Properties

Label 1078.2.bf
Level $1078$
Weight $2$
Character orbit 1078.bf
Rep. character $\chi_{1078}(17,\cdot)$
Character field $\Q(\zeta_{210})$
Dimension $2688$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1078.bf (of order \(210\) and degree \(48\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 539 \)
Character field: \(\Q(\zeta_{210})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1078, [\chi])\).

Total New Old
Modular forms 8256 2688 5568
Cusp forms 7872 2688 5184
Eisenstein series 384 0 384

Trace form

\( 2688 q + 56 q^{4} - 12 q^{5} + 10 q^{7} + 56 q^{9} + 18 q^{11} + 2 q^{14} + 30 q^{15} - 56 q^{16} + 100 q^{17} + 28 q^{20} + 14 q^{22} + 100 q^{23} + 56 q^{25} + 52 q^{26} - 126 q^{27} - 10 q^{28} - 20 q^{29}+ \cdots + 816 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1078, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(1078, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1078, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(539, [\chi])\)\(^{\oplus 2}\)