Defining parameters
Level: | \( N \) | \(=\) | \( 1078 = 2 \cdot 7^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1078.i (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 77 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1078, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 368 | 80 | 288 |
Cusp forms | 304 | 80 | 224 |
Eisenstein series | 64 | 0 | 64 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1078, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1078.2.i.a | $16$ | $8.608$ | \(\Q(\zeta_{48})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta_1 q^{2}+(-\beta_{10}+\beta_{7}-\beta_{2})q^{3}+\cdots\) |
1078.2.i.b | $16$ | $8.608$ | 16.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{2}-\beta _{3})q^{2}+(-\beta _{4}+\beta _{9})q^{3}+\beta _{1}q^{4}+\cdots\) |
1078.2.i.c | $16$ | $8.608$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(12\) | \(0\) | \(q+\beta _{1}q^{2}+(\beta _{3}-\beta _{4}-\beta _{13})q^{3}+\beta _{10}q^{4}+\cdots\) |
1078.2.i.d | $32$ | $8.608$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1078, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1078, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(539, [\chi])\)\(^{\oplus 2}\)