Properties

Label 1078.2.e.p
Level $1078$
Weight $2$
Character orbit 1078.e
Analytic conductor $8.608$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.60787333789\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Defining polynomial: \( x^{4} + 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + \beta_1 q^{3} + ( - \beta_{2} - 1) q^{4} + ( - 3 \beta_{3} - 3 \beta_1) q^{5} + \beta_{3} q^{6} + q^{8} - \beta_{2} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{2} q^{2} + \beta_1 q^{3} + ( - \beta_{2} - 1) q^{4} + ( - 3 \beta_{3} - 3 \beta_1) q^{5} + \beta_{3} q^{6} + q^{8} - \beta_{2} q^{9} + 3 \beta_1 q^{10} + (\beta_{2} + 1) q^{11} + ( - \beta_{3} - \beta_1) q^{12} + 6 q^{15} + \beta_{2} q^{16} - 4 \beta_1 q^{17} + (\beta_{2} + 1) q^{18} + 3 \beta_{3} q^{20} - q^{22} + 6 \beta_{2} q^{23} + \beta_1 q^{24} + ( - 13 \beta_{2} - 13) q^{25} - 4 \beta_{3} q^{27} + 2 q^{29} + 6 \beta_{2} q^{30} - \beta_1 q^{31} + ( - \beta_{2} - 1) q^{32} + (\beta_{3} + \beta_1) q^{33} - 4 \beta_{3} q^{34} - q^{36} - 10 \beta_{2} q^{37} + ( - 3 \beta_{3} - 3 \beta_1) q^{40} - 8 \beta_{3} q^{41} - 8 q^{43} - \beta_{2} q^{44} - 3 \beta_1 q^{45} + ( - 6 \beta_{2} - 6) q^{46} + ( - 3 \beta_{3} - 3 \beta_1) q^{47} + \beta_{3} q^{48} + 13 q^{50} - 8 \beta_{2} q^{51} + ( - 8 \beta_{2} - 8) q^{53} + (4 \beta_{3} + 4 \beta_1) q^{54} - 3 \beta_{3} q^{55} + 2 \beta_{2} q^{58} + \beta_1 q^{59} + ( - 6 \beta_{2} - 6) q^{60} + (2 \beta_{3} + 2 \beta_1) q^{61} - \beta_{3} q^{62} + q^{64} - \beta_1 q^{66} + ( - 2 \beta_{2} - 2) q^{67} + (4 \beta_{3} + 4 \beta_1) q^{68} + 6 \beta_{3} q^{69} - 2 q^{71} - \beta_{2} q^{72} + 6 \beta_1 q^{73} + (10 \beta_{2} + 10) q^{74} + ( - 13 \beta_{3} - 13 \beta_1) q^{75} + 16 \beta_{2} q^{79} + 3 \beta_1 q^{80} + (5 \beta_{2} + 5) q^{81} + (8 \beta_{3} + 8 \beta_1) q^{82} - 12 \beta_{3} q^{83} - 24 q^{85} - 8 \beta_{2} q^{86} + 2 \beta_1 q^{87} + (\beta_{2} + 1) q^{88} + (5 \beta_{3} + 5 \beta_1) q^{89} - 3 \beta_{3} q^{90} + 6 q^{92} - 2 \beta_{2} q^{93} + 3 \beta_1 q^{94} + ( - \beta_{3} - \beta_1) q^{96} - 7 \beta_{3} q^{97} + q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 2 q^{4} + 4 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} - 2 q^{4} + 4 q^{8} + 2 q^{9} + 2 q^{11} + 24 q^{15} - 2 q^{16} + 2 q^{18} - 4 q^{22} - 12 q^{23} - 26 q^{25} + 8 q^{29} - 12 q^{30} - 2 q^{32} - 4 q^{36} + 20 q^{37} - 32 q^{43} + 2 q^{44} - 12 q^{46} + 52 q^{50} + 16 q^{51} - 16 q^{53} - 4 q^{58} - 12 q^{60} + 4 q^{64} - 4 q^{67} - 8 q^{71} + 2 q^{72} + 20 q^{74} - 32 q^{79} + 10 q^{81} - 96 q^{85} + 16 q^{86} + 2 q^{88} + 24 q^{92} + 4 q^{93} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 2x^{2} + 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 2\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1078\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(981\)
\(\chi(n)\) \(\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
−0.707107 + 1.22474i
0.707107 1.22474i
−0.707107 1.22474i
0.707107 + 1.22474i
−0.500000 0.866025i −0.707107 + 1.22474i −0.500000 + 0.866025i −2.12132 3.67423i 1.41421 0 1.00000 0.500000 + 0.866025i −2.12132 + 3.67423i
67.2 −0.500000 0.866025i 0.707107 1.22474i −0.500000 + 0.866025i 2.12132 + 3.67423i −1.41421 0 1.00000 0.500000 + 0.866025i 2.12132 3.67423i
177.1 −0.500000 + 0.866025i −0.707107 1.22474i −0.500000 0.866025i −2.12132 + 3.67423i 1.41421 0 1.00000 0.500000 0.866025i −2.12132 3.67423i
177.2 −0.500000 + 0.866025i 0.707107 + 1.22474i −0.500000 0.866025i 2.12132 3.67423i −1.41421 0 1.00000 0.500000 0.866025i 2.12132 + 3.67423i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
7.c even 3 1 inner
7.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1078.2.e.p 4
7.b odd 2 1 inner 1078.2.e.p 4
7.c even 3 1 1078.2.a.u 2
7.c even 3 1 inner 1078.2.e.p 4
7.d odd 6 1 1078.2.a.u 2
7.d odd 6 1 inner 1078.2.e.p 4
21.g even 6 1 9702.2.a.cp 2
21.h odd 6 1 9702.2.a.cp 2
28.f even 6 1 8624.2.a.bs 2
28.g odd 6 1 8624.2.a.bs 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1078.2.a.u 2 7.c even 3 1
1078.2.a.u 2 7.d odd 6 1
1078.2.e.p 4 1.a even 1 1 trivial
1078.2.e.p 4 7.b odd 2 1 inner
1078.2.e.p 4 7.c even 3 1 inner
1078.2.e.p 4 7.d odd 6 1 inner
8624.2.a.bs 2 28.f even 6 1
8624.2.a.bs 2 28.g odd 6 1
9702.2.a.cp 2 21.g even 6 1
9702.2.a.cp 2 21.h odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1078, [\chi])\):

\( T_{3}^{4} + 2T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{5}^{4} + 18T_{5}^{2} + 324 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{4} + 18T^{2} + 324 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 32T^{2} + 1024 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 6 T + 36)^{2} \) Copy content Toggle raw display
$29$ \( (T - 2)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$37$ \( (T^{2} - 10 T + 100)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 128)^{2} \) Copy content Toggle raw display
$43$ \( (T + 8)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 18T^{2} + 324 \) Copy content Toggle raw display
$53$ \( (T^{2} + 8 T + 64)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 2T^{2} + 4 \) Copy content Toggle raw display
$61$ \( T^{4} + 8T^{2} + 64 \) Copy content Toggle raw display
$67$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$71$ \( (T + 2)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 72T^{2} + 5184 \) Copy content Toggle raw display
$79$ \( (T^{2} + 16 T + 256)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 288)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 50T^{2} + 2500 \) Copy content Toggle raw display
$97$ \( (T^{2} - 98)^{2} \) Copy content Toggle raw display
show more
show less