Properties

Label 1078.2.e.g
Level $1078$
Weight $2$
Character orbit 1078.e
Analytic conductor $8.608$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.60787333789\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{2} + ( -3 + 3 \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} -4 \zeta_{6} q^{5} -3 q^{6} - q^{8} -6 \zeta_{6} q^{9} +O(q^{10})\) \( q + \zeta_{6} q^{2} + ( -3 + 3 \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} -4 \zeta_{6} q^{5} -3 q^{6} - q^{8} -6 \zeta_{6} q^{9} + ( 4 - 4 \zeta_{6} ) q^{10} + ( 1 - \zeta_{6} ) q^{11} -3 \zeta_{6} q^{12} + q^{13} + 12 q^{15} -\zeta_{6} q^{16} + ( 2 - 2 \zeta_{6} ) q^{17} + ( 6 - 6 \zeta_{6} ) q^{18} + 6 \zeta_{6} q^{19} + 4 q^{20} + q^{22} + 2 \zeta_{6} q^{23} + ( 3 - 3 \zeta_{6} ) q^{24} + ( -11 + 11 \zeta_{6} ) q^{25} + \zeta_{6} q^{26} + 9 q^{27} + q^{29} + 12 \zeta_{6} q^{30} + ( 4 - 4 \zeta_{6} ) q^{31} + ( 1 - \zeta_{6} ) q^{32} + 3 \zeta_{6} q^{33} + 2 q^{34} + 6 q^{36} + 2 \zeta_{6} q^{37} + ( -6 + 6 \zeta_{6} ) q^{38} + ( -3 + 3 \zeta_{6} ) q^{39} + 4 \zeta_{6} q^{40} + 2 q^{41} + 4 q^{43} + \zeta_{6} q^{44} + ( -24 + 24 \zeta_{6} ) q^{45} + ( -2 + 2 \zeta_{6} ) q^{46} + 2 \zeta_{6} q^{47} + 3 q^{48} -11 q^{50} + 6 \zeta_{6} q^{51} + ( -1 + \zeta_{6} ) q^{52} + ( 12 - 12 \zeta_{6} ) q^{53} + 9 \zeta_{6} q^{54} -4 q^{55} -18 q^{57} + \zeta_{6} q^{58} + ( 9 - 9 \zeta_{6} ) q^{59} + ( -12 + 12 \zeta_{6} ) q^{60} -5 \zeta_{6} q^{61} + 4 q^{62} + q^{64} -4 \zeta_{6} q^{65} + ( -3 + 3 \zeta_{6} ) q^{66} + ( 9 - 9 \zeta_{6} ) q^{67} + 2 \zeta_{6} q^{68} -6 q^{69} + 4 q^{71} + 6 \zeta_{6} q^{72} + ( -2 + 2 \zeta_{6} ) q^{73} + ( -2 + 2 \zeta_{6} ) q^{74} -33 \zeta_{6} q^{75} -6 q^{76} -3 q^{78} + 15 \zeta_{6} q^{79} + ( -4 + 4 \zeta_{6} ) q^{80} + ( -9 + 9 \zeta_{6} ) q^{81} + 2 \zeta_{6} q^{82} + 6 q^{83} -8 q^{85} + 4 \zeta_{6} q^{86} + ( -3 + 3 \zeta_{6} ) q^{87} + ( -1 + \zeta_{6} ) q^{88} + 6 \zeta_{6} q^{89} -24 q^{90} -2 q^{92} + 12 \zeta_{6} q^{93} + ( -2 + 2 \zeta_{6} ) q^{94} + ( 24 - 24 \zeta_{6} ) q^{95} + 3 \zeta_{6} q^{96} + 5 q^{97} -6 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - 3 q^{3} - q^{4} - 4 q^{5} - 6 q^{6} - 2 q^{8} - 6 q^{9} + O(q^{10}) \) \( 2 q + q^{2} - 3 q^{3} - q^{4} - 4 q^{5} - 6 q^{6} - 2 q^{8} - 6 q^{9} + 4 q^{10} + q^{11} - 3 q^{12} + 2 q^{13} + 24 q^{15} - q^{16} + 2 q^{17} + 6 q^{18} + 6 q^{19} + 8 q^{20} + 2 q^{22} + 2 q^{23} + 3 q^{24} - 11 q^{25} + q^{26} + 18 q^{27} + 2 q^{29} + 12 q^{30} + 4 q^{31} + q^{32} + 3 q^{33} + 4 q^{34} + 12 q^{36} + 2 q^{37} - 6 q^{38} - 3 q^{39} + 4 q^{40} + 4 q^{41} + 8 q^{43} + q^{44} - 24 q^{45} - 2 q^{46} + 2 q^{47} + 6 q^{48} - 22 q^{50} + 6 q^{51} - q^{52} + 12 q^{53} + 9 q^{54} - 8 q^{55} - 36 q^{57} + q^{58} + 9 q^{59} - 12 q^{60} - 5 q^{61} + 8 q^{62} + 2 q^{64} - 4 q^{65} - 3 q^{66} + 9 q^{67} + 2 q^{68} - 12 q^{69} + 8 q^{71} + 6 q^{72} - 2 q^{73} - 2 q^{74} - 33 q^{75} - 12 q^{76} - 6 q^{78} + 15 q^{79} - 4 q^{80} - 9 q^{81} + 2 q^{82} + 12 q^{83} - 16 q^{85} + 4 q^{86} - 3 q^{87} - q^{88} + 6 q^{89} - 48 q^{90} - 4 q^{92} + 12 q^{93} - 2 q^{94} + 24 q^{95} + 3 q^{96} + 10 q^{97} - 12 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1078\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(981\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 + 0.866025i −1.50000 + 2.59808i −0.500000 + 0.866025i −2.00000 3.46410i −3.00000 0 −1.00000 −3.00000 5.19615i 2.00000 3.46410i
177.1 0.500000 0.866025i −1.50000 2.59808i −0.500000 0.866025i −2.00000 + 3.46410i −3.00000 0 −1.00000 −3.00000 + 5.19615i 2.00000 + 3.46410i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1078.2.e.g 2
7.b odd 2 1 154.2.e.d 2
7.c even 3 1 1078.2.a.f 1
7.c even 3 1 inner 1078.2.e.g 2
7.d odd 6 1 154.2.e.d 2
7.d odd 6 1 1078.2.a.a 1
21.c even 2 1 1386.2.k.a 2
21.g even 6 1 1386.2.k.a 2
21.g even 6 1 9702.2.a.cg 1
21.h odd 6 1 9702.2.a.bb 1
28.d even 2 1 1232.2.q.a 2
28.f even 6 1 1232.2.q.a 2
28.f even 6 1 8624.2.a.bd 1
28.g odd 6 1 8624.2.a.d 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.2.e.d 2 7.b odd 2 1
154.2.e.d 2 7.d odd 6 1
1078.2.a.a 1 7.d odd 6 1
1078.2.a.f 1 7.c even 3 1
1078.2.e.g 2 1.a even 1 1 trivial
1078.2.e.g 2 7.c even 3 1 inner
1232.2.q.a 2 28.d even 2 1
1232.2.q.a 2 28.f even 6 1
1386.2.k.a 2 21.c even 2 1
1386.2.k.a 2 21.g even 6 1
8624.2.a.d 1 28.g odd 6 1
8624.2.a.bd 1 28.f even 6 1
9702.2.a.bb 1 21.h odd 6 1
9702.2.a.cg 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1078, [\chi])\):

\( T_{3}^{2} + 3 T_{3} + 9 \)
\( T_{5}^{2} + 4 T_{5} + 16 \)
\( T_{13} - 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T + T^{2} \)
$3$ \( 9 + 3 T + T^{2} \)
$5$ \( 16 + 4 T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 1 - T + T^{2} \)
$13$ \( ( -1 + T )^{2} \)
$17$ \( 4 - 2 T + T^{2} \)
$19$ \( 36 - 6 T + T^{2} \)
$23$ \( 4 - 2 T + T^{2} \)
$29$ \( ( -1 + T )^{2} \)
$31$ \( 16 - 4 T + T^{2} \)
$37$ \( 4 - 2 T + T^{2} \)
$41$ \( ( -2 + T )^{2} \)
$43$ \( ( -4 + T )^{2} \)
$47$ \( 4 - 2 T + T^{2} \)
$53$ \( 144 - 12 T + T^{2} \)
$59$ \( 81 - 9 T + T^{2} \)
$61$ \( 25 + 5 T + T^{2} \)
$67$ \( 81 - 9 T + T^{2} \)
$71$ \( ( -4 + T )^{2} \)
$73$ \( 4 + 2 T + T^{2} \)
$79$ \( 225 - 15 T + T^{2} \)
$83$ \( ( -6 + T )^{2} \)
$89$ \( 36 - 6 T + T^{2} \)
$97$ \( ( -5 + T )^{2} \)
show more
show less