Properties

Label 1078.2.i.b
Level $1078$
Weight $2$
Character orbit 1078.i
Analytic conductor $8.608$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1078,2,Mod(901,1078)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1078, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1078.901");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.60787333789\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.162447943996702457856.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 154)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} + \beta_{2}) q^{2} + (\beta_{9} - \beta_{4}) q^{3} + \beta_1 q^{4} + \beta_{11} q^{5} + \beta_{12} q^{6} + \beta_{2} q^{8} + ( - \beta_{7} - \beta_{6} - 3 \beta_1 + 3) q^{9} + ( - \beta_{14} + \beta_{13}) q^{10}+ \cdots + ( - 2 \beta_{10} + \beta_{8} + \cdots - 13) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{4} + 16 q^{9} - 4 q^{11} - 32 q^{15} - 8 q^{16} - 8 q^{22} - 32 q^{23} + 32 q^{36} + 8 q^{37} + 4 q^{44} + 56 q^{53} + 24 q^{58} - 16 q^{60} - 16 q^{64} + 24 q^{67} + 32 q^{71} + 80 q^{78} - 80 q^{81}+ \cdots - 184 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - x^{12} - 15x^{8} - 16x^{4} + 256 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{12} + 15\nu^{8} - 15\nu^{4} - 16 ) / 240 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{14} - 15\nu^{10} - 33\nu^{6} + 256\nu^{2} ) / 576 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{14} + 91\nu^{2} ) / 180 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -13\nu^{15} + 4\nu^{13} + 45\nu^{11} + 60\nu^{9} + 675\nu^{7} - 1020\nu^{5} - 2192\nu^{3} + 4736\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 13\nu^{15} + 4\nu^{13} - 45\nu^{11} + 60\nu^{9} - 675\nu^{7} - 1020\nu^{5} + 2192\nu^{3} + 4736\nu ) / 5760 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -7\nu^{14} - 66\nu^{12} + 15\nu^{10} - 30\nu^{8} - 255\nu^{6} + 510\nu^{4} - 968\nu^{2} + 2016 ) / 1440 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 7\nu^{14} - 66\nu^{12} - 15\nu^{10} - 30\nu^{8} + 255\nu^{6} + 510\nu^{4} + 968\nu^{2} + 2016 ) / 1440 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 41\nu^{14} + 72\nu^{12} + 135\nu^{10} + 120\nu^{8} - 855\nu^{6} + 840\nu^{4} - 2336\nu^{2} - 2112 ) / 2880 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 5\nu^{15} - 8\nu^{13} - 21\nu^{11} + 72\nu^{9} + 69\nu^{7} - 72\nu^{5} - 224\nu^{3} - 64\nu ) / 1152 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 41\nu^{14} - 72\nu^{12} + 135\nu^{10} - 120\nu^{8} - 855\nu^{6} - 840\nu^{4} - 2336\nu^{2} + 2112 ) / 2880 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 13\nu^{15} - 34\nu^{13} + 75\nu^{11} - 30\nu^{9} + 165\nu^{7} + 510\nu^{5} - 568\nu^{3} + 3424\nu ) / 2880 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( -5\nu^{15} - 8\nu^{13} + 21\nu^{11} + 72\nu^{9} - 69\nu^{7} - 72\nu^{5} + 224\nu^{3} - 64\nu ) / 1152 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( -13\nu^{15} - 34\nu^{13} - 75\nu^{11} - 30\nu^{9} - 165\nu^{7} + 510\nu^{5} + 568\nu^{3} + 3424\nu ) / 2880 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( -11\nu^{15} + 4\nu^{13} - 21\nu^{11} + 60\nu^{9} + 69\nu^{7} + 132\nu^{5} + 656\nu^{3} + 128\nu ) / 1152 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( -11\nu^{15} - 4\nu^{13} - 21\nu^{11} - 60\nu^{9} + 69\nu^{7} - 132\nu^{5} + 656\nu^{3} - 128\nu ) / 1152 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{15} + \beta_{14} + \beta_{13} - \beta_{12} + \beta_{11} - \beta_{9} + 2\beta_{5} + 2\beta_{4} ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{10} + \beta_{8} + 2\beta_{7} - 2\beta_{6} + 8\beta_{3} + 2\beta_{2} ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 4\beta_{15} + 4\beta_{14} - 5\beta_{13} - \beta_{12} + 5\beta_{11} + \beta_{9} + 5\beta_{5} - 5\beta_{4} ) / 6 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -2\beta_{10} + 2\beta_{8} + \beta_{7} + \beta_{6} - 2\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -7\beta_{15} + 7\beta_{14} + 4\beta_{13} - 4\beta_{12} + 4\beta_{11} - 4\beta_{9} - 7\beta_{5} - 7\beta_{4} ) / 6 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -5\beta_{10} - 5\beta_{8} + 5\beta_{7} - 5\beta_{6} - 10\beta_{3} - 22\beta_{2} ) / 6 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 13\beta_{15} + 13\beta_{14} - 17\beta_{13} - 13\beta_{12} + 17\beta_{11} + 13\beta_{9} - 4\beta_{5} + 4\beta_{4} ) / 6 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( -\beta_{10} + \beta_{8} + 2\beta_{7} + 2\beta_{6} + 32\beta _1 - 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( -28\beta_{15} + 28\beta_{14} - 5\beta_{13} + 23\beta_{12} - 5\beta_{11} + 23\beta_{9} + 5\beta_{5} + 5\beta_{4} ) / 6 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 22\beta_{10} + 22\beta_{8} + 11\beta_{7} - 11\beta_{6} + 182\beta_{3} - 160\beta_{2} ) / 6 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( \beta_{15} + \beta_{14} - 68\beta_{13} + 68\beta_{12} + 68\beta_{11} - 68\beta_{9} - \beta_{5} + \beta_{4} ) / 6 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( -15\beta_{10} + 15\beta_{8} - 15\beta_{7} - 15\beta_{6} - 30\beta _1 + 62 ) / 2 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( - 181 \beta_{15} + 181 \beta_{14} - 89 \beta_{13} - 181 \beta_{12} - 89 \beta_{11} + \cdots + 92 \beta_{4} ) / 6 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 91\beta_{10} + 91\beta_{8} + 182\beta_{7} - 182\beta_{6} - 352\beta_{3} + 182\beta_{2} ) / 6 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( 4 \beta_{15} + 4 \beta_{14} - 275 \beta_{13} - 271 \beta_{12} + 275 \beta_{11} + 271 \beta_{9} + \cdots - 275 \beta_{4} ) / 6 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1078\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(981\)
\(\chi(n)\) \(1 - \beta_{1}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
901.1
1.14839 0.825348i
1.40721 + 0.140577i
−1.40721 0.140577i
−1.14839 + 0.825348i
0.825348 + 1.14839i
−0.140577 + 1.40721i
0.140577 1.40721i
−0.825348 1.14839i
1.14839 + 0.825348i
1.40721 0.140577i
−1.40721 + 0.140577i
−1.14839 0.825348i
0.825348 1.14839i
−0.140577 1.40721i
0.140577 + 1.40721i
−0.825348 + 1.14839i
−0.866025 0.500000i −2.68085 + 1.54779i 0.500000 + 0.866025i 0.559525 + 0.323042i 3.09557 0 1.00000i 3.29129 5.70068i −0.323042 0.559525i
901.2 −0.866025 0.500000i −0.559525 + 0.323042i 0.500000 + 0.866025i 2.68085 + 1.54779i 0.646084 0 1.00000i −1.29129 + 2.23658i −1.54779 2.68085i
901.3 −0.866025 0.500000i 0.559525 0.323042i 0.500000 + 0.866025i −2.68085 1.54779i −0.646084 0 1.00000i −1.29129 + 2.23658i 1.54779 + 2.68085i
901.4 −0.866025 0.500000i 2.68085 1.54779i 0.500000 + 0.866025i −0.559525 0.323042i −3.09557 0 1.00000i 3.29129 5.70068i 0.323042 + 0.559525i
901.5 0.866025 + 0.500000i −2.68085 + 1.54779i 0.500000 + 0.866025i 0.559525 + 0.323042i −3.09557 0 1.00000i 3.29129 5.70068i 0.323042 + 0.559525i
901.6 0.866025 + 0.500000i −0.559525 + 0.323042i 0.500000 + 0.866025i 2.68085 + 1.54779i −0.646084 0 1.00000i −1.29129 + 2.23658i 1.54779 + 2.68085i
901.7 0.866025 + 0.500000i 0.559525 0.323042i 0.500000 + 0.866025i −2.68085 1.54779i 0.646084 0 1.00000i −1.29129 + 2.23658i −1.54779 2.68085i
901.8 0.866025 + 0.500000i 2.68085 1.54779i 0.500000 + 0.866025i −0.559525 0.323042i 3.09557 0 1.00000i 3.29129 5.70068i −0.323042 0.559525i
1011.1 −0.866025 + 0.500000i −2.68085 1.54779i 0.500000 0.866025i 0.559525 0.323042i 3.09557 0 1.00000i 3.29129 + 5.70068i −0.323042 + 0.559525i
1011.2 −0.866025 + 0.500000i −0.559525 0.323042i 0.500000 0.866025i 2.68085 1.54779i 0.646084 0 1.00000i −1.29129 2.23658i −1.54779 + 2.68085i
1011.3 −0.866025 + 0.500000i 0.559525 + 0.323042i 0.500000 0.866025i −2.68085 + 1.54779i −0.646084 0 1.00000i −1.29129 2.23658i 1.54779 2.68085i
1011.4 −0.866025 + 0.500000i 2.68085 + 1.54779i 0.500000 0.866025i −0.559525 + 0.323042i −3.09557 0 1.00000i 3.29129 + 5.70068i 0.323042 0.559525i
1011.5 0.866025 0.500000i −2.68085 1.54779i 0.500000 0.866025i 0.559525 0.323042i −3.09557 0 1.00000i 3.29129 + 5.70068i 0.323042 0.559525i
1011.6 0.866025 0.500000i −0.559525 0.323042i 0.500000 0.866025i 2.68085 1.54779i −0.646084 0 1.00000i −1.29129 2.23658i 1.54779 2.68085i
1011.7 0.866025 0.500000i 0.559525 + 0.323042i 0.500000 0.866025i −2.68085 + 1.54779i 0.646084 0 1.00000i −1.29129 2.23658i −1.54779 + 2.68085i
1011.8 0.866025 0.500000i 2.68085 + 1.54779i 0.500000 0.866025i −0.559525 + 0.323042i 3.09557 0 1.00000i 3.29129 + 5.70068i −0.323042 + 0.559525i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 901.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner
11.b odd 2 1 inner
77.b even 2 1 inner
77.h odd 6 1 inner
77.i even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1078.2.i.b 16
7.b odd 2 1 inner 1078.2.i.b 16
7.c even 3 1 154.2.c.a 8
7.c even 3 1 inner 1078.2.i.b 16
7.d odd 6 1 154.2.c.a 8
7.d odd 6 1 inner 1078.2.i.b 16
11.b odd 2 1 inner 1078.2.i.b 16
21.g even 6 1 1386.2.e.b 8
21.h odd 6 1 1386.2.e.b 8
28.f even 6 1 1232.2.e.e 8
28.g odd 6 1 1232.2.e.e 8
77.b even 2 1 inner 1078.2.i.b 16
77.h odd 6 1 154.2.c.a 8
77.h odd 6 1 inner 1078.2.i.b 16
77.i even 6 1 154.2.c.a 8
77.i even 6 1 inner 1078.2.i.b 16
231.k odd 6 1 1386.2.e.b 8
231.l even 6 1 1386.2.e.b 8
308.m odd 6 1 1232.2.e.e 8
308.n even 6 1 1232.2.e.e 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.2.c.a 8 7.c even 3 1
154.2.c.a 8 7.d odd 6 1
154.2.c.a 8 77.h odd 6 1
154.2.c.a 8 77.i even 6 1
1078.2.i.b 16 1.a even 1 1 trivial
1078.2.i.b 16 7.b odd 2 1 inner
1078.2.i.b 16 7.c even 3 1 inner
1078.2.i.b 16 7.d odd 6 1 inner
1078.2.i.b 16 11.b odd 2 1 inner
1078.2.i.b 16 77.b even 2 1 inner
1078.2.i.b 16 77.h odd 6 1 inner
1078.2.i.b 16 77.i even 6 1 inner
1232.2.e.e 8 28.f even 6 1
1232.2.e.e 8 28.g odd 6 1
1232.2.e.e 8 308.m odd 6 1
1232.2.e.e 8 308.n even 6 1
1386.2.e.b 8 21.g even 6 1
1386.2.e.b 8 21.h odd 6 1
1386.2.e.b 8 231.k odd 6 1
1386.2.e.b 8 231.l even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} - 10T_{3}^{6} + 96T_{3}^{4} - 40T_{3}^{2} + 16 \) acting on \(S_{2}^{\mathrm{new}}(1078, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} - T^{2} + 1)^{4} \) Copy content Toggle raw display
$3$ \( (T^{8} - 10 T^{6} + \cdots + 16)^{2} \) Copy content Toggle raw display
$5$ \( (T^{8} - 10 T^{6} + \cdots + 16)^{2} \) Copy content Toggle raw display
$7$ \( T^{16} \) Copy content Toggle raw display
$11$ \( (T^{8} + 2 T^{7} + \cdots + 14641)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 10 T^{2} + 4)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 14 T^{2} + 196)^{4} \) Copy content Toggle raw display
$19$ \( (T^{8} + 34 T^{6} + \cdots + 10000)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 4 T + 16)^{8} \) Copy content Toggle raw display
$29$ \( (T^{4} + 60 T^{2} + 144)^{4} \) Copy content Toggle raw display
$31$ \( (T^{8} - 76 T^{6} + \cdots + 10000)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 2 T^{3} + \cdots + 400)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} - 124 T^{2} + 2500)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 176 T^{2} + 6400)^{4} \) Copy content Toggle raw display
$47$ \( (T^{8} - 124 T^{6} + \cdots + 6250000)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} - 14 T^{3} + \cdots + 784)^{4} \) Copy content Toggle raw display
$59$ \( (T^{8} - 10 T^{6} + \cdots + 16)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} + 90 T^{6} + \cdots + 104976)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 6 T^{3} + \cdots + 144)^{4} \) Copy content Toggle raw display
$71$ \( (T - 2)^{16} \) Copy content Toggle raw display
$73$ \( (T^{8} + 300 T^{6} + \cdots + 108243216)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 16 T^{2} + 256)^{4} \) Copy content Toggle raw display
$83$ \( (T^{4} - 250 T^{2} + 13924)^{4} \) Copy content Toggle raw display
$89$ \( (T^{4} - 96 T^{2} + 9216)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + 328 T^{2} + 18496)^{4} \) Copy content Toggle raw display
show more
show less