd | 6 | 1 | inner | |
1078.2.i.d | 32 | 11.b | odd | 2 | 1 | inner | |
1078.2.i.d | 32 | 77.b | even | 2 | 1 | inner | |
1078.2.i.d | 32 | 77.h | odd | 6 | 1 | inner | |
1078.2.i.d | 32 | 77.i | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{8} - 4T_{3}^{6} + 14T_{3}^{4} - 8T_{3}^{2} + 4 \)
acting on \(S_{2}^{\mathrm{new}}(1078, [\chi])\).