Defining parameters
Level: | \( N \) | \(=\) | \( 1078 = 2 \cdot 7^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1078.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 77 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1078, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 184 | 40 | 144 |
Cusp forms | 152 | 40 | 112 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1078, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1078.2.c.a | $8$ | $8.608$ | \(\Q(\zeta_{16})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta_1 q^{2}+(-\beta_{4}-\beta_{2})q^{3}-q^{4}+\cdots\) |
1078.2.c.b | $16$ | $8.608$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{9}q^{2}+\beta _{14}q^{3}-q^{4}+(-\beta _{8}+\beta _{11}+\cdots)q^{5}+\cdots\) |
1078.2.c.c | $16$ | $8.608$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{2}-\beta _{5}q^{3}-q^{4}+(-\beta _{9}+\beta _{11}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1078, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1078, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(77, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(154, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(539, [\chi])\)\(^{\oplus 2}\)