Properties

Label 1078.2.i.b.1011.1
Level $1078$
Weight $2$
Character 1078.1011
Analytic conductor $8.608$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $8$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.60787333789\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.162447943996702457856.1
Defining polynomial: \( x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 154)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1011.1
Root \(1.14839 + 0.825348i\) of defining polynomial
Character \(\chi\) \(=\) 1078.1011
Dual form 1078.2.i.b.901.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(-2.68085 - 1.54779i) q^{3} +(0.500000 - 0.866025i) q^{4} +(0.559525 - 0.323042i) q^{5} +3.09557 q^{6} +1.00000i q^{8} +(3.29129 + 5.70068i) q^{9} +O(q^{10})\) \(q+(-0.866025 + 0.500000i) q^{2} +(-2.68085 - 1.54779i) q^{3} +(0.500000 - 0.866025i) q^{4} +(0.559525 - 0.323042i) q^{5} +3.09557 q^{6} +1.00000i q^{8} +(3.29129 + 5.70068i) q^{9} +(-0.323042 + 0.559525i) q^{10} +(-2.94694 + 1.52168i) q^{11} +(-2.68085 + 1.54779i) q^{12} +3.09557 q^{13} -2.00000 q^{15} +(-0.500000 - 0.866025i) q^{16} +(1.87083 - 3.24037i) q^{17} +(-5.70068 - 3.29129i) q^{18} +(-2.77253 - 4.80217i) q^{19} -0.646084i q^{20} +(1.79129 - 2.79129i) q^{22} +(-2.00000 - 3.46410i) q^{23} +(1.54779 - 2.68085i) q^{24} +(-2.29129 + 3.96863i) q^{25} +(-2.68085 + 1.54779i) q^{26} -11.0901i q^{27} -7.58258i q^{29} +(1.73205 - 1.00000i) q^{30} +(-1.00227 - 0.578661i) q^{31} +(0.866025 + 0.500000i) q^{32} +(10.2555 + 0.481847i) q^{33} +3.74166i q^{34} +6.58258 q^{36} +(2.79129 + 4.83465i) q^{37} +(4.80217 + 2.77253i) q^{38} +(-8.29875 - 4.79129i) q^{39} +(0.323042 + 0.559525i) q^{40} -5.03383 q^{41} +11.1652i q^{43} +(-0.155657 + 3.31297i) q^{44} +(3.68312 + 2.12645i) q^{45} +(3.46410 + 2.00000i) q^{46} +(-4.35942 + 2.51691i) q^{47} +3.09557i q^{48} -4.58258i q^{50} +(-10.0308 + 5.79129i) q^{51} +(1.54779 - 2.68085i) q^{52} +(1.20871 - 2.09355i) q^{53} +(5.54506 + 9.60433i) q^{54} +(-1.15732 + 1.80341i) q^{55} +17.1652i q^{57} +(3.79129 + 6.56670i) q^{58} +(2.68085 + 1.54779i) q^{59} +(-1.00000 + 1.73205i) q^{60} +(-4.64336 - 8.04254i) q^{61} +1.15732 q^{62} -1.00000 q^{64} +(1.73205 - 1.00000i) q^{65} +(-9.12248 + 4.71048i) q^{66} +(-0.791288 + 1.37055i) q^{67} +(-1.87083 - 3.24037i) q^{68} +12.3823i q^{69} +2.00000 q^{71} +(-5.70068 + 3.29129i) q^{72} +(-3.16300 + 5.47847i) q^{73} +(-4.83465 - 2.79129i) q^{74} +(12.2852 - 7.09285i) q^{75} -5.54506 q^{76} +9.58258 q^{78} +(-3.46410 + 2.00000i) q^{79} +(-0.559525 - 0.323042i) q^{80} +(-7.29129 + 12.6289i) q^{81} +(4.35942 - 2.51691i) q^{82} -9.15188 q^{83} -2.41742i q^{85} +(-5.58258 - 9.66930i) q^{86} +(-11.7362 + 20.3277i) q^{87} +(-1.52168 - 2.94694i) q^{88} +(-8.48528 + 4.89898i) q^{89} -4.25290 q^{90} -4.00000 q^{92} +(1.79129 + 3.10260i) q^{93} +(2.51691 - 4.35942i) q^{94} +(-3.10260 - 1.79129i) q^{95} +(-1.54779 - 2.68085i) q^{96} +15.9891i q^{97} +(-18.3739 - 11.7913i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 16 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 8 q^{4} + 16 q^{9} - 4 q^{11} - 32 q^{15} - 8 q^{16} - 8 q^{22} - 32 q^{23} + 32 q^{36} + 8 q^{37} + 4 q^{44} + 56 q^{53} + 24 q^{58} - 16 q^{60} - 16 q^{64} + 24 q^{67} + 32 q^{71} + 80 q^{78} - 80 q^{81} - 16 q^{86} - 4 q^{88} - 64 q^{92} - 8 q^{93} - 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1078\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(981\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) −2.68085 1.54779i −1.54779 0.893615i −0.998310 0.0581058i \(-0.981494\pi\)
−0.549476 0.835509i \(-0.685173\pi\)
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 0.559525 0.323042i 0.250227 0.144469i −0.369641 0.929175i \(-0.620519\pi\)
0.619868 + 0.784706i \(0.287186\pi\)
\(6\) 3.09557 1.26376
\(7\) 0 0
\(8\) 1.00000i 0.353553i
\(9\) 3.29129 + 5.70068i 1.09710 + 1.90023i
\(10\) −0.323042 + 0.559525i −0.102155 + 0.176937i
\(11\) −2.94694 + 1.52168i −0.888537 + 0.458804i
\(12\) −2.68085 + 1.54779i −0.773893 + 0.446808i
\(13\) 3.09557 0.858558 0.429279 0.903172i \(-0.358768\pi\)
0.429279 + 0.903172i \(0.358768\pi\)
\(14\) 0 0
\(15\) −2.00000 −0.516398
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.87083 3.24037i 0.453743 0.785905i −0.544872 0.838519i \(-0.683422\pi\)
0.998615 + 0.0526138i \(0.0167552\pi\)
\(18\) −5.70068 3.29129i −1.34366 0.775764i
\(19\) −2.77253 4.80217i −0.636062 1.10169i −0.986289 0.165027i \(-0.947229\pi\)
0.350227 0.936665i \(-0.386105\pi\)
\(20\) 0.646084i 0.144469i
\(21\) 0 0
\(22\) 1.79129 2.79129i 0.381904 0.595105i
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 1.54779 2.68085i 0.315941 0.547225i
\(25\) −2.29129 + 3.96863i −0.458258 + 0.793725i
\(26\) −2.68085 + 1.54779i −0.525757 + 0.303546i
\(27\) 11.0901i 2.13430i
\(28\) 0 0
\(29\) 7.58258i 1.40805i −0.710176 0.704024i \(-0.751385\pi\)
0.710176 0.704024i \(-0.248615\pi\)
\(30\) 1.73205 1.00000i 0.316228 0.182574i
\(31\) −1.00227 0.578661i −0.180013 0.103931i 0.407286 0.913301i \(-0.366475\pi\)
−0.587299 + 0.809370i \(0.699809\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 10.2555 + 0.481847i 1.78526 + 0.0838788i
\(34\) 3.74166i 0.641689i
\(35\) 0 0
\(36\) 6.58258 1.09710
\(37\) 2.79129 + 4.83465i 0.458885 + 0.794812i 0.998902 0.0468419i \(-0.0149157\pi\)
−0.540017 + 0.841654i \(0.681582\pi\)
\(38\) 4.80217 + 2.77253i 0.779014 + 0.449764i
\(39\) −8.29875 4.79129i −1.32886 0.767220i
\(40\) 0.323042 + 0.559525i 0.0510774 + 0.0884687i
\(41\) −5.03383 −0.786151 −0.393076 0.919506i \(-0.628589\pi\)
−0.393076 + 0.919506i \(0.628589\pi\)
\(42\) 0 0
\(43\) 11.1652i 1.70267i 0.524623 + 0.851335i \(0.324206\pi\)
−0.524623 + 0.851335i \(0.675794\pi\)
\(44\) −0.155657 + 3.31297i −0.0234662 + 0.499449i
\(45\) 3.68312 + 2.12645i 0.549046 + 0.316992i
\(46\) 3.46410 + 2.00000i 0.510754 + 0.294884i
\(47\) −4.35942 + 2.51691i −0.635887 + 0.367129i −0.783028 0.621986i \(-0.786326\pi\)
0.147142 + 0.989115i \(0.452993\pi\)
\(48\) 3.09557i 0.446808i
\(49\) 0 0
\(50\) 4.58258i 0.648074i
\(51\) −10.0308 + 5.79129i −1.40459 + 0.810943i
\(52\) 1.54779 2.68085i 0.214639 0.371766i
\(53\) 1.20871 2.09355i 0.166029 0.287571i −0.770991 0.636846i \(-0.780239\pi\)
0.937020 + 0.349275i \(0.113572\pi\)
\(54\) 5.54506 + 9.60433i 0.754588 + 1.30698i
\(55\) −1.15732 + 1.80341i −0.156053 + 0.243171i
\(56\) 0 0
\(57\) 17.1652i 2.27358i
\(58\) 3.79129 + 6.56670i 0.497820 + 0.862250i
\(59\) 2.68085 + 1.54779i 0.349016 + 0.201505i 0.664252 0.747509i \(-0.268750\pi\)
−0.315236 + 0.949013i \(0.602084\pi\)
\(60\) −1.00000 + 1.73205i −0.129099 + 0.223607i
\(61\) −4.64336 8.04254i −0.594521 1.02974i −0.993614 0.112831i \(-0.964008\pi\)
0.399093 0.916911i \(-0.369325\pi\)
\(62\) 1.15732 0.146980
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 1.73205 1.00000i 0.214834 0.124035i
\(66\) −9.12248 + 4.71048i −1.12290 + 0.579820i
\(67\) −0.791288 + 1.37055i −0.0966712 + 0.167439i −0.910305 0.413938i \(-0.864153\pi\)
0.813634 + 0.581378i \(0.197486\pi\)
\(68\) −1.87083 3.24037i −0.226871 0.392953i
\(69\) 12.3823i 1.49065i
\(70\) 0 0
\(71\) 2.00000 0.237356 0.118678 0.992933i \(-0.462134\pi\)
0.118678 + 0.992933i \(0.462134\pi\)
\(72\) −5.70068 + 3.29129i −0.671831 + 0.387882i
\(73\) −3.16300 + 5.47847i −0.370201 + 0.641206i −0.989596 0.143873i \(-0.954044\pi\)
0.619395 + 0.785079i \(0.287378\pi\)
\(74\) −4.83465 2.79129i −0.562017 0.324481i
\(75\) 12.2852 7.09285i 1.41857 0.819012i
\(76\) −5.54506 −0.636062
\(77\) 0 0
\(78\) 9.58258 1.08501
\(79\) −3.46410 + 2.00000i −0.389742 + 0.225018i −0.682048 0.731307i \(-0.738911\pi\)
0.292306 + 0.956325i \(0.405577\pi\)
\(80\) −0.559525 0.323042i −0.0625568 0.0361172i
\(81\) −7.29129 + 12.6289i −0.810143 + 1.40321i
\(82\) 4.35942 2.51691i 0.481417 0.277946i
\(83\) −9.15188 −1.00455 −0.502274 0.864708i \(-0.667503\pi\)
−0.502274 + 0.864708i \(0.667503\pi\)
\(84\) 0 0
\(85\) 2.41742i 0.262206i
\(86\) −5.58258 9.66930i −0.601985 1.04267i
\(87\) −11.7362 + 20.3277i −1.25825 + 2.17936i
\(88\) −1.52168 2.94694i −0.162212 0.314145i
\(89\) −8.48528 + 4.89898i −0.899438 + 0.519291i −0.877018 0.480458i \(-0.840471\pi\)
−0.0224202 + 0.999749i \(0.507137\pi\)
\(90\) −4.25290 −0.448295
\(91\) 0 0
\(92\) −4.00000 −0.417029
\(93\) 1.79129 + 3.10260i 0.185748 + 0.321725i
\(94\) 2.51691 4.35942i 0.259600 0.449640i
\(95\) −3.10260 1.79129i −0.318320 0.183782i
\(96\) −1.54779 2.68085i −0.157970 0.273613i
\(97\) 15.9891i 1.62345i 0.584041 + 0.811724i \(0.301471\pi\)
−0.584041 + 0.811724i \(0.698529\pi\)
\(98\) 0 0
\(99\) −18.3739 11.7913i −1.84664 1.18507i
\(100\) 2.29129 + 3.96863i 0.229129 + 0.396863i
\(101\) −0.255619 + 0.442745i −0.0254351 + 0.0440548i −0.878463 0.477811i \(-0.841430\pi\)
0.853028 + 0.521866i \(0.174764\pi\)
\(102\) 5.79129 10.0308i 0.573423 0.993198i
\(103\) −11.7257 + 6.76981i −1.15536 + 0.667049i −0.950188 0.311676i \(-0.899110\pi\)
−0.205174 + 0.978725i \(0.565776\pi\)
\(104\) 3.09557i 0.303546i
\(105\) 0 0
\(106\) 2.41742i 0.234801i
\(107\) 7.28970 4.20871i 0.704722 0.406872i −0.104382 0.994537i \(-0.533286\pi\)
0.809104 + 0.587666i \(0.199953\pi\)
\(108\) −9.60433 5.54506i −0.924177 0.533574i
\(109\) 1.00905 + 0.582576i 0.0966495 + 0.0558006i 0.547546 0.836776i \(-0.315562\pi\)
−0.450896 + 0.892576i \(0.648896\pi\)
\(110\) 0.100567 2.14046i 0.00958872 0.204085i
\(111\) 17.2813i 1.64027i
\(112\) 0 0
\(113\) −16.7477 −1.57549 −0.787747 0.615999i \(-0.788752\pi\)
−0.787747 + 0.615999i \(0.788752\pi\)
\(114\) −8.58258 14.8655i −0.803832 1.39228i
\(115\) −2.23810 1.29217i −0.208704 0.120495i
\(116\) −6.56670 3.79129i −0.609703 0.352012i
\(117\) 10.1884 + 17.6469i 0.941920 + 1.63145i
\(118\) −3.09557 −0.284971
\(119\) 0 0
\(120\) 2.00000i 0.182574i
\(121\) 6.36897 8.96863i 0.578997 0.815330i
\(122\) 8.04254 + 4.64336i 0.728137 + 0.420390i
\(123\) 13.4949 + 7.79129i 1.21679 + 0.702517i
\(124\) −1.00227 + 0.578661i −0.0900065 + 0.0519653i
\(125\) 6.19115i 0.553753i
\(126\) 0 0
\(127\) 5.58258i 0.495373i 0.968840 + 0.247687i \(0.0796704\pi\)
−0.968840 + 0.247687i \(0.920330\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 17.2813 29.9320i 1.52153 2.63537i
\(130\) −1.00000 + 1.73205i −0.0877058 + 0.151911i
\(131\) 4.71078 + 8.15932i 0.411583 + 0.712883i 0.995063 0.0992448i \(-0.0316427\pi\)
−0.583480 + 0.812127i \(0.698309\pi\)
\(132\) 5.54506 8.64064i 0.482636 0.752071i
\(133\) 0 0
\(134\) 1.58258i 0.136714i
\(135\) −3.58258 6.20520i −0.308339 0.534059i
\(136\) 3.24037 + 1.87083i 0.277859 + 0.160422i
\(137\) −7.58258 + 13.1334i −0.647823 + 1.12206i 0.335819 + 0.941927i \(0.390987\pi\)
−0.983642 + 0.180136i \(0.942346\pi\)
\(138\) −6.19115 10.7234i −0.527025 0.912835i
\(139\) −3.23042 −0.274001 −0.137000 0.990571i \(-0.543746\pi\)
−0.137000 + 0.990571i \(0.543746\pi\)
\(140\) 0 0
\(141\) 15.5826 1.31229
\(142\) −1.73205 + 1.00000i −0.145350 + 0.0839181i
\(143\) −9.12248 + 4.71048i −0.762860 + 0.393910i
\(144\) 3.29129 5.70068i 0.274274 0.475056i
\(145\) −2.44949 4.24264i −0.203419 0.352332i
\(146\) 6.32599i 0.523543i
\(147\) 0 0
\(148\) 5.58258 0.458885
\(149\) −12.1244 + 7.00000i −0.993266 + 0.573462i −0.906249 0.422744i \(-0.861067\pi\)
−0.0870170 + 0.996207i \(0.527733\pi\)
\(150\) −7.09285 + 12.2852i −0.579129 + 1.00308i
\(151\) 3.10260 + 1.79129i 0.252486 + 0.145773i 0.620902 0.783888i \(-0.286766\pi\)
−0.368416 + 0.929661i \(0.620100\pi\)
\(152\) 4.80217 2.77253i 0.389507 0.224882i
\(153\) 24.6297 1.99120
\(154\) 0 0
\(155\) −0.747727 −0.0600589
\(156\) −8.29875 + 4.79129i −0.664432 + 0.383610i
\(157\) 17.7636 + 10.2558i 1.41769 + 0.818506i 0.996096 0.0882774i \(-0.0281362\pi\)
0.421597 + 0.906783i \(0.361470\pi\)
\(158\) 2.00000 3.46410i 0.159111 0.275589i
\(159\) −6.48074 + 3.74166i −0.513956 + 0.296733i
\(160\) 0.646084 0.0510774
\(161\) 0 0
\(162\) 14.5826i 1.14572i
\(163\) −2.00000 3.46410i −0.156652 0.271329i 0.777007 0.629492i \(-0.216737\pi\)
−0.933659 + 0.358162i \(0.883403\pi\)
\(164\) −2.51691 + 4.35942i −0.196538 + 0.340414i
\(165\) 5.89389 3.04336i 0.458839 0.236926i
\(166\) 7.92576 4.57594i 0.615158 0.355162i
\(167\) 6.19115 0.479085 0.239543 0.970886i \(-0.423002\pi\)
0.239543 + 0.970886i \(0.423002\pi\)
\(168\) 0 0
\(169\) −3.41742 −0.262879
\(170\) 1.20871 + 2.09355i 0.0927040 + 0.160568i
\(171\) 18.2504 31.6106i 1.39564 2.41732i
\(172\) 9.66930 + 5.58258i 0.737278 + 0.425667i
\(173\) −11.4806 19.8850i −0.872853 1.51183i −0.859032 0.511922i \(-0.828934\pi\)
−0.0138210 0.999904i \(-0.504400\pi\)
\(174\) 23.4724i 1.77944i
\(175\) 0 0
\(176\) 2.79129 + 1.79129i 0.210401 + 0.135023i
\(177\) −4.79129 8.29875i −0.360135 0.623773i
\(178\) 4.89898 8.48528i 0.367194 0.635999i
\(179\) 3.58258 6.20520i 0.267774 0.463799i −0.700512 0.713640i \(-0.747045\pi\)
0.968287 + 0.249842i \(0.0803785\pi\)
\(180\) 3.68312 2.12645i 0.274523 0.158496i
\(181\) 16.6352i 1.23648i −0.785988 0.618242i \(-0.787845\pi\)
0.785988 0.618242i \(-0.212155\pi\)
\(182\) 0 0
\(183\) 28.7477i 2.12509i
\(184\) 3.46410 2.00000i 0.255377 0.147442i
\(185\) 3.12359 + 1.80341i 0.229651 + 0.132589i
\(186\) −3.10260 1.79129i −0.227494 0.131344i
\(187\) −0.582415 + 12.3960i −0.0425904 + 0.906485i
\(188\) 5.03383i 0.367129i
\(189\) 0 0
\(190\) 3.58258 0.259907
\(191\) 9.00000 + 15.5885i 0.651217 + 1.12794i 0.982828 + 0.184525i \(0.0590746\pi\)
−0.331611 + 0.943416i \(0.607592\pi\)
\(192\) 2.68085 + 1.54779i 0.193473 + 0.111702i
\(193\) 17.6066 + 10.1652i 1.26735 + 0.731704i 0.974485 0.224451i \(-0.0720589\pi\)
0.292862 + 0.956155i \(0.405392\pi\)
\(194\) −7.99455 13.8470i −0.573975 0.994155i
\(195\) −6.19115 −0.443357
\(196\) 0 0
\(197\) 18.7477i 1.33572i −0.744287 0.667860i \(-0.767210\pi\)
0.744287 0.667860i \(-0.232790\pi\)
\(198\) 21.8079 + 1.02462i 1.54982 + 0.0728168i
\(199\) −21.3300 12.3149i −1.51204 0.872978i −0.999901 0.0140770i \(-0.995519\pi\)
−0.512141 0.858901i \(-0.671148\pi\)
\(200\) −3.96863 2.29129i −0.280624 0.162019i
\(201\) 4.24264 2.44949i 0.299253 0.172774i
\(202\) 0.511238i 0.0359706i
\(203\) 0 0
\(204\) 11.5826i 0.810943i
\(205\) −2.81655 + 1.62614i −0.196716 + 0.113574i
\(206\) 6.76981 11.7257i 0.471675 0.816965i
\(207\) 13.1652 22.8027i 0.915041 1.58490i
\(208\) −1.54779 2.68085i −0.107320 0.185883i
\(209\) 15.4779 + 9.93280i 1.07063 + 0.687066i
\(210\) 0 0
\(211\) 10.7477i 0.739904i −0.929051 0.369952i \(-0.879374\pi\)
0.929051 0.369952i \(-0.120626\pi\)
\(212\) −1.20871 2.09355i −0.0830147 0.143786i
\(213\) −5.36169 3.09557i −0.367377 0.212105i
\(214\) −4.20871 + 7.28970i −0.287702 + 0.498314i
\(215\) 3.60681 + 6.24718i 0.245983 + 0.426054i
\(216\) 11.0901 0.754588
\(217\) 0 0
\(218\) −1.16515 −0.0789140
\(219\) 16.9590 9.79129i 1.14598 0.661634i
\(220\) 0.983134 + 1.90397i 0.0662829 + 0.128366i
\(221\) 5.79129 10.0308i 0.389564 0.674745i
\(222\) 8.64064 + 14.9660i 0.579922 + 1.00445i
\(223\) 6.32599i 0.423620i 0.977311 + 0.211810i \(0.0679358\pi\)
−0.977311 + 0.211810i \(0.932064\pi\)
\(224\) 0 0
\(225\) −30.1652 −2.01101
\(226\) 14.5040 8.37386i 0.964789 0.557021i
\(227\) −5.86811 + 10.1639i −0.389480 + 0.674599i −0.992380 0.123218i \(-0.960679\pi\)
0.602900 + 0.797817i \(0.294012\pi\)
\(228\) 14.8655 + 8.58258i 0.984489 + 0.568395i
\(229\) −11.2829 + 6.51419i −0.745595 + 0.430470i −0.824100 0.566444i \(-0.808319\pi\)
0.0785048 + 0.996914i \(0.474985\pi\)
\(230\) 2.58434 0.170406
\(231\) 0 0
\(232\) 7.58258 0.497820
\(233\) −7.65120 + 4.41742i −0.501247 + 0.289395i −0.729228 0.684270i \(-0.760121\pi\)
0.227981 + 0.973665i \(0.426787\pi\)
\(234\) −17.6469 10.1884i −1.15361 0.666038i
\(235\) −1.62614 + 2.81655i −0.106077 + 0.183732i
\(236\) 2.68085 1.54779i 0.174508 0.100752i
\(237\) 12.3823 0.804316
\(238\) 0 0
\(239\) 17.5826i 1.13732i −0.822572 0.568661i \(-0.807462\pi\)
0.822572 0.568661i \(-0.192538\pi\)
\(240\) 1.00000 + 1.73205i 0.0645497 + 0.111803i
\(241\) −12.9610 + 22.4490i −0.834889 + 1.44607i 0.0592326 + 0.998244i \(0.481135\pi\)
−0.894121 + 0.447825i \(0.852199\pi\)
\(242\) −1.03137 + 10.9515i −0.0662992 + 0.703992i
\(243\) 10.2806 5.93553i 0.659503 0.380764i
\(244\) −9.28672 −0.594521
\(245\) 0 0
\(246\) −15.5826 −0.993509
\(247\) −8.58258 14.8655i −0.546096 0.945866i
\(248\) 0.578661 1.00227i 0.0367450 0.0636442i
\(249\) 24.5348 + 14.1652i 1.55483 + 0.897680i
\(250\) −3.09557 5.36169i −0.195781 0.339103i
\(251\) 2.07310i 0.130853i 0.997857 + 0.0654264i \(0.0208407\pi\)
−0.997857 + 0.0654264i \(0.979159\pi\)
\(252\) 0 0
\(253\) 11.1652 + 7.16515i 0.701947 + 0.450469i
\(254\) −2.79129 4.83465i −0.175141 0.303353i
\(255\) −3.74166 + 6.48074i −0.234312 + 0.405840i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 4.24264 2.44949i 0.264649 0.152795i −0.361805 0.932254i \(-0.617839\pi\)
0.626453 + 0.779459i \(0.284506\pi\)
\(258\) 34.5625i 2.15177i
\(259\) 0 0
\(260\) 2.00000i 0.124035i
\(261\) 43.2258 24.9564i 2.67561 1.54476i
\(262\) −8.15932 4.71078i −0.504084 0.291033i
\(263\) −24.5348 14.1652i −1.51288 0.873461i −0.999886 0.0150671i \(-0.995204\pi\)
−0.512992 0.858394i \(-0.671463\pi\)
\(264\) −0.481847 + 10.2555i −0.0296556 + 0.631185i
\(265\) 1.56186i 0.0959442i
\(266\) 0 0
\(267\) 30.3303 1.85618
\(268\) 0.791288 + 1.37055i 0.0483356 + 0.0837197i
\(269\) −17.5301 10.1210i −1.06883 0.617088i −0.140967 0.990014i \(-0.545021\pi\)
−0.927861 + 0.372926i \(0.878355\pi\)
\(270\) 6.20520 + 3.58258i 0.377637 + 0.218029i
\(271\) −2.44949 4.24264i −0.148796 0.257722i 0.781987 0.623295i \(-0.214206\pi\)
−0.930783 + 0.365573i \(0.880873\pi\)
\(272\) −3.74166 −0.226871
\(273\) 0 0
\(274\) 15.1652i 0.916160i
\(275\) 0.713309 15.1819i 0.0430142 0.915505i
\(276\) 10.7234 + 6.19115i 0.645472 + 0.372663i
\(277\) −1.73205 1.00000i −0.104069 0.0600842i 0.447062 0.894503i \(-0.352470\pi\)
−0.551131 + 0.834419i \(0.685804\pi\)
\(278\) 2.79763 1.61521i 0.167790 0.0968738i
\(279\) 7.61816i 0.456087i
\(280\) 0 0
\(281\) 7.16515i 0.427437i −0.976895 0.213719i \(-0.931442\pi\)
0.976895 0.213719i \(-0.0685575\pi\)
\(282\) −13.4949 + 7.79129i −0.803610 + 0.463964i
\(283\) 7.80636 13.5210i 0.464040 0.803740i −0.535118 0.844777i \(-0.679733\pi\)
0.999158 + 0.0410370i \(0.0130661\pi\)
\(284\) 1.00000 1.73205i 0.0593391 0.102778i
\(285\) 5.54506 + 9.60433i 0.328461 + 0.568911i
\(286\) 5.54506 8.64064i 0.327886 0.510932i
\(287\) 0 0
\(288\) 6.58258i 0.387882i
\(289\) 1.50000 + 2.59808i 0.0882353 + 0.152828i
\(290\) 4.24264 + 2.44949i 0.249136 + 0.143839i
\(291\) 24.7477 42.8643i 1.45074 2.51275i
\(292\) 3.16300 + 5.47847i 0.185100 + 0.320603i
\(293\) −21.3993 −1.25016 −0.625081 0.780560i \(-0.714934\pi\)
−0.625081 + 0.780560i \(0.714934\pi\)
\(294\) 0 0
\(295\) 2.00000 0.116445
\(296\) −4.83465 + 2.79129i −0.281008 + 0.162240i
\(297\) 16.8756 + 32.6820i 0.979224 + 1.89640i
\(298\) 7.00000 12.1244i 0.405499 0.702345i
\(299\) −6.19115 10.7234i −0.358043 0.620149i
\(300\) 14.1857i 0.819012i
\(301\) 0 0
\(302\) −3.58258 −0.206154
\(303\) 1.37055 0.791288i 0.0787361 0.0454583i
\(304\) −2.77253 + 4.80217i −0.159016 + 0.275423i
\(305\) −5.19615 3.00000i −0.297531 0.171780i
\(306\) −21.3300 + 12.3149i −1.21935 + 0.703994i
\(307\) −8.12940 −0.463969 −0.231985 0.972719i \(-0.574522\pi\)
−0.231985 + 0.972719i \(0.574522\pi\)
\(308\) 0 0
\(309\) 41.9129 2.38434
\(310\) 0.647551 0.373864i 0.0367784 0.0212340i
\(311\) −8.60206 4.96640i −0.487778 0.281619i 0.235874 0.971784i \(-0.424205\pi\)
−0.723652 + 0.690165i \(0.757538\pi\)
\(312\) 4.79129 8.29875i 0.271253 0.469824i
\(313\) 0.885491 0.511238i 0.0500509 0.0288969i −0.474766 0.880112i \(-0.657467\pi\)
0.524817 + 0.851215i \(0.324134\pi\)
\(314\) −20.5117 −1.15754
\(315\) 0 0
\(316\) 4.00000i 0.225018i
\(317\) 4.58258 + 7.93725i 0.257383 + 0.445801i 0.965540 0.260254i \(-0.0838064\pi\)
−0.708157 + 0.706055i \(0.750473\pi\)
\(318\) 3.74166 6.48074i 0.209822 0.363422i
\(319\) 11.5383 + 22.3454i 0.646019 + 1.25110i
\(320\) −0.559525 + 0.323042i −0.0312784 + 0.0180586i
\(321\) −26.0568 −1.45435
\(322\) 0 0
\(323\) −20.7477 −1.15443
\(324\) 7.29129 + 12.6289i 0.405072 + 0.701605i
\(325\) −7.09285 + 12.2852i −0.393441 + 0.681459i
\(326\) 3.46410 + 2.00000i 0.191859 + 0.110770i
\(327\) −1.80341 3.12359i −0.0997286 0.172735i
\(328\) 5.03383i 0.277946i
\(329\) 0 0
\(330\) −3.58258 + 5.58258i −0.197214 + 0.307311i
\(331\) 7.20871 + 12.4859i 0.396227 + 0.686285i 0.993257 0.115934i \(-0.0369861\pi\)
−0.597030 + 0.802219i \(0.703653\pi\)
\(332\) −4.57594 + 7.92576i −0.251137 + 0.434982i
\(333\) −18.3739 + 31.8245i −1.00688 + 1.74397i
\(334\) −5.36169 + 3.09557i −0.293379 + 0.169382i
\(335\) 1.02248i 0.0558639i
\(336\) 0 0
\(337\) 29.1652i 1.58873i 0.607443 + 0.794364i \(0.292195\pi\)
−0.607443 + 0.794364i \(0.707805\pi\)
\(338\) 2.95958 1.70871i 0.160980 0.0929417i
\(339\) 44.8981 + 25.9219i 2.43853 + 1.40788i
\(340\) −2.09355 1.20871i −0.113539 0.0655516i
\(341\) 3.83417 + 0.180145i 0.207632 + 0.00975541i
\(342\) 36.5008i 1.97374i
\(343\) 0 0
\(344\) −11.1652 −0.601985
\(345\) 4.00000 + 6.92820i 0.215353 + 0.373002i
\(346\) 19.8850 + 11.4806i 1.06902 + 0.617200i
\(347\) 0.723000 + 0.417424i 0.0388127 + 0.0224085i 0.519281 0.854604i \(-0.326200\pi\)
−0.480468 + 0.877012i \(0.659533\pi\)
\(348\) 11.7362 + 20.3277i 0.629127 + 1.08968i
\(349\) 2.07310 0.110970 0.0554852 0.998460i \(-0.482329\pi\)
0.0554852 + 0.998460i \(0.482329\pi\)
\(350\) 0 0
\(351\) 34.3303i 1.83242i
\(352\) −3.31297 0.155657i −0.176582 0.00829654i
\(353\) −6.48074 3.74166i −0.344935 0.199148i 0.317517 0.948253i \(-0.397151\pi\)
−0.662452 + 0.749104i \(0.730484\pi\)
\(354\) 8.29875 + 4.79129i 0.441074 + 0.254654i
\(355\) 1.11905 0.646084i 0.0593930 0.0342906i
\(356\) 9.79796i 0.519291i
\(357\) 0 0
\(358\) 7.16515i 0.378690i
\(359\) −0.361500 + 0.208712i −0.0190792 + 0.0110154i −0.509509 0.860465i \(-0.670173\pi\)
0.490430 + 0.871481i \(0.336840\pi\)
\(360\) −2.12645 + 3.68312i −0.112074 + 0.194117i
\(361\) −5.87386 + 10.1738i −0.309151 + 0.535465i
\(362\) 8.31759 + 14.4065i 0.437163 + 0.757189i
\(363\) −30.9557 + 14.1857i −1.62475 + 0.744556i
\(364\) 0 0
\(365\) 4.08712i 0.213930i
\(366\) −14.3739 24.8963i −0.751334 1.30135i
\(367\) −1.23583 0.713507i −0.0645098 0.0372447i 0.467398 0.884047i \(-0.345191\pi\)
−0.531908 + 0.846802i \(0.678525\pi\)
\(368\) −2.00000 + 3.46410i −0.104257 + 0.180579i
\(369\) −16.5678 28.6962i −0.862484 1.49387i
\(370\) −3.60681 −0.187509
\(371\) 0 0
\(372\) 3.58258 0.185748
\(373\) 0.361500 0.208712i 0.0187178 0.0108067i −0.490612 0.871378i \(-0.663227\pi\)
0.509330 + 0.860571i \(0.329893\pi\)
\(374\) −5.69361 11.0265i −0.294410 0.570165i
\(375\) 9.58258 16.5975i 0.494842 0.857092i
\(376\) −2.51691 4.35942i −0.129800 0.224820i
\(377\) 23.4724i 1.20889i
\(378\) 0 0
\(379\) 14.3303 0.736098 0.368049 0.929806i \(-0.380026\pi\)
0.368049 + 0.929806i \(0.380026\pi\)
\(380\) −3.10260 + 1.79129i −0.159160 + 0.0918911i
\(381\) 8.64064 14.9660i 0.442673 0.766733i
\(382\) −15.5885 9.00000i −0.797575 0.460480i
\(383\) −4.12586 + 2.38207i −0.210822 + 0.121718i −0.601693 0.798727i \(-0.705507\pi\)
0.390872 + 0.920445i \(0.372174\pi\)
\(384\) −3.09557 −0.157970
\(385\) 0 0
\(386\) −20.3303 −1.03479
\(387\) −63.6489 + 36.7477i −3.23546 + 1.86799i
\(388\) 13.8470 + 7.99455i 0.702973 + 0.405862i
\(389\) −5.00000 + 8.66025i −0.253510 + 0.439092i −0.964490 0.264120i \(-0.914918\pi\)
0.710980 + 0.703213i \(0.248252\pi\)
\(390\) 5.36169 3.09557i 0.271500 0.156750i
\(391\) −14.9666 −0.756895
\(392\) 0 0
\(393\) 29.1652i 1.47119i
\(394\) 9.37386 + 16.2360i 0.472248 + 0.817958i
\(395\) −1.29217 + 2.23810i −0.0650160 + 0.112611i
\(396\) −19.3985 + 10.0166i −0.974811 + 0.503353i
\(397\) 20.6537 11.9244i 1.03658 0.598469i 0.117716 0.993047i \(-0.462443\pi\)
0.918862 + 0.394578i \(0.129109\pi\)
\(398\) 24.6297 1.23458
\(399\) 0 0
\(400\) 4.58258 0.229129
\(401\) 0.791288 + 1.37055i 0.0395150 + 0.0684420i 0.885107 0.465388i \(-0.154085\pi\)
−0.845592 + 0.533831i \(0.820752\pi\)
\(402\) −2.44949 + 4.24264i −0.122169 + 0.211604i
\(403\) −3.10260 1.79129i −0.154552 0.0892304i
\(404\) 0.255619 + 0.442745i 0.0127175 + 0.0220274i
\(405\) 9.42157i 0.468161i
\(406\) 0 0
\(407\) −15.5826 10.0000i −0.772400 0.495682i
\(408\) −5.79129 10.0308i −0.286711 0.496599i
\(409\) 4.96640 8.60206i 0.245573 0.425345i −0.716720 0.697361i \(-0.754357\pi\)
0.962293 + 0.272017i \(0.0876906\pi\)
\(410\) 1.62614 2.81655i 0.0803092 0.139100i
\(411\) 40.6554 23.4724i 2.00538 1.15781i
\(412\) 13.5396i 0.667049i
\(413\) 0 0
\(414\) 26.3303i 1.29406i
\(415\) −5.12070 + 2.95644i −0.251365 + 0.145126i
\(416\) 2.68085 + 1.54779i 0.131439 + 0.0758865i
\(417\) 8.66025 + 5.00000i 0.424094 + 0.244851i
\(418\) −18.3706 0.863127i −0.898537 0.0422169i
\(419\) 5.67991i 0.277482i 0.990329 + 0.138741i \(0.0443055\pi\)
−0.990329 + 0.138741i \(0.955694\pi\)
\(420\) 0 0
\(421\) −1.58258 −0.0771300 −0.0385650 0.999256i \(-0.512279\pi\)
−0.0385650 + 0.999256i \(0.512279\pi\)
\(422\) 5.37386 + 9.30780i 0.261596 + 0.453097i
\(423\) −28.6962 16.5678i −1.39526 0.805552i
\(424\) 2.09355 + 1.20871i 0.101672 + 0.0587003i
\(425\) 8.57321 + 14.8492i 0.415862 + 0.720294i
\(426\) 6.19115 0.299962
\(427\) 0 0
\(428\) 8.41742i 0.406872i
\(429\) 31.7468 + 1.49159i 1.53275 + 0.0720148i
\(430\) −6.24718 3.60681i −0.301266 0.173936i
\(431\) −15.5130 8.95644i −0.747235 0.431416i 0.0774588 0.996996i \(-0.475319\pi\)
−0.824694 + 0.565579i \(0.808653\pi\)
\(432\) −9.60433 + 5.54506i −0.462089 + 0.266787i
\(433\) 28.1017i 1.35048i −0.737597 0.675241i \(-0.764040\pi\)
0.737597 0.675241i \(-0.235960\pi\)
\(434\) 0 0
\(435\) 15.1652i 0.727113i
\(436\) 1.00905 0.582576i 0.0483248 0.0279003i
\(437\) −11.0901 + 19.2087i −0.530513 + 0.918875i
\(438\) −9.79129 + 16.9590i −0.467846 + 0.810333i
\(439\) 1.15732 + 2.00454i 0.0552360 + 0.0956715i 0.892321 0.451401i \(-0.149076\pi\)
−0.837085 + 0.547072i \(0.815742\pi\)
\(440\) −1.80341 1.15732i −0.0859740 0.0551732i
\(441\) 0 0
\(442\) 11.5826i 0.550927i
\(443\) 1.58258 + 2.74110i 0.0751904 + 0.130234i 0.901169 0.433468i \(-0.142710\pi\)
−0.825979 + 0.563701i \(0.809377\pi\)
\(444\) −14.9660 8.64064i −0.710256 0.410066i
\(445\) −3.16515 + 5.48220i −0.150043 + 0.259881i
\(446\) −3.16300 5.47847i −0.149772 0.259413i
\(447\) 43.3380 2.04982
\(448\) 0 0
\(449\) 12.8348 0.605714 0.302857 0.953036i \(-0.402060\pi\)
0.302857 + 0.953036i \(0.402060\pi\)
\(450\) 26.1238 15.0826i 1.23149 0.710999i
\(451\) 14.8344 7.65988i 0.698525 0.360690i
\(452\) −8.37386 + 14.5040i −0.393873 + 0.682209i
\(453\) −5.54506 9.60433i −0.260530 0.451251i
\(454\) 11.7362i 0.550808i
\(455\) 0 0
\(456\) −17.1652 −0.803832
\(457\) 12.8474 7.41742i 0.600974 0.346972i −0.168451 0.985710i \(-0.553876\pi\)
0.769425 + 0.638738i \(0.220543\pi\)
\(458\) 6.51419 11.2829i 0.304388 0.527216i
\(459\) −35.9361 20.7477i −1.67735 0.968421i
\(460\) −2.23810 + 1.29217i −0.104352 + 0.0602476i
\(461\) −26.2983 −1.22483 −0.612417 0.790535i \(-0.709803\pi\)
−0.612417 + 0.790535i \(0.709803\pi\)
\(462\) 0 0
\(463\) −13.1652 −0.611836 −0.305918 0.952058i \(-0.598963\pi\)
−0.305918 + 0.952058i \(0.598963\pi\)
\(464\) −6.56670 + 3.79129i −0.304852 + 0.176006i
\(465\) 2.00454 + 1.15732i 0.0929583 + 0.0536695i
\(466\) 4.41742 7.65120i 0.204633 0.354435i
\(467\) 0.442745 0.255619i 0.0204878 0.0118286i −0.489721 0.871879i \(-0.662901\pi\)
0.510209 + 0.860050i \(0.329568\pi\)
\(468\) 20.3768 0.941920
\(469\) 0 0
\(470\) 3.25227i 0.150016i
\(471\) −31.7477 54.9887i −1.46286 2.53374i
\(472\) −1.54779 + 2.68085i −0.0712427 + 0.123396i
\(473\) −16.9898 32.9031i −0.781192 1.51289i
\(474\) −10.7234 + 6.19115i −0.492541 + 0.284369i
\(475\) 25.4107 1.16592
\(476\) 0 0
\(477\) 15.9129 0.728601
\(478\) 8.79129 + 15.2270i 0.402104 + 0.696465i
\(479\) −3.23042 + 5.59525i −0.147602 + 0.255653i −0.930341 0.366697i \(-0.880489\pi\)
0.782739 + 0.622350i \(0.213822\pi\)
\(480\) −1.73205 1.00000i −0.0790569 0.0456435i
\(481\) 8.64064 + 14.9660i 0.393979 + 0.682392i
\(482\) 25.9219i 1.18071i
\(483\) 0 0
\(484\) −4.58258 10.0000i −0.208299 0.454545i
\(485\) 5.16515 + 8.94630i 0.234537 + 0.406231i
\(486\) −5.93553 + 10.2806i −0.269241 + 0.466339i
\(487\) 16.7477 29.0079i 0.758912 1.31447i −0.184494 0.982834i \(-0.559065\pi\)
0.943406 0.331640i \(-0.107602\pi\)
\(488\) 8.04254 4.64336i 0.364069 0.210195i
\(489\) 12.3823i 0.559947i
\(490\) 0 0
\(491\) 21.4955i 0.970076i −0.874493 0.485038i \(-0.838806\pi\)
0.874493 0.485038i \(-0.161194\pi\)
\(492\) 13.4949 7.79129i 0.608397 0.351258i
\(493\) −24.5704 14.1857i −1.10659 0.638892i
\(494\) 14.8655 + 8.58258i 0.668829 + 0.386148i
\(495\) −14.0897 0.661992i −0.633286 0.0297543i
\(496\) 1.15732i 0.0519653i
\(497\) 0 0
\(498\) −28.3303 −1.26951
\(499\) −13.9564 24.1733i −0.624776 1.08214i −0.988584 0.150670i \(-0.951857\pi\)
0.363808 0.931474i \(-0.381476\pi\)
\(500\) 5.36169 + 3.09557i 0.239782 + 0.138438i
\(501\) −16.5975 9.58258i −0.741522 0.428118i
\(502\) −1.03655 1.79535i −0.0462634 0.0801306i
\(503\) 31.9782 1.42584 0.712919 0.701246i \(-0.247373\pi\)
0.712919 + 0.701246i \(0.247373\pi\)
\(504\) 0 0
\(505\) 0.330303i 0.0146983i
\(506\) −13.2519 0.622627i −0.589118 0.0276792i
\(507\) 9.16159 + 5.28944i 0.406880 + 0.234912i
\(508\) 4.83465 + 2.79129i 0.214503 + 0.123843i
\(509\) 15.5255 8.96368i 0.688158 0.397308i −0.114764 0.993393i \(-0.536611\pi\)
0.802922 + 0.596085i \(0.203278\pi\)
\(510\) 7.48331i 0.331367i
\(511\) 0 0
\(512\) 1.00000i 0.0441942i
\(513\) −53.2566 + 30.7477i −2.35134 + 1.35755i
\(514\) −2.44949 + 4.24264i −0.108042 + 0.187135i
\(515\) −4.37386 + 7.57575i −0.192735 + 0.333828i
\(516\) −17.2813 29.9320i −0.760766 1.31768i
\(517\) 9.01703 14.0509i 0.396569 0.617956i
\(518\) 0 0
\(519\) 71.0780i 3.11998i
\(520\) 1.00000 + 1.73205i 0.0438529 + 0.0759555i
\(521\) −30.8175 17.7925i −1.35014 0.779504i −0.361872 0.932228i \(-0.617862\pi\)
−0.988269 + 0.152724i \(0.951196\pi\)
\(522\) −24.9564 + 43.2258i −1.09231 + 1.89194i
\(523\) 13.3514 + 23.1253i 0.583817 + 1.01120i 0.995022 + 0.0996575i \(0.0317747\pi\)
−0.411205 + 0.911543i \(0.634892\pi\)
\(524\) 9.42157 0.411583
\(525\) 0 0
\(526\) 28.3303 1.23526
\(527\) −3.75015 + 2.16515i −0.163359 + 0.0943155i
\(528\) −4.71048 9.12248i −0.204997 0.397005i
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 0.780929 + 1.35261i 0.0339214 + 0.0587536i
\(531\) 20.3768i 0.884280i
\(532\) 0 0
\(533\) −15.5826 −0.674956
\(534\) −26.2668 + 15.1652i −1.13668 + 0.656260i
\(535\) 2.71918 4.70976i 0.117560 0.203621i
\(536\) −1.37055 0.791288i −0.0591988 0.0341784i
\(537\) −19.2087 + 11.0901i −0.828915 + 0.478574i
\(538\) 20.2420 0.872695
\(539\) 0 0
\(540\) −7.16515 −0.308339
\(541\) −8.01270 + 4.62614i −0.344493 + 0.198893i −0.662257 0.749277i \(-0.730401\pi\)
0.317764 + 0.948170i \(0.397068\pi\)
\(542\) 4.24264 + 2.44949i 0.182237 + 0.105215i
\(543\) −25.7477 + 44.5964i −1.10494 + 1.91381i
\(544\) 3.24037 1.87083i 0.138930 0.0802111i
\(545\) 0.752785 0.0322458
\(546\) 0 0
\(547\) 2.74773i 0.117484i 0.998273 + 0.0587422i \(0.0187090\pi\)
−0.998273 + 0.0587422i \(0.981291\pi\)
\(548\) 7.58258 + 13.1334i 0.323912 + 0.561031i
\(549\) 30.5653 52.9406i 1.30449 2.25945i
\(550\) 6.97322 + 13.5046i 0.297339 + 0.575838i
\(551\) −36.4128 + 21.0229i −1.55124 + 0.895607i
\(552\) −12.3823 −0.527025
\(553\) 0 0
\(554\) 2.00000 0.0849719
\(555\) −5.58258 9.66930i −0.236967 0.410439i
\(556\) −1.61521 + 2.79763i −0.0685001 + 0.118646i
\(557\) −8.58480 4.95644i −0.363750 0.210011i 0.306975 0.951718i \(-0.400683\pi\)
−0.670724 + 0.741707i \(0.734017\pi\)
\(558\) 3.80908 + 6.59752i 0.161251 + 0.279295i
\(559\) 34.5625i 1.46184i
\(560\) 0 0
\(561\) 20.7477 32.3303i 0.875970 1.36499i
\(562\) 3.58258 + 6.20520i 0.151122 + 0.261751i
\(563\) 21.2111 36.7388i 0.893942 1.54835i 0.0588344 0.998268i \(-0.481262\pi\)
0.835108 0.550086i \(-0.185405\pi\)
\(564\) 7.79129 13.4949i 0.328072 0.568238i
\(565\) −9.37077 + 5.41022i −0.394231 + 0.227610i
\(566\) 15.6127i 0.656251i
\(567\) 0 0
\(568\) 2.00000i 0.0839181i
\(569\) −13.4195 + 7.74773i −0.562573 + 0.324802i −0.754178 0.656671i \(-0.771964\pi\)
0.191605 + 0.981472i \(0.438631\pi\)
\(570\) −9.60433 5.54506i −0.402281 0.232257i
\(571\) −3.10260 1.79129i −0.129840 0.0749631i 0.433673 0.901070i \(-0.357217\pi\)
−0.563513 + 0.826107i \(0.690551\pi\)
\(572\) −0.481847 + 10.2555i −0.0201470 + 0.428806i
\(573\) 55.7203i 2.32775i
\(574\) 0 0
\(575\) 18.3303 0.764426
\(576\) −3.29129 5.70068i −0.137137 0.237528i
\(577\) −0.233559 0.134846i −0.00972320 0.00561369i 0.495131 0.868819i \(-0.335120\pi\)
−0.504854 + 0.863205i \(0.668454\pi\)
\(578\) −2.59808 1.50000i −0.108066 0.0623918i
\(579\) −31.4670 54.5024i −1.30772 2.26504i
\(580\) −4.89898 −0.203419
\(581\) 0 0
\(582\) 49.4955i 2.05165i
\(583\) −0.376289 + 8.00885i −0.0155843 + 0.331693i
\(584\) −5.47847 3.16300i −0.226701 0.130886i
\(585\) 11.4014 + 6.58258i 0.471388 + 0.272156i
\(586\) 18.5324 10.6997i 0.765565 0.441999i
\(587\) 17.0397i 0.703305i −0.936131 0.351652i \(-0.885620\pi\)
0.936131 0.351652i \(-0.114380\pi\)
\(588\) 0 0
\(589\) 6.41742i 0.264425i
\(590\) −1.73205 + 1.00000i −0.0713074 + 0.0411693i
\(591\) −29.0175 + 50.2598i −1.19362 + 2.06741i
\(592\) 2.79129 4.83465i 0.114721 0.198703i
\(593\) 0.0674228 + 0.116780i 0.00276872 + 0.00479557i 0.867406 0.497600i \(-0.165785\pi\)
−0.864638 + 0.502396i \(0.832452\pi\)
\(594\) −30.9557 19.8656i −1.27013 0.815096i
\(595\) 0 0
\(596\) 14.0000i 0.573462i
\(597\) 38.1216 + 66.0285i 1.56021 + 2.70237i
\(598\) 10.7234 + 6.19115i 0.438512 + 0.253175i
\(599\) 1.41742 2.45505i 0.0579144 0.100311i −0.835615 0.549316i \(-0.814888\pi\)
0.893529 + 0.449005i \(0.148222\pi\)
\(600\) 7.09285 + 12.2852i 0.289564 + 0.501540i
\(601\) 1.42701 0.0582091 0.0291045 0.999576i \(-0.490734\pi\)
0.0291045 + 0.999576i \(0.490734\pi\)
\(602\) 0 0
\(603\) −10.4174 −0.424230
\(604\) 3.10260 1.79129i 0.126243 0.0728865i
\(605\) 0.666353 7.07561i 0.0270911 0.287665i
\(606\) −0.791288 + 1.37055i −0.0321439 + 0.0556748i
\(607\) 23.4724 + 40.6554i 0.952716 + 1.65015i 0.739510 + 0.673146i \(0.235057\pi\)
0.213206 + 0.977007i \(0.431609\pi\)
\(608\) 5.54506i 0.224882i
\(609\) 0 0
\(610\) 6.00000 0.242933
\(611\) −13.4949 + 7.79129i −0.545945 + 0.315202i
\(612\) 12.3149 21.3300i 0.497799 0.862213i
\(613\) 12.0489 + 6.95644i 0.486651 + 0.280968i 0.723184 0.690655i \(-0.242678\pi\)
−0.236533 + 0.971623i \(0.576011\pi\)
\(614\) 7.04027 4.06470i 0.284122 0.164038i
\(615\) 10.0677 0.405967
\(616\) 0 0
\(617\) 25.9129 1.04321 0.521607 0.853186i \(-0.325333\pi\)
0.521607 + 0.853186i \(0.325333\pi\)
\(618\) −36.2976 + 20.9564i −1.46010 + 0.842992i
\(619\) 0.676305 + 0.390465i 0.0271830 + 0.0156941i 0.513530 0.858072i \(-0.328338\pi\)
−0.486347 + 0.873766i \(0.661671\pi\)
\(620\) −0.373864 + 0.647551i −0.0150147 + 0.0260063i
\(621\) −38.4173 + 22.1803i −1.54163 + 0.890063i
\(622\) 9.93280 0.398269
\(623\) 0 0
\(624\) 9.58258i 0.383610i
\(625\) −9.45644 16.3790i −0.378258 0.655161i
\(626\) −0.511238 + 0.885491i −0.0204332 + 0.0353913i
\(627\) −26.1199 50.5848i −1.04313 2.02016i
\(628\) 17.7636 10.2558i 0.708847 0.409253i
\(629\) 20.8881 0.832863
\(630\) 0 0
\(631\) −5.16515 −0.205621 −0.102811 0.994701i \(-0.532784\pi\)
−0.102811 + 0.994701i \(0.532784\pi\)
\(632\) −2.00000 3.46410i −0.0795557 0.137795i
\(633\) −16.6352 + 28.8130i −0.661189 + 1.14521i
\(634\) −7.93725 4.58258i −0.315229 0.181997i
\(635\) 1.80341 + 3.12359i 0.0715660 + 0.123956i
\(636\) 7.48331i 0.296733i
\(637\) 0 0
\(638\) −21.1652 13.5826i −0.837936 0.537739i
\(639\) 6.58258 + 11.4014i 0.260403 + 0.451031i
\(640\) 0.323042 0.559525i 0.0127694 0.0221172i
\(641\) −14.9564 + 25.9053i −0.590744 + 1.02320i 0.403389 + 0.915029i \(0.367832\pi\)
−0.994132 + 0.108170i \(0.965501\pi\)
\(642\) 22.5658 13.0284i 0.890602 0.514189i
\(643\) 16.7700i 0.661346i −0.943745 0.330673i \(-0.892724\pi\)
0.943745 0.330673i \(-0.107276\pi\)
\(644\) 0 0
\(645\) 22.3303i 0.879255i
\(646\) 17.9681 10.3739i 0.706944 0.408154i
\(647\) 38.7677 + 22.3825i 1.52411 + 0.879948i 0.999592 + 0.0285507i \(0.00908921\pi\)
0.524522 + 0.851397i \(0.324244\pi\)
\(648\) −12.6289 7.29129i −0.496109 0.286429i
\(649\) −10.2555 0.481847i −0.402565 0.0189142i
\(650\) 14.1857i 0.556409i
\(651\) 0 0
\(652\) −4.00000 −0.156652
\(653\) 3.00000 + 5.19615i 0.117399 + 0.203341i 0.918736 0.394872i \(-0.129211\pi\)
−0.801337 + 0.598213i \(0.795878\pi\)
\(654\) 3.12359 + 1.80341i 0.122142 + 0.0705188i
\(655\) 5.27160 + 3.04356i 0.205979 + 0.118922i
\(656\) 2.51691 + 4.35942i 0.0982689 + 0.170207i
\(657\) −41.6413 −1.62458
\(658\) 0 0
\(659\) 30.3303i 1.18150i 0.806854 + 0.590750i \(0.201168\pi\)
−0.806854 + 0.590750i \(0.798832\pi\)
\(660\) 0.311314 6.62594i 0.0121179 0.257914i
\(661\) −22.0063 12.7053i −0.855945 0.494180i 0.00670702 0.999978i \(-0.497865\pi\)
−0.862652 + 0.505797i \(0.831198\pi\)
\(662\) −12.4859 7.20871i −0.485277 0.280175i
\(663\) −31.0511 + 17.9274i −1.20592 + 0.696241i
\(664\) 9.15188i 0.355162i
\(665\) 0 0
\(666\) 36.7477i 1.42395i
\(667\) −26.2668 + 15.1652i −1.01706 + 0.587197i
\(668\) 3.09557 5.36169i 0.119771 0.207450i
\(669\) 9.79129 16.9590i 0.378553 0.655673i
\(670\) −0.511238 0.885491i −0.0197509 0.0342095i
\(671\) 25.9219 + 16.6352i 1.00070 + 0.642194i
\(672\) 0 0
\(673\) 18.3303i 0.706581i 0.935514 + 0.353291i \(0.114937\pi\)
−0.935514 + 0.353291i \(0.885063\pi\)
\(674\) −14.5826 25.2578i −0.561700 0.972893i
\(675\) 44.0126 + 25.4107i 1.69404 + 0.978057i
\(676\) −1.70871 + 2.95958i −0.0657197 + 0.113830i
\(677\) 15.7335 + 27.2512i 0.604687 + 1.04735i 0.992101 + 0.125443i \(0.0400351\pi\)
−0.387414 + 0.921906i \(0.626632\pi\)
\(678\) −51.8438 −1.99105
\(679\) 0 0
\(680\) 2.41742 0.0927040
\(681\) 31.4630 18.1652i 1.20566 0.696090i
\(682\) −3.41056 + 1.76108i −0.130597 + 0.0674351i
\(683\) −22.7477 + 39.4002i −0.870418 + 1.50761i −0.00885223 + 0.999961i \(0.502818\pi\)
−0.861565 + 0.507647i \(0.830516\pi\)
\(684\) −18.2504 31.6106i −0.697821 1.20866i
\(685\) 9.79796i 0.374361i
\(686\) 0 0
\(687\) 40.3303 1.53870
\(688\) 9.66930 5.58258i 0.368639 0.212834i
\(689\) 3.74166 6.48074i 0.142546 0.246897i
\(690\) −6.92820 4.00000i −0.263752 0.152277i
\(691\) 32.6129 18.8291i 1.24065 0.716291i 0.271426 0.962459i \(-0.412505\pi\)
0.969227 + 0.246168i \(0.0791716\pi\)
\(692\) −22.9612 −0.872853
\(693\) 0 0
\(694\) −0.834849 −0.0316904
\(695\) −1.80750 + 1.04356i −0.0685624 + 0.0395845i
\(696\) −20.3277 11.7362i −0.770520 0.444860i
\(697\) −9.41742 + 16.3115i −0.356710 + 0.617841i
\(698\) −1.79535 + 1.03655i −0.0679552 + 0.0392339i
\(699\) 27.3489 1.03443
\(700\) 0 0
\(701\) 24.3303i 0.918943i −0.888193 0.459471i \(-0.848039\pi\)
0.888193 0.459471i \(-0.151961\pi\)
\(702\) 17.1652 + 29.7309i 0.647857 + 1.12212i
\(703\) 15.4779 26.8085i 0.583759 1.01110i
\(704\) 2.94694 1.52168i 0.111067 0.0573506i
\(705\) 8.71884 5.03383i 0.328371 0.189585i
\(706\) 7.48331 0.281638
\(707\) 0 0
\(708\) −9.58258 −0.360135
\(709\) −7.83485 13.5704i −0.294244 0.509645i 0.680565 0.732688i \(-0.261734\pi\)
−0.974809 + 0.223042i \(0.928401\pi\)
\(710\) −0.646084 + 1.11905i −0.0242471 + 0.0419972i
\(711\) −22.8027 13.1652i −0.855168 0.493732i
\(712\) −4.89898 8.48528i −0.183597 0.317999i
\(713\) 4.62929i 0.173368i
\(714\) 0 0
\(715\) −3.58258 + 5.58258i −0.133981 + 0.208776i
\(716\) −3.58258 6.20520i −0.133887 0.231899i
\(717\) −27.2141 + 47.1362i −1.01633 + 1.76033i
\(718\) 0.208712 0.361500i 0.00778907 0.0134911i
\(719\) 13.7302 7.92713i 0.512050 0.295632i −0.221626 0.975132i \(-0.571136\pi\)
0.733676 + 0.679500i \(0.237803\pi\)
\(720\) 4.25290i 0.158496i
\(721\) 0 0
\(722\) 11.7477i 0.437205i
\(723\) 69.4926 40.1216i 2.58446 1.49214i
\(724\) −14.4065 8.31759i −0.535413 0.309121i
\(725\) 30.0924 + 17.3739i 1.11760 + 0.645249i
\(726\) 19.7156 27.7630i 0.731715 1.03038i
\(727\) 52.2484i 1.93778i 0.247483 + 0.968892i \(0.420396\pi\)
−0.247483 + 0.968892i \(0.579604\pi\)
\(728\) 0 0
\(729\) 7.00000 0.259259
\(730\) −2.04356 3.53955i −0.0756356 0.131005i
\(731\) 36.1792 + 20.8881i 1.33814 + 0.772574i
\(732\) 24.8963 + 14.3739i 0.920192 + 0.531273i
\(733\) −11.4806 19.8850i −0.424045 0.734468i 0.572285 0.820055i \(-0.306057\pi\)
−0.996331 + 0.0855865i \(0.972724\pi\)
\(734\) 1.42701 0.0526720
\(735\) 0 0
\(736\) 4.00000i 0.147442i
\(737\) 0.246339 5.24303i 0.00907400 0.193129i
\(738\) 28.6962 + 16.5678i 1.05632 + 0.609868i
\(739\) 6.56670 + 3.79129i 0.241560 + 0.139465i 0.615894 0.787829i \(-0.288795\pi\)
−0.374333 + 0.927294i \(0.622128\pi\)
\(740\) 3.12359 1.80341i 0.114825 0.0662945i
\(741\) 53.1360i 1.95200i
\(742\) 0 0
\(743\) 43.9129i 1.61101i −0.592591 0.805504i \(-0.701895\pi\)
0.592591 0.805504i \(-0.298105\pi\)
\(744\) −3.10260 + 1.79129i −0.113747 + 0.0656718i
\(745\) −4.52259 + 7.83335i −0.165695 + 0.286992i
\(746\) −0.208712 + 0.361500i −0.00764149 + 0.0132355i
\(747\) −30.1215 52.1719i −1.10209 1.90887i
\(748\) 10.4440 + 6.70239i 0.381872 + 0.245063i
\(749\) 0 0
\(750\) 19.1652i 0.699812i
\(751\) −6.74773 11.6874i −0.246228 0.426480i 0.716248 0.697846i \(-0.245858\pi\)
−0.962476 + 0.271366i \(0.912525\pi\)
\(752\) 4.35942 + 2.51691i 0.158972 + 0.0917824i
\(753\) 3.20871 5.55765i 0.116932 0.202532i
\(754\) 11.7362 + 20.3277i 0.427408 + 0.740292i
\(755\) 2.31464 0.0842385
\(756\) 0 0
\(757\) −49.1652 −1.78694 −0.893469 0.449125i \(-0.851736\pi\)
−0.893469 + 0.449125i \(0.851736\pi\)
\(758\) −12.4104 + 7.16515i −0.450766 + 0.260250i
\(759\) −18.8419 36.4899i −0.683918 1.32450i
\(760\) 1.79129 3.10260i 0.0649768 0.112543i
\(761\) 10.3766 + 17.9728i 0.376152 + 0.651515i 0.990499 0.137522i \(-0.0439137\pi\)
−0.614347 + 0.789036i \(0.710580\pi\)
\(762\) 17.2813i 0.626034i
\(763\) 0 0
\(764\) 18.0000 0.651217
\(765\) 13.7810 7.95644i 0.498252 0.287666i
\(766\) 2.38207 4.12586i 0.0860676 0.149073i
\(767\) 8.29875 + 4.79129i 0.299651 + 0.173003i
\(768\) 2.68085 1.54779i 0.0967367 0.0558509i
\(769\) −29.7984 −1.07456 −0.537279 0.843404i \(-0.680548\pi\)
−0.537279 + 0.843404i \(0.680548\pi\)
\(770\) 0 0
\(771\) −15.1652 −0.546160
\(772\) 17.6066 10.1652i 0.633674 0.365852i
\(773\) 44.3385 + 25.5989i 1.59475 + 0.920727i 0.992477 + 0.122435i \(0.0390702\pi\)
0.602270 + 0.798293i \(0.294263\pi\)
\(774\) 36.7477 63.6489i 1.32087 2.28781i
\(775\) 4.59298 2.65176i 0.164985 0.0952540i
\(776\) −15.9891 −0.573975
\(777\) 0 0
\(778\) 10.0000i 0.358517i
\(779\) 13.9564 + 24.1733i 0.500041 + 0.866097i
\(780\) −3.09557 + 5.36169i −0.110839 + 0.191979i
\(781\) −5.89389