Properties

Label 1078.2.e.d
Level $1078$
Weight $2$
Character orbit 1078.e
Analytic conductor $8.608$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(8.60787333789\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 154)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\zeta_{6} q^{2} + ( 1 - \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} - q^{6} + q^{8} + 2 \zeta_{6} q^{9} +O(q^{10})\) \( q -\zeta_{6} q^{2} + ( 1 - \zeta_{6} ) q^{3} + ( -1 + \zeta_{6} ) q^{4} - q^{6} + q^{8} + 2 \zeta_{6} q^{9} + ( 1 - \zeta_{6} ) q^{11} + \zeta_{6} q^{12} -5 q^{13} -\zeta_{6} q^{16} + ( 6 - 6 \zeta_{6} ) q^{17} + ( 2 - 2 \zeta_{6} ) q^{18} + 2 \zeta_{6} q^{19} - q^{22} -6 \zeta_{6} q^{23} + ( 1 - \zeta_{6} ) q^{24} + ( 5 - 5 \zeta_{6} ) q^{25} + 5 \zeta_{6} q^{26} + 5 q^{27} + 3 q^{29} + ( 8 - 8 \zeta_{6} ) q^{31} + ( -1 + \zeta_{6} ) q^{32} -\zeta_{6} q^{33} -6 q^{34} -2 q^{36} -2 \zeta_{6} q^{37} + ( 2 - 2 \zeta_{6} ) q^{38} + ( -5 + 5 \zeta_{6} ) q^{39} + 6 q^{41} -4 q^{43} + \zeta_{6} q^{44} + ( -6 + 6 \zeta_{6} ) q^{46} + 6 \zeta_{6} q^{47} - q^{48} -5 q^{50} -6 \zeta_{6} q^{51} + ( 5 - 5 \zeta_{6} ) q^{52} + ( 12 - 12 \zeta_{6} ) q^{53} -5 \zeta_{6} q^{54} + 2 q^{57} -3 \zeta_{6} q^{58} + ( -3 + 3 \zeta_{6} ) q^{59} -7 \zeta_{6} q^{61} -8 q^{62} + q^{64} + ( -1 + \zeta_{6} ) q^{66} + ( 13 - 13 \zeta_{6} ) q^{67} + 6 \zeta_{6} q^{68} -6 q^{69} -12 q^{71} + 2 \zeta_{6} q^{72} + ( -10 + 10 \zeta_{6} ) q^{73} + ( -2 + 2 \zeta_{6} ) q^{74} -5 \zeta_{6} q^{75} -2 q^{76} + 5 q^{78} + \zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} -6 \zeta_{6} q^{82} -6 q^{83} + 4 \zeta_{6} q^{86} + ( 3 - 3 \zeta_{6} ) q^{87} + ( 1 - \zeta_{6} ) q^{88} + 6 \zeta_{6} q^{89} + 6 q^{92} -8 \zeta_{6} q^{93} + ( 6 - 6 \zeta_{6} ) q^{94} + \zeta_{6} q^{96} + 13 q^{97} + 2 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - q^{2} + q^{3} - q^{4} - 2q^{6} + 2q^{8} + 2q^{9} + O(q^{10}) \) \( 2q - q^{2} + q^{3} - q^{4} - 2q^{6} + 2q^{8} + 2q^{9} + q^{11} + q^{12} - 10q^{13} - q^{16} + 6q^{17} + 2q^{18} + 2q^{19} - 2q^{22} - 6q^{23} + q^{24} + 5q^{25} + 5q^{26} + 10q^{27} + 6q^{29} + 8q^{31} - q^{32} - q^{33} - 12q^{34} - 4q^{36} - 2q^{37} + 2q^{38} - 5q^{39} + 12q^{41} - 8q^{43} + q^{44} - 6q^{46} + 6q^{47} - 2q^{48} - 10q^{50} - 6q^{51} + 5q^{52} + 12q^{53} - 5q^{54} + 4q^{57} - 3q^{58} - 3q^{59} - 7q^{61} - 16q^{62} + 2q^{64} - q^{66} + 13q^{67} + 6q^{68} - 12q^{69} - 24q^{71} + 2q^{72} - 10q^{73} - 2q^{74} - 5q^{75} - 4q^{76} + 10q^{78} + q^{79} - q^{81} - 6q^{82} - 12q^{83} + 4q^{86} + 3q^{87} + q^{88} + 6q^{89} + 12q^{92} - 8q^{93} + 6q^{94} + q^{96} + 26q^{97} + 4q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1078\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(981\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
67.1
0.500000 + 0.866025i
0.500000 0.866025i
−0.500000 0.866025i 0.500000 0.866025i −0.500000 + 0.866025i 0 −1.00000 0 1.00000 1.00000 + 1.73205i 0
177.1 −0.500000 + 0.866025i 0.500000 + 0.866025i −0.500000 0.866025i 0 −1.00000 0 1.00000 1.00000 1.73205i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1078.2.e.d 2
7.b odd 2 1 154.2.e.b 2
7.c even 3 1 1078.2.a.i 1
7.c even 3 1 inner 1078.2.e.d 2
7.d odd 6 1 154.2.e.b 2
7.d odd 6 1 1078.2.a.k 1
21.c even 2 1 1386.2.k.n 2
21.g even 6 1 1386.2.k.n 2
21.g even 6 1 9702.2.a.o 1
21.h odd 6 1 9702.2.a.l 1
28.d even 2 1 1232.2.q.c 2
28.f even 6 1 1232.2.q.c 2
28.f even 6 1 8624.2.a.l 1
28.g odd 6 1 8624.2.a.t 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.2.e.b 2 7.b odd 2 1
154.2.e.b 2 7.d odd 6 1
1078.2.a.i 1 7.c even 3 1
1078.2.a.k 1 7.d odd 6 1
1078.2.e.d 2 1.a even 1 1 trivial
1078.2.e.d 2 7.c even 3 1 inner
1232.2.q.c 2 28.d even 2 1
1232.2.q.c 2 28.f even 6 1
1386.2.k.n 2 21.c even 2 1
1386.2.k.n 2 21.g even 6 1
8624.2.a.l 1 28.f even 6 1
8624.2.a.t 1 28.g odd 6 1
9702.2.a.l 1 21.h odd 6 1
9702.2.a.o 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1078, [\chi])\):

\( T_{3}^{2} - T_{3} + 1 \)
\( T_{5} \)
\( T_{13} + 5 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T + T^{2} \)
$3$ \( 1 - T + T^{2} \)
$5$ \( T^{2} \)
$7$ \( T^{2} \)
$11$ \( 1 - T + T^{2} \)
$13$ \( ( 5 + T )^{2} \)
$17$ \( 36 - 6 T + T^{2} \)
$19$ \( 4 - 2 T + T^{2} \)
$23$ \( 36 + 6 T + T^{2} \)
$29$ \( ( -3 + T )^{2} \)
$31$ \( 64 - 8 T + T^{2} \)
$37$ \( 4 + 2 T + T^{2} \)
$41$ \( ( -6 + T )^{2} \)
$43$ \( ( 4 + T )^{2} \)
$47$ \( 36 - 6 T + T^{2} \)
$53$ \( 144 - 12 T + T^{2} \)
$59$ \( 9 + 3 T + T^{2} \)
$61$ \( 49 + 7 T + T^{2} \)
$67$ \( 169 - 13 T + T^{2} \)
$71$ \( ( 12 + T )^{2} \)
$73$ \( 100 + 10 T + T^{2} \)
$79$ \( 1 - T + T^{2} \)
$83$ \( ( 6 + T )^{2} \)
$89$ \( 36 - 6 T + T^{2} \)
$97$ \( ( -13 + T )^{2} \)
show more
show less